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Abstract 

The study of semantic representation of abstract concepts entails answering some 

fundamental questions such as: (1) How is the meaning of the word represented? (2) How 

does it relate to other words whether similar or associated? (3) How does meaning relate to 

conceptual structure? (4) How is the meaning abstracted and generalised to all instances of the 

concept?  

In order to answer such question, researchers need to have access to normed timuli. 

The literature on abstract concepts still lacks from the avaibility of such stimuli. The first 

experimental chapter (Chapter 2) introduces a database of semantically similar pairs of French 

words with varying levels of abstractness. This database is to the best of our knowledge and at 

the time of writing this manuscript, the first to introduce semantically similar pairs of abstract 

words in the French language. Chapter 3 introduces another database for word associations 

between concepts using the same words as in the previous database. Correlation analyses 

revealed that cue words presented to the participants elicited response words of a similar level 

of concreteness meaning that concepts are organised in the mental lexicon according to a 

gradient of concreteness. Analyses from associative strength have shown that concrete 

concepts elicit stronger associations compared to abstract concepts. The large amount of data 

generated by the word association task allowed for the implementation of mathematical graph 

analyses. Consequently, Chapter 4 introduces the first semantic network built from French 

association data and the first to compare topological parameters for concrete and abstract 

concepts. Results have shown that the French mental lexicon is structured according to a 

small-world pattern characterised by a sparse density, a short average path length between 

nodes and a high clustering coefficient. Comparison analyses between the networks for 

concrete and abstract networks respectively have shown that concrete concepts are organised 

in denser communities compared to abstract concepts. In addition, the concrete word nodes 

are more influential in the network and can spread information better due to their position and 

patterns of connectivity.  

In Chapter 5, we explored the richness of abstract concepts in a picture-word priming 

paradigm and compared the role of situational and intangible features in their processing. 

Results have shown that even when compared with situational picture primes, extraction 

mechanisms still occurred in the case of abstract pictures. We interpreted these results as 

further evidence of the richness of abstract concepts which can be composed from features 

other than lexical or situational, namely also abstract and intangible. These intangible features 

could be construed as evidence of abstracted representations from varied exemplars of 

concepts becoming generalised statistical traces in long-term memory. In Chapter 6, we 

investigated the effect of similarity and contextual diversity on the ability to generalise the 

meaning of abstract concepts to all instances. Results have shown that exposure to 

contextually diverse exemplars enhanced performance in the testing phase compared to 

similarity-based exposure.  
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We conclude this thesis by proposing a theoretical model based on our findings with 

the purpose of bridging the gap between levels of investigation of abstract concepts 

processing. Taken together, our findings describe a reversed pattern of processing with lower 

levels ruled by similarity-based processes while higher levels of processing are rules by 

diversity-based mechanisms. 

Key-words: abstract concepts processing, semantic similarity, verbal association, 

semantic network analysis, picture-word priming, abstraction, generalisation mechanisms. 
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Résumé – Long summary in French 

 

L’étude de la représentation des concepts a depuis longtemps été centrale au domaine de la 

psycholinguistique. Si cette étude a longtemps été centrée sur les mécanismes de 

représentation des concepts concrets tels que des entités vivantes et des objets non vivants 

mais tangibles (e.g., chat, table), l’étude des concepts abstraits (e.g., justice, liberté) n’a 

bénéficiée que depuis récemment d’un regain d’intérêt. Cette étude de la représentation des 

concepts en général demande de répondre à des questions de recherche fondamentale telles 

que (1) quelles sont les modes de représentation des concepts en mémoire ? (2) Comment les 

mécanismes de similarité et d’association verbale influent-ils sur la représentation des 

concepts dans le lexique mental ? (3) En quoi cette organisation du lexique mental est 

influencée par les caractéristiques structurelles du réseau qui leur sert de matrice ? (4) 

Comment le sens est-il généralisé à tous les exemples d’application d’un concept ?  

 

 L’étude de phénomènes psycholinguistiques repose sur l’emploi de stimuli normés afin de 

garantir le contrôle de potentielles variables confondues telles que la fréquence ou la longueur 

des mots. En effet, il existe en psycholinguistique, un intérêt important pour les normes de 

similarité en raison de leur utilisation dans des paradigmes d’amorçage sémantique qui 

permettent l’étude de l’organisation des concepts dans le lexique mental. Par exemple pour la 

langue anglaise, McRae et al. (2005) ont développé une base de données de traits sémantiques 

pour 541 concepts représentant des entités vivantes et objets concrets. Vinson et Vigliocco 

(2008) ont proposé une base de données similaire pour des objets concrets et verbes d’action. 

Baroni (2011) a collecté les propriétés sémantiques de concepts relationnels en Allemand et 

en Italien. En Espagnol, Moldovan et al. (2015) ont proposé 185 triplets de noms avec 

variation de distance sémantique entre les membres d’un même triplet. L’une des principales 

observations que nous avons pu faire concerne le manque de disponibilité de stimuli normés 

pour l’étude rigoureuse des concepts abstraits dans la langue française. Au moment de 

l’écriture de ce manuscrit, nous proposons la première base de données de paires de mots 

abstraits sémantiquement liés en Français. Dans l’objectif de répondre à ce manque dans la 

littérature, nous avons commencé par proposer une base de données de 630 paires de concepts 

sémantiquement liées qui varient selon un gradient de concrétude de très abstraits à très 

concrets dans 2 études indépendantes (voir Chapitre 1 partie expérimentale).  

 Nous avons fait le choix de joindre cette variable de concrétude afin de répondre aux 

observations de Crutch et Warrington (2011) qui suggèrent que le lexique mental est organisé 

selon un gradient de concrétude avec une organisation en fonction de la similarité sémantique 

pour les concepts concrets tandis que les concepts abstraits seraient organisés selon 

l’association verbale. La similarité sémantique signifie que les concepts d’une même paire 

possèdent une signification proche (e.g., table-chaise) tandis que des concepts sont associés 

verbalement lorsqu’ils sont fréquemment rencontrés ensemble dans le langage (e.g., miel-

abeille). Les mesures de similarité sémantique ont été collectées auprès de 900 participants 
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dans une tâche de jugement pour laquelle les participants devaient répondre sur une échelle en 

7 points. Nos données ont par la suite été croisées avec des bases de données de 

psycholinguistique française permettant aux utilisateurs de contrôler les potentielles variables 

confondues. Pour cela, nos données ont été croisées avec Lexique (New et al., 2004), the 

French Lexicon Project (Ferrand et al., 2010), Wordlex (Gimenes & New, 2016), and 

MEGALEX (Ferrand et al., 2018). Notre variable de concrétude peut être utilisée sous deux 

formats : continu ou catégoriel. La variable de concrétude continue représente les moyennes 

des jugements des participants donnés sur l’échelle en 7 points. Pour obtenir une variable 

catégorielle de la concrétude, nous avons implémenté un algorithme k-means (Wang & Song, 

2011) qui a mis en évidence une organisation des paires sémantiques selon 3 clusters de 

concrétude. Les paires sémantiques peuvent ainsi être filtrées par l’utilisateur en fonction de 3 

niveaux de concrétude de très abstraites à très concrètes.  

Dans une étude d’amorçage sémantique avec décision lexicale, on présente au participant un 

mot d’amorce suivi d’un mot cible (Meyer & Schvaneveldt, 1971 ; McNamara, 1992 ; Plaut, 

1995). La tâche des participants consiste à déterminer si la cible est un mot. L’effet 

d’amorçage sémantique est un phénomène très robuste qui a pu être répliqué des centaines de 

fois et qui correspond à une facilitation de traitement caractérisée par des temps de réponse 

plus courts et un pourcentage d’erreurs plus faible lorsque l’amorce et la cible sont reliées. Ce 

lien peut être sémantique (poney-cheval) ou d’association verbale (selle-cheval ; Hutchison et 

al., 2008, 2013). De précédentes études ont mis en évidence l’importance de strictement 

différencier entre ces deux types de lien et ont montré qu’il est possible d’obtenir un 

amorçage purement sémantique non-associé ou purement associé non sémantique (McRae & 

Boisvert, 1998 ; Perea & Rosa, 2002 ; Thompson-Schill, Kurtz, & Gabrieli, 1998 ; Lucas, 

2000 ; Hutchison, 2003 ; Ferrand & New, 2003). L’application de cette stricte distinction a été 

empiriquement vérifiée par Ferrand et New (2003) qui ont obtenu un effet d’amorçage 

sémantique pur en utilisant des paires sémantiquement liées sans association verbale (e.g., 

<baleine> et <dauphin> sont sémantiquement liés mais non associés verbalement).  

Afin de répondre à cette nécessité de distinguer entre ces deux formes de lien entre les 

concepts, nous avons proposé une seconde base de données d’association verbale qui repose 

sur les mêmes mots utilisés pour former la précédente base de données de paires sémantiques. 

De la même façon, cette base de données d’association verbale regroupe les réponses des 

participants pour 1100 mots cibles isolés variant selon un degré de concrétude de très abstrait 

à très concret. Les réponses des participants ont été collectées dans une tâche d’association 

verbale dans laquelle on présente un mot cible au participant qui doit répondre avec le premier 

mot qui lui vient à l’esprit. Cette tâche à l’avantage d’être très économique dans son 

implémentation et de pouvoir générer un très grand nombre de données. Nous avons ainsi pu 

obtenir plus de 92 000 mots réponses sur la base de 1100 mots cibles et 1200 participants 

recrutés en ligne. Ces données permettent dans un premier temps d’obtenir un pourcentage 

d’association entre le mot cible et les réponses données par les participants. Plus une réponse 

a été donnée fréquemment et plus elle est fortement associée au mot cible. Dans un premier 

temps, cette variable d’association verbale permet un croisement avec la précédente base de 

données de similarité sémantique pour assurer la création de matériel purement sémantique, 

purement associé ou au contraire avec un recouvrement entre ces deux types de lien pour les 

chercheurs qui souhaiteraient étudier l’effet d’un tel recouvrement. 
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Deuxièmement, cette base de données d’association verbale permet par l’introduction de la 

concrétude, d’étudier l’organisation du lexique mental pour les concepts abstraits 

comparativement aux concepts concrets. Ainsi, à partir de ces données, nous avons pu établir 

que les mots cibles abstraits génèrent des réponses plus faiblement associées comparativement 

aux concepts concrets. Cela confirme la théorie de Paivio (1971) selon laquelle les concepts 

abstraits sont plus faiblement associés à un grand nombre de contextes tandis que les concepts 

concrets sont plus fortement associés à un nombre restreint de contextes. 

De plus, les résultats ont révélé une forte corrélation du niveau de concrétude entre mots 

cibles et réponses générées par les participants. Ainsi, les mots cibles abstraits présentés aux 

participants génèrent des réponses abstraites. De la même façon, les mots cibles concrets 

génèrent des réponses concrètes. Ces résultats suggèrent une organisation du lexique mental 

selon un gradient de concrétude avec une proximité des concepts abstraits d’une part et des 

concepts concrets d’autre part.  

 Enfin, la quantité de données générées nous a permis d’employer des méthodes 

empruntées à la théorie des graphes en mathématiques afin de construire le premier réseau 

sémantique d’associations verbales françaises et le premier réseau comparant l’organisation 

structurale des concepts abstraits et concrets toutes langues confondues. Cet emprunt de 

techniques à la théorie des graphes en mathématiques a donné lieu à un nouveau champ 

disciplinaire appelé science des réseaux cognitifs (Baronchelli, Ferrer-i-Cancho, Pastor-

Satorras, Chater, & Christiansen, 2013 ; voir Siew, Wulff, Beckage, & Kenett, 2019 pour une 

revue de la littérature). Cette discipline appliquée à l’étude du langage, permet de modéliser 

l’organisation structurelle du lexique mental sur une plus grande échelle comparativement à 

ce qu’il est possible de faire à partir de données comportementales obtenues sur la base de 

plans factoriels. Un réseau sémantique correspond à un graphe composé de nœuds liés entre 

eux par des liens qui indiquent la direction et la force de la connexion entre deux nœuds. Dans 

un réseau sémantique du lexique mental, les nœuds représentent des concepts (mots cibles et 

réponses des participants dans une tâche d’association verbale) et les liens indiquent une 

correspondance entre un mot cible et ses réponses. Ces liens sont également caractérisés par 

des poids qui représentent la fréquence d’association entre un mot cible et chacune de ses 

réponses. Plus une réponse est générée fréquemment par un grand nombre de participants et 

plus le poids du lien qui relie le mot cible à la réponse est élevé. L’analyse des réseaux 

sémantiques repose sur des paramètres d’intérêts tels que : 

- Le diamètre du réseau qui correspond au chemin le plus long (en nombre de 

nœuds) qui relie deux nœuds du réseau ; 

- Le chemin le plus court qui correspond au plus petit nombre de nœuds à parcourir 

pour passer d’un nœud à l’autre ; 

- Le coefficient de clustering qui correspond à la probabilité que deux nœuds reliés 

entre eux possèdent également un nœud voisin en commun ; 

- La densité du réseau qui correspond au nombre total de liens au sein du réseau 

De précédentes études ont démontré par l’application de la science des réseaux aux données 

d’associations verbales que le lexique mental est caractérisé par une structure en « petit 

monde » ou « small-world » (Motter et al. 2002 ; Sigman & Cecchi 2002 ; de Jesus et al. 

2004 ; Steyvers & Tenenbaum 2005 ; Bales & Johnson 2006 ; Borge-Holthoefer & Arenas 

2010 ; Choudhury & Mukherjee 2009 ; Fukś & Krzemiński 2009 ; Veremyev, Semenov, 
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Pasiliao & Boginski, 2019). Ce type de structure est caractérisé par une faible densité, un 

chemin plus court composé de peu de nœuds et un fort coefficient de clustering. Cela signifie 

que le lexique mental est structuré en clusters de nœuds fortement condensés qui permettent 

une distribution efficace de l’information (Borge-Holthoefer, Moreno, & Arenas, 2012 ; De 

Deyne et al. 2016). Notre étude a ainsi permis de construire le premier réseau sémantique du 

lexique mental français et de mettre en évidence sa structure en petit monde. Nous avons par 

la suite divisé ce réseau selon un gradient de concrétude avec un sous-réseau composé des 

concepts abstraits et un autre sous-réseau composé des concepts concrets. La comparaison des 

paramètres des deux réseaux suggère que le réseau des concepts abstraits est moins dense et 

plus diffus comparativement au réseau des concepts concrets. Une analyse supplémentaire des 

scores de diffusion de l’activation dans un réseau (voir Collins & Loftus, 1975) a démontré 

que les concepts abstraits ont un score de diffusion plus faible que les concepts concrets. Ces 

éléments permettent de mettre en évidence à un niveau structural des éléments de preuve 

selon lesquels les concepts abstraits sont organisés dans un pattern plus diffus 

comparativement aux concepts concrets. Ces éléments sont en accord avec de précédentes 

observations quand au déficit de traitement des concepts abstraits comparativement aux 

concepts concrets avec des concepts abstraits caractérisés par une lenteur de traitement et une 

apparente pauvreté de contenu dans les tâches de production de traits sémantiques (voir 

Recchia & Jones, 2012). Ceci coïncide également avec la proposition de Paivio (1971) selon 

laquelle les concepts abstraits sont faiblement connectés à une multitude de contextes tandis 

que les concepts concrets sont plus fortement connectés à un petit nombre de contextes.  

 Cette disparité structurelle dans l’organisation du lexique mental pour les concepts 

abstraits pose la question de la nature des traits sémantiques qui les composent et de leur 

mode de représentation (Barsalou, 2003 ; Borghi et al., 2017 ; Pecher, 2018 ; Lakhzoum et al., 

2021). En effet, cette structure organisée dans un pattern plus diffus confirme la suggestion 

selon laquelle il n’existe pas de correspondance parfaite entre un concept abstrait et son 

référent. Les concepts abstraits font généralement référence à une multitude de situations 

complexes. Cette particularité des concepts abstraits a longtemps représenté un challenge pour 

l’étude de leur représentation d’un point de vue cognitif et cérébral dans la mesure où ils ne 

correspondent pas à des entités tangibles. Certaines études ont démontré que les concepts 

abstraits sont représentés dans des modalités situationnelles, émotionnelles, sociales, 

introspectives ou encore métacognitives (voir Borghi et al., 2017 pour une revue). De façon 

plus générale, ces études ont mis en évidence l’importance du contexte dans la représentation 

des concepts abstraits. D’autres part, plusieurs études ont exploré la représentation des 

concepts abstraits dans des tâches de production de listes de traits sémantiques (Barsalou & 

Wiemer-Hastings, 2005 ; Borghi et al., 2018 ; Kousta et al., 2011 ; Ferretti et al., 2001). Ces 

études suggèrent que les concepts abstraits peuvent eux-mêmes se décomposer en traits 

sémantiques abstraits. Pris ensemble, ces résultats semblent suggérer des implications 

contradictoires quand au mode de représentation des concepts abstraits avec certaines études 

suggérant un mode de représentation ancré dans des informations situationnelles tandis que 

d’autres suggèrent que les concepts abstraits se décomposent en traits sémantiques eux-

mêmes abstraits.  

Dans une étude récente McRae, Nedjadrasul, Pau, Pui-Hei et King (2018) ont utilisé un 

paradigme d’amorçage sémantique dans lequel des mots abstraits étaient amorcés par des 



8 
 

images illustrant chaque concept. Par exemple, le concept abstrait <discipline> était amorcé 

par une image montrant des enfants en rang. Le protocole expérimental consistait à présenter 

une image d’amorce puis un concept lexical abstrait dont le sens était soit lié sémantiquement 

à l’image soit non relié. Les résultats ont montré une facilitation de traitement avec des temps 

de réponse plus courts et un taux d’erreurs inférieur lorsque l’image d’amorce et le mot cible 

étaient reliés comparativement à lorsque ceux- ci n’étaient pas reliés. Ces résultats semblent 

confirmer une représentation des concepts abstraits selon un ancrage situationnel dans la 

mesure où la présentation de situations imagées en amorce facilite le traitement du concept 

abstrait lexical.  

Dans une autre étude, Kuipers, Jones et Thierry (2018) ont utilisé un paradigme d’amorçage 

similaire dans lequel des concepts lexicaux abstraits étaient amorcés par des images abstraites. 

Ces auteurs ont cherché à explorer l’effet d’images abstraites dénuées de traits tangibles sur le 

traitement de concepts lexicaux abstraits. De la même façon, le protocole expérimental 

consistait à présenter une image d’amorce abstraite puis un concept lexical abstrait dont le 

sens était soit lié sémantiquement à l’image soit non relié. Les résultats ont montré pour les 

données comportementales un effet de facilitation avec des temps de réponse plus courts et un 

taux d’erreurs plus faible lorsque l’image d’amorce abstraite et le mot cible étaient reliés 

comparativement à lorsque ceux-ci n’étaient pas reliés. Les données d’EEG ont démontré une 

plus faible amplitude de la N400 pour les paires reliées comparativement aux paires non-

reliées. Selon les auteurs, ces résultats suggèrent qu’il est possible d’activer des concepts 

abstraits en mémoire sur la base d’images abstraites dénuées de traits tangibles. Cela suggère 

donc que les concepts abstraits peuvent bénéficier d’un traitement sémantique même en 

l’absence d’information situationnelle.  

Afin d’approfondir ces résultats qui semblent se contredire quand au rôle des informations 

situationnelles ou intangibles dans le traitement sémantique des concepts abstraits, nous avons 

réalisé une étude dans laquelle nous avons directement comparé ces deux conditions. Nous 

avons dans un premier temps répliqué l’étude de Kuipers et al. (2018) en Français afin de 

vérifier la faisabilité du protocole expérimental dans un contexte plurilinguistique. Comme 

Kuipers et al., (2018) nous avions formulé l’hypothèse selon laquelle nous devrions observer 

un effet de facilitation pour les paires images-mots reliées comparativement aux paires non-

reliées. Les résultats ont confirmé ceux de Kuipers et al. (2018) et ont montré le même effet 

de facilitation pour les concepts abstraits amorcés par des images abstraites sémantiquement 

reliées comparativement aux paires non-reliées.  

Dans un paradigme d’amorçage, nous avons présenté dans une première condition une série 

de paires de concepts lexicaux amorcés par des images abstraites dénuées de traits tangibles et 

dans une seconde condition, ces mêmes concepts lexicaux amorcés par des images riches en 

informations situationnelles. Nous avions formulé l’hypothèse selon laquelle l’effet de 

facilitation obtenu à partir des images situationnelles devrait être maintenu tandis que l’effet 

des images intangibles devrait disparaître. Nous avions donc fait l’hypothèse d’une stratégie 

de traitement préférentiel en faveur de traits situationnels comparativement à des traits 

intangibles. Les résultats ont montré un effet de facilitation pour chaque condition avec des 

temps de réponses plus courts et des taux d’erreurs plus faibles pour les paires images-mots 

reliées comparativement aux paires non-reliées, ceci pour les images situationnelles ainsi que 

pour les images abstraites. Cet effet de facilitation était plus fort pour les images 
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situationnelles comparativement aux images abstraites. Ces résultats ont permis d’approfondir 

les connaissances quand au rôle du type d’information permettant l’activation et le traitement 

des concepts abstraits. Ils suggèrent que même en présence d’informations situationnelles qui 

devraient stratégiquement faciliter le traitement des concepts dans la mesure où ils procurent 

un contexte d’ancrage, les participants ont continué d’extraire des traits sémantiques 

intangibles à partir des images abstraites. Une première interprétation de ces résultats au 

regard de l’étude de Kuipers et al. (2018) suggère que les concepts abstraits peuvent être 

décomposés en une série de traits qui peuvent être contextuels mais également abstraits. Cette 

première conclusion met ainsi l’accent sur la richesse des concepts abstraits et la variabilité de 

leurs modes de représentation qui va à l’encontre de précédentes suggestions concernant une 

pauvreté du contenu des concepts abstraits (voir Recchia & Jones, 2012). 

Ces résultats peuvent également être interprétés en complément de ceux de Bolognesi et 

Vernillo (2019) qui proposent un traitement des concepts abstraits selon un mécanisme 

d’ « abstraction par métonymie ». Celui-ci repose sur un processus d’abstraction des concepts 

partant de représentations tangibles vers des représentations plus abstraites. Nos résultats 

semblent suggérer un mécanisme opposé et complémentaire à celui-ci dans lequel les 

participants auraient extrait des traits sémantiques intangibles à partir desquels des 

représentations plus tangibles ont été inférées permettant l’activation des concepts lexicaux 

sémantiquement reliés.  

Le traitement des concepts abstraits sur la base de ces traits intangibles pourrait également 

être interprété comme le résultat d’un processus de généralisation des concepts à partir d’une 

multitude d’exemples d’application dans des situations variées. En effet, les modèles de 

catégorisation cognitive décrivent la capacité des individus à faire abstraction des disparités 

situationnelles au travers de multiples exemples d’application situationnelle d’un concept afin 

d’en inférer un sens général. Cette capacité permet notamment de transférer le sens d’un 

concept à de nouvelles situations afin d’extraire les similitudes fondamentales dans la 

définition générale du concept. C’est grâce à cette aptitude que les individus sont capables de 

comprendre le sens d’un concept sans avoir besoin de faire l’expérience de toutes ses 

applications. 

Dans le Chapitre 5, nous avons exploré ces capacités de généralisation du sens d’un concept à 

partir de la présentation d’une série d’exemples de situations d’application. La théorie de la 

catégorisation par l’exemplaire stipule que le sens des concepts est généralisé sur la base de la 

similarité entre un nouvel exemplaire et les exemplaires d’application stockés en mémoire. 

Par exemple, Gentner, Loewenstein et Hung (2007) ont montré que des enfants présentaient 

des facilitations de transfert de noms d’objets lorsqu’il existait une correspondance 

structurelle entre les exemplaires connus et le nouvel exemplaire d’objet à catégoriser.  

D’autres études ont toutefois remis en question cet effet de la similarité et suggèrent qu’elle 

pourrait porter atteinte à la capacité de transfert des caractéristiques communes d’une 

situation à une autre de par l’apprentissage de traits de surfaces idiosyncratiques (voir par 

exemple Braithwaite & Goldstone, 2015). Ces études préconisent l’effet de la diversité 

contextuelle lors de l’apprentissage d’un concept qui permettrait de faire abstraction de tels 

traits superficiels en faveur d’un traitement approfondi des bases communes aux exemplaires 

stockés en mémoire et le nouvel exemplaire à catégoriser. Par exemple, Braithwaite et 

Goldstone (2015) ont demandé aux participants d’apprendre une série de concepts 
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mathématiques abstraits dont les exemples étaient soit très similaires entre eux, soit 

présentaient des variations des traits de surface. Leurs résultats ont montré que les participants 

étaient mieux à même de généraliser leur apprentissage à de nouveaux exemplaires dans des 

conditions d’apprentissage sur la base d’une diversité contextuelle entre les exemplaires. 

Pagan et Nation (2019) ont utilisé un protocole similaire pour l’apprentissage de définitions 

de mots et ont également montré un effet de facilitation des capacités de transfert du sens à de 

nouveaux exemplaires d’un concept lorsque les exemples appris présentaient des variations 

contextuelles. Pris ensemble, ces études semblent générer des résultats contradictoires en 

termes d’impact des conditions de similarité ou de diversité contextuelle. C’est pourquoi, 

nous avons comparé ces deux contextes d’apprentissage dans une étude des capacités de 

généralisation du sens des concepts abstraits. Dans une première étude, nous avons construit 

une base de données de nouveaux concepts abstraits dont nous avons illustré le sens à travers 

une série d’exemples qui étaient soit très similaires entre eux soit qui présentaient des 

variations contextuelles. Dans une seconde étude, nous avons testé l’effet de la similarité et de 

la diversité contextuelle sur les capacités de généralisation du sens de concepts abstraits. Dans 

une première phase d'apprentissage, les participants étaient exposés à une série d’exemples 

soit similaires entre eux soit dissimilaires permettant d’illustrer un concept abstrait. Durant la 

phase de test, on présentait aux participants un nouvel exemple du concept appris. La tâche du 

participant consistait à déterminer dans quelle mesure le nouvel exemple était représentatif du 

sens du concept appris. Les résultats ont montré que les participants étaient d’avantage 

capables de généraliser le sens du concept à un nouvel exemple lorsque celui-ci était appris à 

partir d’exemples variés. Cette étude a donc permis de démontrer l’effet de facilitation de la 

diversité contextuelle comparativement à la similarité dans les mécanismes de généralisation 

du sens des concepts abstraits.  

Pris ensemble, ces 5 chapitres expérimentaux permettent de répondre à une longue 

controverse en sciences cognitives concernant les effets de similarité et de diversité 

contextuelle. En conclusion de cette thèse, nous proposons un modèle théorique qui met en 

évidence un pattern renversé entre le traitement sémantique au niveau du mot 

comparativement à un niveau plus pragmatique centré sur le traitement sémantique 

d’exemplaires contextuels. Ce pattern révèle que les bas niveaux de traitement centrés sur le 

mot sont organisés selon un mécanisme de similarité tandis que les niveaux plus pragmatiques 

reposent sur un mécanisme centré sur la diversité contextuelle. Ce modèle suggère que ces 

modes de représentation selon la similarité ou la diversité contextuelle ne sont pas opposés 

mais correspondent aux extrêmes d’un processus hiérarchique de traitement sémantique. 

Mots-clés : Concepts Abstraits, sémantique, amorçage, concrétude, généralisation 
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Foreword 

“When I use a word,” Humpty Dumpty said, in rather a scornful 

tone, “it means just what I choose it to mean—neither more nor less.” 

 “The question is,” said Alice, “whether you can make words mean 

so many different things." 

Alice in Wonderland, Lewis Carroll (1865). 

 

It is often said that language is the cornerstone of human cognition. This uniquely 

human trait requires assimilating mental representations or concepts that can be manipulated 

to make sense of the world. This feat has understandably fascinated philosophers and 

scientists alike for centuries who have pondered the question of how the mind generates such 

flexible yet stable representations from encountering very few positive examples. The mind 

can in the space of milliseconds understand a complex utterance and in turn produce words 

that will automatically generate an idea, an emotion in the mind of a listener or a reader. This 

ability is nothing short of miraculous as evidenced by an infant’s capacity to learn such an 

elaborate skill with virtually no formal teaching or training. What transpires is that the mind is 

a wired organ destined to learn and manipulate language. Some researchers posit that we 

develop in early infancy a common-sense core of knowledge built on intuitive theories about 

physics (forces, masses, gravity…) and psychology (desires, beliefs, intents...; see for 

example Gerstenberg & Tenenbaum, 2017). This core matrix is common to other species such 

as non-human primates but benefits from an enrichment and sophistication through language 

that is specific to humans.  Intuitive theories are the tenets of featural patterns organised into a 

conceptual system from which semantic concepts can arise. The stability and flexibility of the 

semantic conceptual system is demonstrated by the mind’s ability to understand a statement 

even when intuitive theories are violated. To illustrate this point let us turn to the writer and 

mathematician Lewis Carroll (1832-1898) and his mastery of the nonsense literature, which 
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operates on its own intrinsic realm governed by the assumption that nothing exists outside the 

text. In Alice’s Adventures in Wonderland and Through the Looking Glass and What Alice 

Found There, Alice enters a world of logical fallacies that ignore the laws of physics (e.g., 

“Either the well was very deep, or she fell very slowly […]”), common sense (e.g., “Now, 

here, you see, it takes all the running you can do, to keep in the same place. If you want to get 

somewhere else, you must run at least twice as fast as that!”.), semantic truths (e.g., "I've had 

nothing yet," Alice replied in an offended tone "so I can't take more. “You mean you can't 

take less," said the Hatter: "it's very easy to take more than nothing”) and semantic fallacies 

(e.g., "That’s the reason they're called lessons," the Gryphon remarked: "because they lessen 

from day to day”) which implies a new meaning for the word lesson given by a phonological 

neighbour. Almost instantaneously, the reader is able to let go of mental representations 

acquired at the cost of many experiences and create new nonsensical ones in order to enjoy 

the story. This ability illustrates the complexity of the mental lexicon as a dynamic organ with 

constant interactions between its levels of processing from core featural properties to the 

understanding of complex statements.  

 Attempts to understand such semantic abilities have become the focal point for 

behavioural, computational and neurological investigations since the early phases of the 

cognitive revolution. The present thesis is a study of such semantic phenomena centered on 

abstract concepts from the organisation of concepts at the word-level in the mental lexicon to 

the mechanisms underlying our ability to generalise the meaning of concepts to novel 

instances. 
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Chapter 1. Theoretical Introduction 

Psycholinguistics has a long tradition of studying the representation of semantic concepts. 

This tradition has mainly been focused on the representation of concrete objects but in recent 

years, the focus has shifted to include the representation of abstract concepts. What does it 

entail to know the meaning of the word owl or justice? Answering this question raises some 

fundamental issues: (1) How is the meaning of the word represented? (2) How does it relate to 

other words whether similar or associated? (3) How does meaning relate to conceptual 

structure? (4) How is the meaning abstracted and generalised to all instances of the concept? 

The first part of this chapter is a review of semantic models from early hierarchal, network 

and feature models that have been the centre of attention staring from the 1960-70s to the 

more contemporary debate between the distributional and embodied accounts of semantic 

representation and their application to the challenge posed by abstract concepts. Next, we 

introduce the literature on abstraction and generalisation mechanisms of semantic concepts. 

Finally, the last section introduces the field of cognitive network science and its application to 

the issue of conceptual structure of the mental lexicon.  

1. Models of semantic representation 

Definition of semantic memory 

Concepts are the building blocks of higher-order cognition. They are the basis for our 

ability to form complex thoughts and generate abstract ideas. As such, philosophers and 

scientists have pondered the question of their representation in the mind and brain for 

millennia. During the last century, many influential models have been dedicated to the study 

of semantic concepts and the representation of meaning. In particular, Tulving (1972) built on 

Fodor’s (1950) modular account of the cognitive system to propose a distinction between 

episodic and semantic memory that differ on the nature of the information they store. 
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Semantic memory is defined as a storage system for general knowledge of the world and their 

corresponding abstract symbols (e.g., what is a chair?). In contrast, episodic memory stores 

individual experiences tied to time, space and sensory impressions (e.g., a favourite reading 

chair). Early models of semantic memory can be divided in two categories: models that are 

centered on network representations of concepts and models that are centered on a featural (or 

decompositional) view of concepts (Collins & Loftus, 1975, see also Vigliocco & Vinson, 

2005).  

Hierarchical and Network models 

Semantic network theories draw on Fodor’s (1980) holistic argument against the 

decomposition of concepts into a set of defining features and posit that the meaning of a concept 

is determined by its relationships with other concepts.  Accordingly, this suggests that for every 

element of the world –be it an object, an event or property, etc. - there is a symbolic lexical 

equivalent that acts as a referent in the conceptual system of the mind (Fodor, Garrett, Walker 

& Parkes, 1980; Berg & Levelt, 1990; Roelofs, 1997; Levelt, Roelofs & Meyer, 1999). This 

was motivated by the work of Quillian (1962, 1967) who built a computer simulation of 

semantic search in a dictionary-like network where concepts were represented as nodes linked 

by hierarchical relations (Collins & Quillian, 1969 see Figure 1). Quillian’s theory suggests that 

accessing a concept activates the whole network of related nodes, which gives the full meaning 

of the concept (Quillian, 1962, 1967). For instance, accessing the concept <machine> activates 

in turn the concepts <manufactured>, <composed of moving parts> and <a car> is an example 

of a machine. This computational view of semantic representation illustrates the complex 

structure of the conceptual system and the rich number of concepts that people must possess. 

However, Quillian was aware of the theoretical constraints put on the model due to its 

computational nature. Collins and Quillian (1969) tested the cognitive plausibility of this model 

in a series of True-False reaction-time experiments. Participants were presented with words and 
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properties and were asked to identify whether these properties belonged to the meaning of the 

word (for e.g. “A canary can fly”, “An ostrich is an animal”).  

 

 

Results confirmed the hierarchical structure of semantic memory with an organisation 

comprising superordinate categories, which could account for a distance effect with longer 

latencies when more levels needed to be verified. The theory later influenced the development 

of several global theories of semantic network representation such as Schank’s conceptual 

dependency (Schank, 1972), the active structural networks of Norman and Rumelhart (1975) 

and Anderson and Bower’s associative network theory (Anderson & Bower 1983).  

Collins and Loftus (1975) built upon this model and proposed a mechanism of semantic 

access by implementing their spreading of activation theory in a network. The theory posits that 

when a concept is processed, it activates the path between related nodes at a speed proportional 

to the strength of their similarity. This model corrected some of the hierarchical constraints of 

Figure 1. Illustration of (left) the models of Collins & Quillian (1969) and (right) Collins & Loftus (1975). 
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Collins and Quillian (1969) at the expanse of less typical concepts (Carey, 1985; Rips, Shoben, 

& Smith, 1973; Sloman, 1998). The notion of semantic similarity is central to the model. The 

more properties two concepts have in common, the more links their nodes share and the closer 

their meaning. This assumption of semantic similarity in the spreading of activation theory 

accounts for both the strength of the link between nodes and the ensuing dynamics of activation 

for related concepts. For instance, accessing the concept fire would activate related nodes with 

decreasing levels of activation from the node red to the node street (see Figure 1). The theory 

was successful in explaining many empirical results such as free word association (Freedman 

& Loftus, 1971; Loftus, 1973a, 1973b), multiple category (Juola & Atkinson, 1971), sentence-

verification (Conrad, 1972), categorization, semantic relatedness, typicality (Holyoak & Glass, 

1975; Rips et al., 1973; Rosch, 1973; Smith et al., 1974), sentence processing (Traxler, Foss, 

Seely, Kaup, & Morris, 2000), errors in sentence production (Dell, 1986) and semantic priming 

effects (Balota & Lorch, 1986; de Wit & Kinoshita, 2015). The spreading of activation theory 

is still very influential today and has fuelled other disciplines that use networks to represent 

complex systems such as cognitive network science (see Siew, Wulff, Beckage & Kenett, 

2019).  

This one-to-one mapping between concepts and lexical referents that lay at the core of 

hierarchical and network models contrasts with the decompositional view of feature models.  

Feature models  

The featural view posits that concepts can be decomposed into a set of properties or 

features that represent a diversity of semantic dimensions (e.g., Jackendoff, 1992; Vigliocco 

et al., 2004). The Feature Comparison Model developed by Smith, Shoben and Rips (1974) 

suggests two types of features: defining features referring to the core properties of a concept 

and characteristic features referring to informational but non-essential features (see Figure 2). 
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For instance, the concept bird would be decomposed into defining features such as <have 

wings> and <lay eggs> and characteristic features such as <can fly> because most but not all 

birds can fly.  

 

 

 

 

 

 

 

 

 

 

The notion of similarity is also important for feature models according to which the 

similarity between two concepts is given by the number of their overlapping features. The 

model assumes a two-stage process of comparison between two concepts. At stage 1, concepts 

are compared with respect to both feature types. If the first stage is not sufficient to produce a 

similarity judgment, a second stage reiterates the comparison based on defining features only. 

Despite the model’s ability to account for categorisation data, the strict distinction between 

feature types represents an impractical constraint. For instance, based on a strict application of 

Figure 2. Semantic Features Model (adapted from Smith et al. (1974)). 
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the 2-stage process, a bird that would have had its wings removed would no longer be 

considered a bird (Collins & Loftus 1975).  

This notion that meaning could be reduced to a definite set of defining features was 

heavily criticised for its impracticality (Fodor & Garrett, 1975; Fodor et al., 1980). Critics 

pointed that people seldom have knowledge of a concept’s defining features, which calls into 

question the ecological validity of the model (Collins & Loftus, 1975). It can be argued that 

the model would also struggle to account for abstract concepts representation given that 

abstract concepts are more likely to be defined in relation with other concepts rather than as a 

set of features (Paivio, 1968; Crutch & Warrington, 2010).   

Smith et al. (1974) argued that feature models could better explain empirical data 

compared to network models. Collins and Loftus (1975) expressed their opposition to this 

argument particularity due to Hollan’s successful implementation of a feature model in a 

network (Hollan, 1975). This opposition between hierarchical network and feature 

representation models has yet to be resolved despite the accumulation of data mainly due to 

confounding variables such as familiarity and associations that have produced mixed results. 

More recently, Murphy, Hampton and Milovanovic (2012) have tested the validity of these 

models in a series of experiments based on novel materials to avoid such confounding 

variables. Their results provided evidence in favour of feature models and suggested that a 

hierarchical organisation of concepts is plausible but not the preferred option.  

Despite early criticism, the featural assumption remains an elegant and effective model 

to account for semantic representation, which has benefited from a renewed interest for its 

ability to explain neuropsychological data (Allport, 1985). Warrington and McCarthy (1983) 

described the case of a patient who had difficulty identifying non-living things compared to 

living things while Warrington and Shallice (1984) described the case of a patient who 
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exhibited the opposite pattern. Consequently, it was possible to infer the existence of two 

dimensions of conceptual features that are the living vs. non-living dimensions (McRae et al., 

2005).  

The notion of similarity provides a consensus for both network and feature models. 

This explains the prevalence of semantic similarity in psycholinguistics as evidenced by its 

long tradition for developing semantic similarity norms and semantic priming paradigms. 

2. Similarity, verbal association and semantic priming 

To gain insight into the nature of semantic processing, two main relationships between 

concepts have been extensively studied, namely semantic similarity and word association. 

Semantic similarity refers to the overlap between the defining features of concepts (for 

example <bee> and <wasp> are semantically similar) which is measured using a feature 

generation task or a similarity judgment of word pairs. Word association refers to the co-

occurrence of words across language (for example <bee> and <honey>; McNamara, 1992; 

Plaut, 1995; Ferrand & Alario, 1998) which are obtained through a word association task.  

In a feature generation task, participants are given a series of target words for which 

they are asked to list as many features of the word as possible. The more features two words 

have in common, the more similar they are (McRae, Cree, Seidenberg, & McNorgan, 2005; 

McRae, de Sa, & Seidenberg, 1997; Sánchez-Casas, Ferré, García-Albea & Guasch, 2006; 

Vigliocco, Vinson, Lewis & Garrett, 2004; Vinson & Vigliocco, 2008). However, the 

procedure can be very demanding due to the previously mentioned constraint regarding 

people’s lack of systematic knowledge to decompose words into defining features as well as 

for its time-consuming nature (see McRae et al., 2005 for a discussion of these limitations). 

Researchers have more often resolved to generate semantically similar pairs of words that are 
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presented to participants and rated in a similarity judgment task (e.g., truck-car; Ferrand & 

New, 2003; Perea & Rosa, 2002; Ferrand & New, 2003; Sánchez-Casas et al., 2006).  

In a word association task, participants are presented with a word (the cue) and asked to 

generate the first word that comes to mind (the response). In addition to providing normed 

stimuli to use in factorial designs, the task can unveil shared mental representations, language 

patterns and mechanisms of meaning extraction (Szalay & Deese, 1978; Prior & Bentin, 2008; 

Mollin, 2009, De Deyne et al., 2008, 2018). The amount of data generated also allow for the 

application of computationally rich models such as distributional statistics and network 

representation that provide insight into the structure of the mental lexicon (Steyvers & 

Tenenbaum, 2005; De Deyne et al., 2008, 2016, 2018). Both semantic similarity and word 

association have been used in semantic priming designs which are regarded as the gold standard 

for studying how semantic knowledge is organised (see Hutchinson, Balota, Cortese & Watson, 

2008; Hutchison et al., 2013; Pulvermüller, 2013; Mandera, Keuleers & Brysbaert, 2017). 

In a semantic priming study, participants are presented with a prime word followed by a 

target word (Meyer & Schvaneveldt, 1971; McNamara, 1992; Plaut, 1995). Semantic priming 

designs are often used with a lexical decision task for which participants must decide whether 

the target is a word. The semantic priming effect refers to the robust result, which has been 

replicated hundreds of times, showing that participants respond faster for related primes and 

targets –either semantically or verbal associates– compared to unrelated ones (Hutchison et al., 

2008, 2013). Early studies of semantic priming have shown some discrepancies due to an 

overlap between semantic similarity and verbal association (for example <cat> and <dog> are 

semantically similar but also verbal associates; see Thompson-Schill et al., 1998, but also 

Hutchison, 2003). The importance of strictly differentiating between associative and semantic 

relations when studying the mental lexicon has long been established (for example <whale> 

and <dolphin>; McRae & Boisvert, 1998; Perea & Rosa, 2002; Thompson-Schill, Kurtz, & 
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Gabrieli, 1998; Lucas, 2000; Hutchison, 2003; Ferrand & New, 2003). Ferrand and New (2003) 

obtained a pure semantic priming effect by using stimuli that were semantically similar while 

controlling for verbal association (e.g., <dolphin> and <whale>). In reverse, they obtained a 

pure associative priming effect by using strongly associated stimuli that had no semantic 

similarity (e.g., <spider> and <web>). Consequently, word association norms are used either to 

select associated word pairs or to check that semantically similar pairs are not also verbally 

associated. This robustness of semantic and associative priming reported in the literature 

reflects fundamental rules of semantic organisation in the mental lexicon.  

To focus only on similarity and verbal association does not provide a full picture of the 

organisation of semantic memory however as recent studies on concreteness have shown. 

3. Concepts concreteness 

Concreteness is a prevalent lexical variable in psycholinguistics and refers to the 

degree of tangibility of a conceptual entity denoted by a word referent (Coltheart, 1980; 

Brysbaert, Warriner & Kuperman, 2014). According to the Dual Coding Theory (Paivio, 

Yuille & Madigan, 1968) concrete concepts refer to tangible entities that are perceptible via 

the senses, whereas abstract concepts are intangible. According to the Context Availability 

Theory (Schwanenflugel, Harnishfeger & Stowe, 1988) while concrete concepts refer to a 

definite number of contexts, abstract concepts are connected to varied contexts. The 

importance of this variable lies in its ability to predict the hemispheric lateralisation of 

semantic effects. Neuropsychological studies have shown a concreteness effect in the 

processing of concepts with a processing facilitation in the right hemisphere for abstract 

concepts compared to concrete concepts (e.g., Oliveira, Perea, Ladera & Gamito, 2013). Other 

studies have shown that concrete concepts are easier to retrieve from memory compared to 

abstract concepts (Newton & Barry, 1997; Hanley, Hunt, Steed, & Jackman, 2013) and have a 

higher emotional valence (Kousta, Vigliocco, Vinson, Andrews, & Del Campo, 2011; Paivio, 
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2013). In recent years, new elements of definition have emerged to describe abstract concepts 

in terms of intangible features such as events, social contexts and introspective states (e.g., 

Barsalou & Wiemer-Hastings, 2005; Harpaintner, Trumpp & Kiefer, 2018; see Borghi et al., 

2017 for a review). The importance of the concreteness variable is further evidenced by the 

development of concreteness rating databases (Coltheart, 1981; Brysbaert, Warriner & 

Kuperman, 2014; Bonin et al., 2018) to use in semantic priming designs for instance. 

 Despite the robustness of the semantic priming effect with concrete concepts, results 

have been inconsistent with abstract concepts. Crutch (2005; Crutch, Conell & Warrington, 

2009; Crutch & Warrington, 2010) showed that while concrete concepts are organized 

according to semantic similarity, abstract concepts are organized according to verbal 

association. Several studies tried to replicate these results but revealed discrepancies (e.g., 

Hamilton & Coslett, 2008; Duñabeitia, Avilés, Afonso, Scheepers & Carreiras, 2009; Geng & 

Schnur, 2015). Indeed, these studies have attempted to replicate the results according to which 

concrete and abstract concepts have different dependencies upon semantic similarity and 

associative strength. They have failed however to find any such difference in the organization 

of concrete and abstract concepts. A more recent study found that both semantic similarity 

and verbal association elicited a priming effect for concrete concepts whereas for abstract 

concepts it was only found with verbal association (Ferré, Guasch, García-Chico & Sánchez-

Casas, 2015). Crutch and Jackson (2011) suggested the relationship between concreteness and 

association type could explain these disparities. They presented evidence based on data from 

healthy and neuropsychological patients showing that when presented with triplets of low, 

middle and high-levels of concreteness, the effect of semantic similarity increased with 

concreteness while the effect of verbal association decreased with concreteness. Furthermore, 

they suggested that concreteness be used as a graded variable rather than a binary one 

especially when studying its effect on the organization of semantic memory.   
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In recent years, the representation of abstract concepts has gained extra interest and 

became the focus of the debate between two seemingly opposite accounts of the nature of 

semantic representation, namely the distributional and the embodiment accounts. They differ 

from each other in respect to the information used to represent meaning. While distributional 

semantics relies on symbolic and linguistic features, embodiment relies on perceptual and 

sensory-motor states.  According to this definition, the distributional account can easily 

explain the representation of abstract concepts while embodiment struggles to account for 

their representation due to their intangible nature. Both the distributional and embodied 

assumptions can account for priming effects, which results from the activation of features 

shared between the prime and the target (Mahon & Caramazza, 2008; Dove, 2009; Andrews, 

Frank & Vigliocco, 2014; Carota, Kriegeskarte, Nili & Pulvermüller, 2017). Where these 

accounts differ, however, is in the nature of the features. The distributional account suggests 

the priming effect results from the activation of linguistic features, the embodied account that 

it results from the activation of shared sensorimotor states. Recently, a hybrid account has 

emerged as a consensus to suggest that both linguistic and perceptual features are responsible 

for this phenomenon.  

4. Distributional and grounded accounts of semantic 

representation 

The symbolic or experiential nature of conceptual features is a question that dates back to 

ancient philosophers. On the rationalist end of the debate, philosophers such as Descartes, 

Leibnitz and Kant -building on ideas from Platon- had developed the notion that concepts are 

detached from sensory matters and reside in the mind as symbolic entities. On the empiricist 

end of the debate, philosophers such as Hume and Locke building on assumptions from 

Aristotle had suggested that concepts represent impressions of the sensory environment (see 
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Markie, 2008, Machery, 2009; 2016). This opposition has fuelled the current debate between 

distributional and grounded accounts of semantic representation.  

 

Distributed accounts of semantic representation 

The distributional hypothesis originated from the field of computational linguistics 

that represents meaning in a semantic vector space (Lenci, 2018; see Figure 3). According to 

models of distributional semantics, meaning is the result of the statistical distribution of words 

across written and spoken language (Andrew, Frank & Vigliocco, 2014; Lenci, 2018; Lund & 

Burgess, 1996; Landauer & Dumais, 1997; Griffiths, Steyvers & Tenenbaum, 2007; Mandera, 

Keuleers & Brysbaert, 2017). The core tenet of this hypothesis lies in Harris’ principle 

according to which words occurring in similar contexts have similar meanings (Harris, 1954; 

see also Firth, 1957). Similarity lies at the core of the model and the meaning of concepts is 

given by the co-occurrence of its vector across similar contexts. For instance, Figure 3 shows 

that the concepts <cat> and <dog> are represented by close coordinates in a vector space 

because they occur in similar contexts and therefore have similar meanings. The meaning of 

words is therefore defined in relation to other words, depending on their shared symbolic and 

linguistic features.  

 

 

 

 

 Figure 3. Graphical representation of the semantic vector space for the 
concepts dog, cat, van and car from Lenci (2018). 
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This hypothesis later became influential in cognitive psychology as distributional 

analysis methods were considered a suitable foundation to represent semantic similarity 

(Miller, 1967). Miller and Charles (1991) formulated a definition of semantic similarity 

within the distributional framework and described it as a “function of the contexts in which 

words are used” (Miller & Charles, 1991, p.3). The reliance of this framework on large text 

corpora to extract semantic representations across written language provided much insights 

into the linguistic environment from which the mental lexicon is acquired and expanded 

(McRae & Jones, 2013; Jones et al., 2015). In contrast, the use of distributional analysis on 

behavioural data such as word associations established a framework for modelling the impact 

of linguistic environment on the mental lexicon. This allowed for the modelling of various 

distributional phenomena such as word frequency and centrality in the mental lexicon as well 

as vocabulary growth defined as the probability of generating novel words as the number of 

responses in a word association task increases (Herdan, 1964; Baroni, 2006; Evert & Baroni, 

2007). 

Distributional models of semantics are defined according to two main dimensions: the 

type of context used and the learning algorithm for distributional vectors (see Bullinaria & 

Levy, 2007; Riordan & Jones, 2011 for reviews). Accordingly, three major models have 

proved to be very influential in computational linguistics and cognitive psychology alike: 

LSA (Latent Semantic Analysis; Landauer & Dumais, 1997), HAL (Hyperspace Analogue of 

Language; Burgess 1998) and the Topic models (Griffiths, Steyvers & Tenenbaum, 2007). 

The LSA and HAL algorithms describe the statistical distribution of concepts according to 

their frequency of co-occurrence with other words. In addition, these models produced close 

performances when comparing with behavioural data. This suggests that they are able, to 

some extent, to mimic the extraction of semantic representation from language (see Andrews 

et al., 2009; Binder, Conant, Humphries, Fernandino, Simons, Aguilar & Desai, 2016). In 
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particular, the distance values between similar vectors obtained from the LSA and HAL 

models were able to predict reaction times for semantic priming effects and synonym 

recognition tests respectively. More recently, Griffiths and colleagues (2007) developed a 

Bayesian model of distributional statistics, which outperformed the LSA and HAL models on 

predicting a series of semantic phenomena such as semantic similarity and word associations.  

This account of semantic representation based on linguistic features finds no issue in 

explaining the representation of abstract concepts. This prevalence of linguistic features is 

further evidenced by the late age of acquisition of abstract concepts, which suggests that they 

are more likely to be acquired through language exposure (Della Rosa et al., 2010). In 

addition, neuropsychological data have shown that the processing of abstract words shows 

higher levels of activation in the left hemisphere associated with linguistic processing (Binder 

et al., 2005; Binder, Desai, Graves, & Conant, 2009; Wang et al., 2010). This view of 

distributional semantics using amodal linguistic symbols as a proxy for representing meaning 

has been under fire, particularly from researchers subscribing to the theory of embodiment, 

for its lack of grounding in perceptual and motor states. 

Grounded accounts of semantic representation 

According to the embodied account of semantic representation, concepts gain their 

meaning from internal simulation of the perceptual and sensorimotor features that define them 

(Barsalou, 1999; 2012; Borghi et al., 2017; Gallese & Lakoff, 2005; Glenberg, 1997; Zwaan, 

2004; Kiefer & Pulvermüller, 2012; Meteyard, Cuadrado, Bahrami & Vigliocco, 2012). For 

example, the concept <lemon> acquires its meaning from a re-enactment of features such as 

the colour yellow, the texture of the peel and the acidic taste. Pulvermüller, Shtyrov, and 

Ilmoniemi (2005) used brain-imaging techniques to show that brain areas responsible for 

motor actions of the face and leg are activated when action words such as kick or lick are 



37 
 

processed. This evidence struggles, however, to explain the grounding mechanisms for 

abstract concepts such as justice or freedom which do not refer to direct perceptual features or 

sensory-motor states (see Borghi & Pecher, 2011; Borghi, Binkofski, Castelfranchi, Cimatti, 

Scorolli & Tummolini, 2017, Pecher, 2018 for reviews; Dove, 2009, 2011, 2014; Machery, 

2016). However, several hypotheses, from strongly to weakly embodied, have been developed 

as explanations for the grounding mechanisms of abstract concepts.  

According to strong embodiment assumptions abstract concepts are as grounded and 

reliant on sensory-motor states as concrete concepts are (e.g., Glenberg & Kaschak, 2002; see 

Borghi et al., 2017 for a review). For instance, the conceptual metaphor theory describes the 

grounding of abstract concepts according to ‘image schemas’ corresponding to mental 

representations (e.g., Lakoff & Johnson, 1980; Gallese & Lakoff, 2005). More precisely, 

studies have shown that abstract concepts of valence and power are grounded in schemas 

described by spatial vectors using vertical vectors to represent positions of power while 

horizontal vectors represent valence concepts (see Pecher, 2018 for a review). As these 

schemas establish a mapping between abstract concepts and metaphors the Conceptual 

Metaphor Theory is limited by the availability of such metaphors to represent the richness of 

abstract concepts.  

According to weak embodiment assumptions abstract concepts are grounded via both 

sensorimotor and linguistic modes of representation. Several studies have shown that abstract 

concepts activate social and introspective aspects of situations (Barsalou & Wiemer-Hastings, 

2005), emotional features (Kousta, Vigliocco, Vinson, Andrews & Del Campo, 2011; Lenci, 

Lebani & Passaro, 2018), information about events and thematic roles (Ferretti, McRae & 

Hatherell, 2001). They have also found that linguistic information can act as a shortcut to 

conceptual simulation (Barsalou, Santos, Simmons & Wilson, 2008). Such results suggest that 

abstract concepts are grounded according to mechanisms which place a great emphasis on the 
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context in which they are used (e.g., Barsalou, 1999; 2003; Wiemer-hasting and Xu, 2005). 

Contrary to strongly embodied accounts, these assumptions are sufficiently general to apply to 

a variety of abstract concepts. 

The strongly and weakly embodied accounts represent the extremes of a theoretical 

continuum. Middle-ground theories, have also been formulated to account for the 

representation of abstract concepts which consider that both linguistic and grounded features 

contribute to their representation. For instance, Dove’s representation pluralism (Dove 2009, 

2011, 2014; see also Borghi et al., 2017; Pecher, 2018) is a hybrid account, according to 

which abstract concepts activate both linguistic and modality-specific features. Andrews, 

Vigliocco and Vinson (2009) integrated both distributional and experiential data in a 

probabilistic model which learned semantic representations in an attempt to reconcile the 

distributional and embodied accounts. The model revealed an interdependency of linguistic 

and sensory information. In another study, Lenci, Lebani and Passaro (2018) showed a similar 

statistical co-occurrence between linguistic and affective information in the representation of 

abstract words by applying distributional analyses on norming data.  

Finally, the hub-and-spoke model provides some neurological evidence in accordance 

with hybrid accounts of conceptual representation (Patterson et al., 2007, 2015; Mahon & 

Caramazza, 2009; Lambon Ralph et al., 2010; Martin et al., 2014; Martin, 2016).  The hub-

and-spoke model posits that semantic concepts are processed in a distributed network of 

modality-specific areas called spokes connected through cortical routes to hub regions that 

integrate all modalities (Figure 4).   
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Figure 4. The hub-and-spoke model of semantic processing. Modality-specific spokes represent 

motion (yellow), colours (dark blue), shapes (green), names (orange), actions (light blue) and tasks 

(purple) which converge towards the amodal “hub” (red) represented in the anterior temporal lobe 

(ATL; Adapted from Patterson et al., 2007). 

Neuropsychological data from patients with semantic dementia (SD) identify the ATL 

(anterior temporal lobe, see Figure 4) as a semantic hub region (see for example Patterson et 

al., 2007) due to a cross-modality pattern of semantic impairment found in SD patients. 

Consequently, this deficit has been construed as evidence of the amodal nature of the ATL 

and its role as a convergence zone for amodal conceptual representations (Patterson et al., 

2007, Rogers et al., 2004; Rogers & McClelland, 2004). Few studies have investigated the 

role of the ATL in the representation of abstract concepts specifically. However, recently, 

Hoffman, Binney and Lambon Ralph (2015) found an activation of the ATL for both concrete 

and abstract concepts with a graded shift as regards to the conceptual information relevant to 

each type. Accordingly, concrete concepts elicited stronger patterns of activation for 

ventromedial areas closely associated with visual regions while abstract concepts elicited a 

stronger activation in dorsolateral areas associated with auditory-verbal regions. Taken 

together, these patterns of activation suggest that the ATL is a hub for both abstract and 

concrete concepts across all modalities with stronger connections to related regions according 

to conceptual content.  

Conclusion 
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Since the early research of the 1960-70s, psycholinguistics has tried to establish a pattern 

of organisation of the mental lexicon first as a computational prospect with network models 

and later to make sense of neuropsychological and behavioural data. Major advances have 

been made over the decades as researchers established that similarity, whether computed as 

the overlap of features or co-occurrence in similar contexts plays a key role in the 

organisation of conceptual knowledge. In recent years, the nature of the conceptual features 

has been at the centre of attention in order to answer the challenge posed by abstract concept 

representation. Neuropsychological, computational and behavioural evidence have shown that 

the nature of features can be linguistic as well as grounded in modality-specific information. 

Neural evidence has also suggested the existence of hubs that abstract specific features in 

favor of similar core components of concepts (Patterson & Lambon Ralph, 2016). Evidence 

from the amodal hubs suggests a mechanism of abstraction which allows for the 

generalisation of conceptual meaning beyond encoded idiosyncratic features. As a result, the 

question of how concepts are represented is impossible to treat without considering how 

meaning is abstracted and generalised to all instances of a concept. 

5. Abstraction and generalisation mechanisms in the processing of 

abstract concepts 

Mechanisms of categorisation address a core tenet of conceptual knowledge in 

exploring how the meaning of concepts is generalised from isolated exemplars to all 

instances. Generalisation refers to the process of extracting features across multiple instances 

of a concept so that common features are given more weight in the representation of meaning 

compared to idiosyncratic features which become abstracted (see Murphy, 2002; Glenberg, 

2006; Altmann, 2017; Yee, 2019). This process is a cognitive feat without which it would not 

be possible to reason, make inferences and more generally make sense of the world. Many 

similarities exist in the respective literatures for concept representation and generalisation 
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which suggests that both rely on related mechanisms. As Murphy (2013) observed, this 

literature is still set in the prototype vs. exemplar debate as it has been for decades and 

without the perspective of a clear resolution in sight.  

Models of the prototype view of concept learning 

What is the nature of the mental representation that comes to mind when we think of a 

category word such as furniture or emotion? According to the prototype theory of Rosch 

(1975; Rosch & Mervis, 1975), such mental representations require a summary description of 

the core properties which define a category. Concepts are categorised according to their 

similarity with the most prototypical member of the category. In a series of priming 

experiments, Rosch (1975) found a facilitation effect for members of categories that presented 

a pattern with many properties in common with other members of the category and few 

properties in common with other categories. Consequently, researchers have adopted an 

interpretation of the prototype view according to which categories are represented by a set of 

features with some features being more important than others are (Posner & Keele, 1968; 

Hampton, 1979; Rosch & Mervis, 1975; Smith & Medin, 1981; Murphy, 2002; 2016). In 

these terms, the prototype view is in accordance with the featural view of concept 

representation and distributional approaches including feature-based models (e.g., Rogers et 

al., 2004; Rosch & Mervis, 1975; Smith, Rips, & Shoben, 1974) and hierarchical network 

models (e.g., Collins & Quillian, 1969). According to this account, concepts are defined as an 

unstructured list of features with associated weights called schemata (plural of schema; Cohen 

& Murphy, 1984; Smith & Osherson, 1984). Rumelhart and Ortony (1977) described 

schemata as data structures that represent generalised concepts underlying objects, situations, 

events and network relations with other concepts (see Murphy, Hampton & Milovanovic, 

2012, for example).  
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This prototype view became dominant after challenging the classical “all-or-none 

view” of concepts according to which concepts are categorized based on necessary and 

sufficient rules of membership (see Katz, 1972 for example). Despite its initial success, this 

account fell out of favour to the benefit of an exemplar view of concept learning which 

offered a better fit of empirical data (see Nosofsky, 1992 for a review). The major argument 

against the prototype view lies in its failure to represent the variety of correlated features that 

compose the examples encountered during concept learning (Fried & Holyoak, 1984; Medin, 

Altom, Edelson & Freko, 1982; Rips, 1989).  

The exemplar theory of categorisation is an alternative to the prototype view according 

to which such rules of membership are not necessary. The exemplar theory represents 

category membership according to stored situations where the concept applies (Medin & 

Schaffer, 1978; Blair & Homa, 2001; Medin & Schwanenflugel, 1981; Murphy, 2002; 2005). 

The generalisation of a category label from encountering a set of examples is dependent on 

the similarity of the examples and each member of the category (Medin & Schaffer, 1978; 

Nosofsky, 1986). For instance, a child that would encounter three instances of a bird and 

recognise it as such would have formed three “bird” exemplars that can be generalised to all 

instances and serve for later classifications (Barsalou, Huttenlocher, & Lamberts, 1998; 

Nosofsky, 1988). Contrary to the prototype theory, exemplar models suggest that all 

exemplars are stored and retrieved in concept learning.  

Influential models of the exemplar theory 

One of the most influential models of the exemplar account is the Generalised Context 

Model (GCM) of Nosofsky (1986) which posits that people store and classify concepts based 

on a vast collection of exemplars. New elements are stored and classified on the basis of their 

similarity to previously encountered exemplars. The model uses multidimensional scaling to 

represent similarity (MDS; see Shepard, 1958; 1987) which defines exemplars as points in a 
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psychological space. Similarity is measured as the distance between exemplar points. The 

shorter the distance between points, the more similar the exemplars they represent are. Figure 

5 illustrates the conceptual idea behind the model. Each point represents an exemplar which 

can vary along two main dimensions A and B. Exemplar A2 and B4 are positioned very 

closely in the dimensional space compared to exemplars A5 and B2. According to the 

illustrated case, A2 and B4 would be computed as highly similar compared to A5 and B2 that 

would be computed as highly dissimilar. The model can compute the categorisation of a novel 

item i by summing up its similarity to all exemplar in category A and in category B to 

determine its category membership.  

 

Figure 5. Schematic illustration of a category structure to explain the workings of the GCM  

(adapted from Nosofsky, 2012). 

 

The GCM model theoretically derives from the Medin-Schaffer context model (1978) 

which considered exemplars based on two dimensions only. In contrast, the GCM offers a 

more varied account of exemplars domains represented in the multidimensional scale. This 

flexibility largely contributed to the model’s influence as evidenced by the numerous 

extensions that have been proposed over the years. For example, Kruschke’s (1992) highly 

influential ALCOVE (attention-learning covering map) model implemented building blocks 

of the GCM such as the exemplar-based dimensionality and similarity principles in a 

connectionist framework. In this way, classification mechanisms are not only modelled but 



44 
 

rather learned on a trial-by-trial basis. The compelling account of the GCM model is 

illustrated in the number of extensions that have been proposed over the years which include 

Nosofsky and Palmeri’s (1997) exemplar based random walk (EBRW) and Lambert’s (2000) 

extended generalised context model for response times (EGCM-RT) which all provide 

predictive data. However, like the prototype view of concept learning, the exemplar view did 

not remain unchallenged.  

Challenges to the exemplar view 

The main challenges to the exemplar view concern the issue of cognitive economy (Rosch, 

1978). Exemplar accounts posit that every encountered exemplar is stored and retrieved from 

memory. Both assumptions seem impractical as they violate the economical strategies of 

cognitive processes (Feldman, 2003). More recently, Murphy (2016) reviewed the literature 

on exemplar models and concluded that despite their ability to explain data from many 

concept-learning experiments, it is not adequate to describe real-world category and concept 

learning. Murphy (2016) objected to the idea that category learning experiments can faithfully 

provide an ecological representation of the cognitive mechanisms involved in concept 

learning.  In contrast with the prototype view, the exemplar view cannot account for the 

hierarchical structures of semantic networks (Quillian & Loftus, 1969; Collins & Loftus, 

1975). To account for such hierarchies would require that every exemplar be encoded along 

with its category membership which would contradict the cognitive economy principle. 

However, the exemplar view has an advantage over the prototype theory in its ability to 

garner a sufficient amount of information to represent and learn concepts that would be lost in 

a prototypical account. 

Taken in isolation, neither the prototype nor the exemplar theory can provide a 

compelling account of concept learning. The major debate opposes the loss of information in 
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a prototype account to the violation of cognitive economy in the exemplar view (Komatsu, 

1992; Vanpaemel & Ons, 2005; see Vanpaemel & Storms, 2008 for a discussion).  

To answer these challenges, Vanpaemel and Storms (2008) proposed the Varying 

Abstraction Model (VAM) that combines both the information of the exemplar account and 

the cognitive economy of the prototype account. They viewed the debate between exemplar 

and prototype accounts as a debate on abstraction mechanisms. The VAM model posits that 

the protype and the exemplar accounts exist on a continuum of abstraction where exemplars 

represent minimal abstraction whereas prototypes represent maximal abstraction. The model 

describes a two-steps procedure with varying levels of abstraction. On Figure 6, panel A 

represents a mechanism of abstraction based on the prototype end of the continuum while 

panel B represents a mechanism based on the exemplar end of the spectrum. Finally, panel C 

represents a middle-ground position that consists of subprototypes obtained from the 

abstraction of a subset of exemplars. 

 

Figure 6. The two-step procedure to construct a category representation: (1) partition the category into 
clusters and (2) construct the centroid for each cluster. In this way, it is possible to construct the 

prototype representation (panel a), the exemplar representation (panel B), and a set of intermediate 

representations, one of which is illustrated in panel C (reproduced from Vanpaemel & Storms, 2008). 
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Despite the emergence of models to find a middle ground between these two views, 

the debate has yet to be resolved and no consensus has been reached. More recently, 

Ambridge (2020) argued against stored abstractions and proposed instead a radical exemplar 

model based on a strict dichotomy between the exemplar view and the process of abstraction. 

This dichotomy is rooted in the original debate on prototype and exemplar theories which 

defined prototypes as abstracted core features that represent a category while exemplar 

accounts assumed a position against abstraction based on the storage of every exemplar. This 

exemplar vs. abstraction dichotomy has been explored in studies on concept learning in 

children. For instance, Ambridge (2016) took position in favour of the prototype view and 

explained that children form and store a semantic construction prototype. This position has 

been challenged by recent models and experiments which suggest that the assumptions of 

storing exemplars and abstraction are not contradictory. Studies have shown that children 

develop more abstract representations as their language grows until they are able to generalise 

across common features of meaning (Savage, Lieven, Theakston & Tomasello, 2006; 

Rowland, Chang, Ambridge, Pine & Lieven, 2012). In addition, hybrid models posit that 

abstracted representation are composed of stored exemplars (Abbot-Smith & Tomasello, 

2006; Goldberg, 2006; Langacker, 1988). Even Ambridge (2020) reversed his position and 

proposed that word meanings are composed of exemplars, rather than represented as 

prototypes based on a central meaning. Most of the literature on concept learning and 

categorisation has been focused on concrete objects and generic concepts (e.g., triangles, 

faces, etc). These assumptions can also be applied to the study of abstraction mechanisms in 

the learning of abstract concepts.  
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How does this relate to mechanisms of abstraction and generalisation in the 

processing of abstract concepts? 

In recent years, much work has been focused on solving the challenge posed by 

abstract concepts (see Borghi et al., 2017; Pecher, 2011, 2018 for reviews) especially in light 

of their variety and complexity which make them difficult to classify in well-defined 

categories. Little is known about how abstract concepts are learned, categorised and 

generalised to all instances of a particular concept. Studies have shown that the preferred 

mechanism of abstraction depends on the structure of the category. According to Minda and 

Smith (2001), the prototype account is better suited for large categories whereas Feldman 

(2003) suggests that the exemplar account is more adequate for complex categories. More 

broadly, the literature on concept learning explores the mechanisms of abstraction that 

aggregate individual instances of a concept such that common features gain prominence while 

idiosyncratic features carry little weight (see Yee, 2019 for a review).  

Abstraction mechanisms are discussed in terms of categorisation levels from lower 

levels to higher levels of abstraction (e.g., robin -> bird -> animal). This hierarchy is more 

difficult to establish for abstract concepts that can themselves be decomposed into a set of 

abstract features and generally refer to complex situations (Borghi et al., 2017; Recchia & 

Jones, 2012).  How are the concepts of joy, fantasy or justice categorised for instance? The 

literature on abstract concepts has described several large domains to define abstract concepts 

rather than the categories used to classify concrete objects. These domains can broadly be 

described as number concepts, morals and aesthetics, the social and cultural dimension as well 

as emotion. These domains can be grounded in dimensions of sociality, language, 

interoception, perception and action, and finally metacognition (see Borghi, Barca, Binsofsky 

& Tummolini, 2018 for a review of these domains and dimensions of abstract concepts). This 
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complexity of abstract concepts mean that little is known about their mechanisms of 

abstraction.  

In recent years, Gentner and Asmuth (2017) have proposed a process of abstraction 

they call Career of Metaphor which describes how abstract meaning can be generalised 

through figurative language. For example, they consider the abstract relational meaning of the 

concept <anchor> that can be abstracted through figurative expressions such as <religion is an 

anchor>. Repeated exposure to such figurative instances would highlight the common features 

between the concepts <anchor> and <religion> by abstracting the meaning of the metaphor in 

favour of an underlying common relational structure which can be extended to other situations 

that share similar structures. The major limitation to the metaphorical account for abstraction 

is similar to the one found in the Conceptual Metaphor Theory for the grounding of abstract 

concepts which is that there cannot be a one-to-one mapping between each abstract concept 

and relational metaphors (see Pecher, 2018 for a discussion).  

Conclusion  

The literature on concept learning is made complex by a lack of consensus between 

the prototype and exemplar views on the one hand and the exemplars and abstraction 

dichotomy on the other hand. This literature is made even more complex for psycholinguistics 

research due to a lack of studies that have used semantic concepts in favour of more generic 

concepts such as lines, triangles, faces which are easier to generate, to norm and to diversify 

along chosen dimensions. The combination of word learning experiments and concept 

learning provides a powerful framework for studying how semantic concepts are abstracted 

and generalised to all instances. While this framework has been successfully applied to 

studying the abstraction mechanisms of concrete objects, very little is known about how 

abstract concepts are abstracted and generalised. This is mainly due to the fact that the 

literature on abstract concepts is rather recent and the majority of studies and models have 
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been dedicated to their representation and grounding mechanisms that have always 

represented a challenge. The complexity of abstract concepts and their lack of clear-cut 

categories make them even more of a challenge. The previous sections of this theoretical 

chapter have introduced the behavioural and neural evidence on the representation of abstract 

concepts. Although cognitive and neuroscientific approaches often have little to say about 

how concepts are structured, the newly prolific class of cognitive network models are an 

important exception. 

6. Network cognitive science 

Networks are used to explore the intrinsic structural design of many real-world 

phenomena. The last two decades have generated a wider interest for their application to study 

complex systems across all domains of science.  This section is divided in three parts. The 

first part retraces the historical roots of network science and introduces the three most 

commonly encountered models of networks: the Erdös-Renyi model (1959), the Watts-

Strogatz model (1998) and the Barabasi-Albert model (1999). The second part exposes the 

main mathematical parameters that allow for inferential network analyses. Finally, the third 

part is an overview of cognitive network science or the application of graph theory to the 

study of human cognition with an emphasis on the mental lexicon. 

Historical account and classical models of network science 

Network science stems from the mathematical graph theory but its historical roots are much 

older. The earliest known paper written by the mathematician Euler (1735) provided a 

solution to the famous Königsberg bridge problem. In this paper, Euler transcribed the map of 

the Prussian town of Königsberg into what is now known as a network to prove that it was not 

possible to cross each bridge of the town exactly once (Figure 7). This solution described for 

the first time the notions of nodes –or vertices- and edges that are central to the field of 
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network science today. These notions are the basis to a powerful quantitative method with 

nodes that can represent any entity of a complex system and edges that symbolise patterns of 

connectivity.  

 

Figure 7. Euler's schema from ‘Solutio problematis ad geometriam situs pertinentis’. 

 

The generalisation of Euler’s solution found many applications in every domain of science 

and led to the discovery of fundamental principles of networks. One such principle is the 

randomness of natural networks described by the mathematician Erdös in the 1950s. The 

Erdös-Renyi model (1959) states that for any two random nodes in a network it is possible to 

compute the shortest path -or the least number of jumps- that it would take to go from one 

node to the other. According to the model, natural random networks are characterised by 

small path lengths meaning that it takes very few jumps to move from one node to another 

regardless of the size of the network.  

These later developments in the formulation of network principles have given rise to a 

number of applications in domains other than discrete mathematics. For instance, Milgram 

(1967) tested this property of shortest path in a social experiment (see Figure 8). He asked a 

group of participants from Omaha, Nebraska to send a letter to a stockbroker in Boston, 
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Massachusetts using their own social connections. Results showed that on average, only six 

intermediary social connections were needed for the letter to reach its destination. This model 

so named because it illustrates the saying we live in a small world lies at the origin of the six-

degree-separation principle (Guare, 1990). Milgram formulated the following small-world 

problem: “[…] starting with any two people in the world, what is the probability that they will 

know each other? …while persons X and Z may not know each other, they may share a 

mutual acquaintance- that is a person who knows both of them.” Milgram (1967, p.4). 

 

 

 

 

 

 

This principle became very influential in most fields that use network science for its ability to 

model real world phenomena. Watts and Strogatz (1998) explored the dynamics of self-

organising systems further and established that most complex systems such as biological, 

technological or social networks present structural characteristics that lie between regular 

networks and random networks. In a regular network, every node is connected to every 

neighbour while a random network is characterised by a random pattern of connections 

between nodes. These middle-ground models can be highly clustered -with a high number of 

connections between nodes- like regular networks yet have small path lengths like random 

networks (Figure 9). A combination of high clustering and small path lengths became the 

Figure 8. Illustration of the Small-World Problem from Milgram 

(1967). 
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hallmark of a small-world structure based on an analogy with Milgram’s small world 

phenomenon.   

 

Figure 9. Small-world structure from Watts & Strogatz (1998). The small-world model was obtained 

by interpolation of a regular ring lattice and a random network, without altering the number of nodes or 

edges in the graph. 

 

Later studies confirmed these small-world properties in social networks (e.g., Watts & 

Strogatz, 1998; Kitsak et al., 2010), epidemiology of infectious diseases (e.g., Keeling & 

Rohani, 2008), spread of computer viruses (e.g., Pastor-Satorras & Vespignani, 2001), protein 

interaction (e.g., Bork et al., 2004), gene expression (e.g., van Noort, Snel & Huynen, 2004), 

neural (e.g., Basset & Bullmore, 2017) and semantic networks (e.g., Steyvers & Tenenbaum, 

2005).  

The benefit of using network representation for complex systems lies in their ability to 

represent not only structural characteristics but also dynamic processes of growth over time. 

For instance, according to the Barabasi-Albert model (1999), every time a node is added to a 

network, it connects either to an existing hub of influential nodes or to a community of nodes 

that are close to each other following a mechanism of preferential attachment (Figure 10).  
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Figure 10. Three graphs of 20 nodes each generated with the Barabasi-Albert model (1999). The 

increasing value m represents the parameter of attachment. A high value of m signifies that the more 

connected a node is, the more it is susceptible to receive links. 

 

These characteristics generate self-organising systems with a high level of information 

transfer and provide powerful structural and dynamic models to explain real world 

phenomena from the World Wide Web to human cognition. Network models also provide 

powerful mathematical parameters based on graph theory to draw quantitative inferences 

about structural and growth mechanisms. 

Network parameters and analysis 

A network is a graph composed of connected nodes also called vertices. The links between 

nodes can provide three types of information: (1) the existence of a connection between two 

given nodes for which case, the link is called an edge in an undirected network, (2) the 

direction of this connection from the source node to the destination node for which case, the 

link is represented by an arrow called an arc in a directed network, and (3) the weight of this 

connection. Nodes can be made to represent any entity of a complex system such as grids, 

airports, people, protein, etc. In the same way, the weights correspond to any value of the 

complex systems such as distance between locations, force of interaction, etc. These 

characteristics provide the fundamental topology of a network. Network modelling proposes 
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parameters and measures that are used to draw inferences. Inferences are not based on 

statistical significance as it is usually the case when manipulating behavioural data but rather 

draws on the comparison of the network of interest with a comparable random network that 

can be generated with the Erdös-Renyi model (1959).  

The macrostructure of the network is given by its diameter (D) measured as the longest path 

between two nodes. The average shortest path length (ASPL) refers to the average minimum 

number of steps from one node to another. The Erdös-Renyi (1959) and Watts-Strogatz 

(1998) models have established the importance of the ASPL for random and small-world 

networks which is often used to assess the small-world structure of a network. On a more 

empiric viewpoint, the ASPL has been used in semantic networks to model lexical parameters 

such as semantic similarity and verbal association (see Kenett, Levi, Anaki & Faust, 2017). 

The density (d) is defined as a ratio of the number of edges in the network to the number of all 

possible edges. 

At the microscopic level, nodes are characterised by their degree or number of connections. In 

a directed network, each node has an in-degree (kin) that is the number of incoming arcs and 

an out-degree (kout) that is the number of outgoing arcs. An undirected network only has 

degree k corresponding to the number of edges of a node. The average degree <k> describes 

the overall connectivity of the network. The clustering coefficient (CC) is the probability that 

two nodes are interconnected knowing they both are connected to a common neighbour 

(Table 1). The microscopic description of a network can assess the effectiveness of flow of 

information in the network. Studies have shown the impact of the clustering coefficient on 

word recognition (Chan & Vitevitch, 2009; Yates, 2013; Siew, 2018) and recall (Vitevitch, 

Chan & Roodenrys, 2012).   
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Table 3. Network parameters and description 

 

At the mesoscopic level, nodes can be organised into sub-network communities. Communities 

are defined as a group of nodes that are tightly interconnected but have few connections with 

the rest of the network. This community structure is best captured by the modularity measure 

established by Newman (2006). A network with a high modularity measure is formed of an 

important number of communities. 

The described network parameters have been applied to uncover structural principles of 

human cognition. More particularly, semantic network analysis has been used to great extent 

in the seminal work of Tenenbaum and Steyvers (2005) to establish the small-world structure 

of semantic networks. 

Cognitive network science approach to the mental lexicon 

Cognitive science has a long tradition of exploring the structural substrates of human 

cognition as evidenced by the development of symbolic, connectionist and neural models 

(Anderson, 1996; McClelland, McNaughton and O’Reilly, 1995; Dell, Chang & Griffin, 

1999). It has emerged in recent years as a new mathematical framework to analyse 

behavioural and neural data (Baronchelli, Ferrer-i-Cancho, Pastor-Satorras, Chater, & 

Christiansen, 2013; see Siew, Wulff, Beckage, & Kenett, 2019 for a review). Much of this 

approach has been dedicated to modelling the structural principles and growth mechanisms of 

the mental lexicon (see Tenenbaum & Steyvers, 2005).  

network characteristics Description 

D the diameter of the network 

ASLP the average length of shortest path  

CC the clustering coefficient 

<k> average degree 

k, kin, kout the degree, in-degree, and out-degree 

d density of the network 
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Network representation of semantic memory is rooted in Collins and Quillians’ seminal work 

(1969) which predates this new interest for cognitive network science. Collins and Quillian 

(1969) suggested that semantic memory is organised in a hierarchical tree-like structure with 

categories and features represented as nodes (see Figure 11a). Their model stated that the 

retrieval efficiency of the semantic fact <a canary can fly> for example lies in the 

generalisation of stored features such as <a canary is a bird> and <birds can fly>. This model 

puts much constraint on lexical access based on hierarchical relations at the expanse of less 

typical concepts (Carey, 1985; Rips, Shoben, & Smith, 1973; Sloman, 1998). Collins and 

Loftus (1975) proposed an alternative to this hierarchical network structure (Figure 11b). 

Their model represented a large-scale unstructured network where nodes correspond to words 

or concepts linked by patterns of similarity. The model described a retrieval mechanism based 

on spreading activation able to predict many lexical phenomena such as retrieval from 

memory, priming and interference effects (Deese, 1965; Collins & Loftus, 1975; Anderson, 

2000; Nelson, McKinney, Gee & Janczura, 1998). Despite the efficiency of the model of 

Collins and Loftus (1975), it fails to render the dynamic processes governing the organisation 

and growth of the mental lexicon.  

More recently, Tenenbaum and Steyvers (2005) studied the structural principles of human 

semantic knowledge using semantic network analysis on word association data. They found 

that semantic networks have a small-world structure (Figure 11c).  
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Figure 11. Proposed large-scale structures for semantic networks from Tenenbaum and Steyvers (2005): (a), a 

tree-structured hierarchy (e.g., Collins & Quillian, 1969); (b), an arbitrary, unstructured graph (e.g., Collins & 

Loftus, 1975); (c), a scale-free, small-world graph (e.g. Tenebaum & Steyvers, 2005). 

 

In a word association task, participants are presented with a series of cue-words to which they 

must respond with the first word that comes to mind. In a network based on association data, 

the nodes correspond to words connected by an undirected edge or a directed arc. A directed 

network provides additional information about the direction of the association from cue to 

response words. The weights of the arcs and edges represent the frequency or strength of 

association.  

Tenenbaum and Steyvers (2005) constructed a directed network from word association data 

collected by Nelson, McEvoy and Schreiber (1999) comprising 5,000 cue-words. Their 

analyses focused on the number of connections per word or dregree (<k>, kin, kout), the 

average shortest path length (ASPL) between two words and the clustering coefficient (CC). 

When comparing the word association network to a random network generated with the 

Erdös-Renyi model (1959), the word association network showed a combination of highly 

clustered nodes and a small average shortest path length characteristic of a small-world 

structure described by Milgram (1967) and Watts and Strogatz (1998). In addition, a focus 

on the mesoscopic level showed the presence of many hubs of highly interconnected nodes 

that share few connections with the rest of the network. This pattern of connectivity testifies 
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to the nature of growth mechanism taking place in the network over time. It suggests a scale-

free organisation in which new nodes tend to join already existing hubs and communities 

following the same mechanism of preferential attachment described by Barabasi and Albert 

(1999). 

De Deyne and Storms (2008) later confirmed the small-world properties of semantic networks 

using a continuous word association task. They found that the centrality of nodes within the 

network related to the age of acquisition of the word with a denser pattern of connection for 

words acquired early. This supports the view of how the mental lexicon grows over time 

suggested by the model of Tenenbaum and Steyvers (2005). More recently, De Deyne, 

Navarro and Storms (2013) constructed a network based 12,000 cues using a multiple-

response procedure that covered a large portion of the mental lexicon and which allowed for 

better prediction of lexical access and semantic similarity (see also De Deyne, Navarro, 

Perfors, Brysbaert & Storms, 2019). 

Conclusion 

The network modelling approach has proven its ability to provide additional insights by 

representing language processing on a larger and more dimensional scale, which was not 

possible with previous methods and models. This approach aims to provide a complementary 

account of the organisation and dynamic of the mental lexicon. It proves to be a powerful tool 

that empirically outperforms the prediction ability of more linear databases. Finally, network 

science can be applied to study brain connectivity using the same parameters (Siew et al., 

2019 for a review). This behavioural account of the mental lexicon could therefore be 

completed with network analyses of brain patterns of connectivity to link the behavioural data 

to the neural substrates that generated the structure and dynamic of the mental lexicon. 
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SYNTHESIS and INTRODUCTION TO EXPERIMENTAL 

CHAPTERS 

Research on abstract conceptual knowledge has recently become the focus of interest 

and benefitted from a long tradition of studying psycholinguistic phenomena which translates 

into a diversity of approaches, models and theories. In the present thesis, we set out to explore 

fundamental questions about abstract conceptual knowledge spanning from the processing of 

the word-level to the higher levels of processing which allow for the representation of 

generalised abstract concepts. Figure 12 provides an overview of the scope of the levels of 

investigation that we explored.  

 

Figure 12. Graphical representation of the scope of the present thesis. 
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The second chapter draws from the longest psycholinguistic tradition and provides a 

much-needed database for 630 semantically-similar word pairs in French. The main incentive 

for the development of this database was methodological and practical as it aims to bridge the 

gap in the French literature as regards to the availability of normed stimuli for abstract 

semantic word pairs. Similarly, Chapter 3 provides a complementary database comprising the 

same isolated words from the previous database which were presented in a word association 

task. The aim for this database was to provide users with the ability to have control over the 

nature of crafted stimuli with respect to purely semantic, purely associated or with an overlap 

in the relationship between chosen stimuli. These two chapters focus on the representation of 

semantic abstract concepts at the word-level. As such, they provide insights as to the 

linguistic variables that can impact the processing of lexical concepts but are rather limited 

when it comes to the structural organisation of the mental lexicon. The rich amount of data 

generated by the word association task allowed for the use of methods borrowed from corpus 

linguistics and the mathematical graph theory. In Chapter 4, we used these data to build the 

first semantic network of the French mental lexicon at the time of writing this manuscript 

which provides novel insights as to the difference in structural organisation for abstract 

concepts compared to concrete concepts.  

During the last two decades, the interest for the representation of abstract concepts has 

intensified. In the past however, assumptions had been made as to an assumed paucity of 

content characterising abstract concepts compared to concrete concepts. In Chapter 5, we 

explored the richness of abstract concepts and the nature of their features. We used a novel 

type of stimuli composed of abstract pictures devoid of tangible features in a well-established 

picture-word priming paradigm. This allowed us to study the role of situational information 

compared to intangible information in the processing of abstract concepts. This chapter 
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provides insights as to the featural nature of abstract concepts beyond their situational and 

linguistic components.  

In chapter 6, we explored a higher level of processing focused on the mechanisms that 

come into play in the generalisation of meaning to novel instances of abstract concepts. We 

introduced a database of 42 novel abstract concepts each illustrated by 9 exemplars of 

scenarios. The database was presented to participants who rated the similarity between 

exemplars. The database was then used in a word learning experiment were participants were 

introduced to a series of exemplars of each abstract concept that were either similar or 

dissimilar to each other. The combination of word learning experiments and concept learning 

provided a powerful framework for studying how abstract semantic concepts are generalised 

to all instances of meaning. 

Finally, we conclude this thesis by proposing a theoretical model based on our 

findings with the purpose of bridging the gap between levels of investigation of abstract 

concepts processing. Taken together, our findings describe a reversed pattern of processing 

with lower levels ruled by similarity-based processes while higher levels of processing are 

rules by diversity-based mechanisms.  
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The study of the representation of concepts at the word-level requires access to 

normed stimuli to insure the control of potentially confounded variables. This study of 

semantic concepts has long been centered on the representation of concrete concepts. 

However, in recent years, this focus has shifted to the representation of abstract concepts. This 

means that abstract concepts have not benefitted from the long tradition of developing 

psycholinguistic norms to the same extent that concrete concepts have. Consequently, there is 

a gap in the literature as regards to the availability of normed stimuli for abstract concepts. In 

order to address this gap in the literature, the following chapter introduces a database of 

semantically similar pairs of French words with varying levels of abstractness. This database 

is to the best of our knowledge and at the time of writing this manuscript, the first to introduce 

semantically similar pairs of abstract words in the French language. In addition, we collected 

semantic similarity and concreteness judgments to address the suggestion of Crutch and 

Warrington (2011) about different patterns of organisation in the mental lexicon for concrete 

and abstract concepts. The database was cross-referenced with other known psycholinguistic 

databases to allow for the control of lexical variables in the crafting of experimental stimuli. 

A first cluster analysis has shown that the word pairs could be organised according to three 

levels of concreteness. Further descriptive and correlational results have shown that the prime 

and target words shared the same level of concreteness and were well-matched across all 

lexical variables. The entire database is available on the OSF framework. 
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ABSTRACT 

The representation of abstract concepts remains a challenge, justifying the need for further 

experimental investigation. To that end, we introduce a normative database for 630 

semantically-similar French word pairs and associated levels of abstractness for 1260 isolated 

words based on data from 900 subjects. The semantic similarity and abstractness norms were 

obtained in two studies using 7-points scales. The database is organized according to word-

pair semantic similarity, abstractness, and associated lexical variables such as word length (in 

number of letters), word frequency, and other lexical variables to allow for matching of 

experimental material. The associated variables were obtained by cross-referencing our 

database with other known psycholinguistic databases such as Lexique (New et al., 2004), the 

French Lexicon Project (Ferrand et al., 2010), Wordlex (Gimenes & New, 2016), and 

MEGALEX (Ferrand et al., 2018). We introduced sufficient diversity to allow researchers to 

select pairs with varying levels of semantic similarity and abstractness. In addition, it is 

possible to use these data as continuous or discrete variables. The full data are available in the 

supplementary materials as well as on OSF (https://osf.io/qsd4v/).  

Keywords: Semantic similarity norms, Concreteness, Normative ratings, Abstract concepts, 

French word pairs. 
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INTRODUCTION 

Conceptual representation has been the focus of much study and debate for decades in the fields 

of semantics and psycholinguistics. In contrast with the holistic and non-decompositional view 

held by Collins and Loftus (1975), at the heart of the debate now are two seemingly opposite 

accounts of semantic representation: the distributional and the embodied accounts of conceptual 

representation (Harris, 1954; Firth, 1957; see Lenci, 2008; Andrews, Vigliocco & Vinson, 

2009; Andrews, Frank & Vigliocco, 2014; Bruni, Tran & Baroni, 2014; Lenci, 2018 for reviews 

of the distributional account. See Glenberg, 1997; Barsalou, 1999; Zwaan, 2004; Meteyard, 

Cuadraro, Bahrami & Vigliocco, 2012; Pulvermüller, 2013; Ostarek & Huettig, 2019 for 

reviews of the embodied account). Both these accounts consider that feature and property 

overlap play a major role in the processing of meaning (see Vigliocco & Vinson, 2007; 

Vigliocco, Meteyard, Andrews & Kousta for reviews). Indeed, there is much evidence of this 

from semantic priming studies, widely regarded as the gold standard for studying semantic 

representation in the mind and brain (e.g., Hitchison et al., 2013; Kim, Yap & Goh, 2019). 

However, for both sides of the spectrum the representation of abstract concepts remains a 

challenge, hence the need for a database of source material enabling us to further our 

understanding of abstract concepts representation.  

Accounts of semantic representation  

Holistic view and spreading of activation 

According to the holistic view of semantic representation, for every element of the world –

be it an object, an event, property, etc. - there is an abstract and symbolic lexical equivalent that 

acts as a referent in the conceptual system of the mind (Fodor, Garrett, Walker & Parkes, 1980; 

Berg & Levelt, 1990; Roelofs, 1997; Levelt, Roelofs & Meyer, 1999). In this view of one-to-

one mapping, each referent represents a single node in a semantic network, with nodes linked 
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according to their semantic similarity. For instance, the concept fire would be represented by a 

single node linked to related concepts or properties, such as red, also represented by a single 

node. Collins and Loftus (1975) described the mechanisms of semantic processing based on 

their theory of the spreading of activation in a network, according to which a concept, when it 

is processed, activates the path between related nodes at a speed proportional to the strength of 

the link between them. The assumption of semantic similarity in the spreading of activation 

theory accounts for both the strength of the link between nodes and the ensuing dynamics of 

activation for related concepts. Given that in this holistic view, each property or feature of a 

concept is represented by a single node, it is a view which contrasts with the decompositional 

or featural view.  

Featural view 

According to the featural view of semantic representation, words can be decomposed into 

a set of defining features or properties reflecting the meaning of the concept to which they relate 

(Smith, Shoben & Rips, 1974). For instance, the concept fire would be decomposed according 

to its defining features such as <is hot> and <is red>. As with the holistic view, at the core of the 

featural view is semantic similarity, but in this case it is measured by the number of features 

two concepts have in common (Plaut, 1995; McRae, de Sa & Seidenberg, 1997; Cree, McRae 

& McNorgan, 1999; Vigliocco, Vinson, Lewis & Garrett, 2004; Kiefer & Pulvermüller, 2012). 

The more features they share, the more semantically similar they are. In recent years, two 

seemingly opposite accounts of this featural view have dominated the debate on the nature of 

semantic representation, namely the distributional and the embodiment accounts. They differ 

from each other in respect of the information used to represent meaning. While distributional 

semantics relies on symbolic and linguistic features, embodiment relies on perceptual and 

sensory-motor states. 
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According to models of distributional semantics, meaning is the result of the statistical 

distribution of words across written and spoken language (see Andrew, Frank & Vigliocco, 

2014; Lenci, 2018 for reviews of this account, see also Lund & Burgess, 1996; Landauer & 

Dumais, 1997; Griffiths, Steyvers & Tenenbaum, 2007; Mandera, Keuleers & Brysbaert, 2017). 

The meaning of words is therefore defined in relation to other words, depending on their shared 

symbolic and linguistic features. According to the distributional hypothesis, words occurring in 

similar contexts have similar meanings (Harris, 1954). This use of intralinguistic relationships 

was successfully implemented in computational models of semantics (e.g., Hoffman, 

McClelland & Lambon Ralph, 2018). Motivation for using algorithms such as LSA (latent 

semantic analysis; Landauer & Dumais, 1997) is the notion that meaning can be extracted by 

computing semantic similarities between concepts (Louwerse, 2008; 2011; Louwerse & 

Jeuniaux, 2008; 2010; Rogers & McClelland, 2004; Kintsch, McNamara, Dennis & Landauer, 

2007). In addition, the close performance between computational models and human behaviour 

suggests these models are able, to some extent, to mimic the extraction of semantic 

representation from language (see Andrews et al., 2009; Binder, Conant, Humphries, 

Fernandino, Simons, Aguilar & Desai, 2016). 

This view of distributional semantics using amodal linguistic symbols as a proxy for 

representing meaning has been under fire, particularly from researchers subscribing to the 

theory of embodiment, for its lack of grounding in perceptual and motor states.  

The embodied account of semantic representation defines meaning as grounded in 

perceptual and motor states derived from an individual’s sensory experience (Barsalou, 1999; 

Glenberg, 1997; Zwaan, 2004; Kiefer & Pulvermüller, 2012; Meteyard, Cuadrado, Bahrami & 

Vigliocco, 2012). For instance, Pulvermüller, Shtyrov, and Ilmoniemi (2005) used brain-

imaging techniques to show that brain areas responsible for motor actions of the face and leg 

are activated when action words such as kick or lick are processed. Evidence like this struggles, 
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however, to explain the grounding mechanisms for abstract concepts, where there are no 

physical and sensory features (see Borghi & Pecher, 2011; Borghi, Binkofski, Castelfranchi, 

Cimatti, Scorolli & Tummolini, 2017 for reviews). 

The dichotomy between abstract and concrete concepts is not clear-cut (Della Rosa et al., 

2010). The most commonly invoked criterion is tangibility, with concrete concepts referring 

to tangible entities that are perceptible via the senses, whereas abstract concepts are 

intangible. According to the Dual Coding Theory (Paivio, Yuille & Madigan, 1968), concrete 

concepts trigger processing based on two informational systems, one visual, the other verbal, 

whereas abstract concepts are processed only in the verbal system. The Context Availability 

Theory (Schwanenflugel, Harnishfeger, Stowe, 1988) posits that while concrete concepts refer 

to a definite number of contexts, abstract concepts are connected to varied contexts. Although 

true, this distinction can be considered reductive and contributes to the view that abstract 

concepts are poor in terms of features. More recently, with the interest shown in abstract 

concepts by grounded cognition, new elements of definition have emerged according to which 

abstract concepts refer to intangible features such as emotions, events, social contexts and 

introspective states (e.g., Barsalou & Wiemer-Hastings, 2005; Harpainter et al., 2018; see 

Borghi, 2017 for a review). This latter definition reflects a new interest in their grounding 

mechanisms and semantic representation.  

The tangibility criterion is best represented by the concreteness variable defining the 

distinction between concrete and abstract concepts based on the dual coding and context 

availability theories. It plays a key role in psycholinguistic research, as well as providing an 

explanation for many phenomena, such as hemispheric lateralisation in the processing of 

concrete and abstract concepts (Oliveira, Perea, Ladera, & Gamito, 2013), or ease of retrieval 

of concrete words compared to abstract ones (Mate, Allen, & Baques, 2012; Nishiyama, 

2013).  
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The importance of the concreteness variable is further borne out by the development of 

several widely used databases containing concreteness rating norms (Coltheart, 1981) and, 

more recently, 40 000 words in English (Brysbaert, Warriner & Kuperman, 2014) and 1659 

words in French (Bonin et al., 2018). 

 

Abstract concepts representation 

The embodied account has yet to propose a unified theory for the representation of 

abstract concepts such as justice or freedom which do not refer to direct perceptual features or 

sensory-motor states (Dove, 2009, 2011, 2014; Machery, 2016; see Pecher, 2018 for a review). 

However, several hypotheses, ranging from strongly to weakly embodied, have been put 

forward as explanations for the grounding mechanisms of abstract concepts. The strong 

embodiment assumptions make no allowance for multiple representations and consider abstract 

concepts to be as grounded and reliant on sensory-motor systems as concrete concepts are (e.g., 

Glenberg & Kaschak, 2002; see Borghi et al., 2017 for a review). For instance, according to the 

conceptual metaphor theory, abstract concepts are grounded through image schemas 

corresponding to mental representations (e.g., Lakoff & Johnson, 1980; Gallese & Lakoff, 

2005). Several studies have shown that abstract concepts of valence and power are grounded in 

two-dimensional spatial schema with the higher point of a vertical vector representing positions 

of power while the left-hand side of a horizontal vector represents negative concepts (see 

Pecher, 2018 for a review). However, the need for one-to-one mapping between abstract 

concepts and concrete metaphors means there are limits to the availability of such metaphors 

for every type of abstract concept.  

 At the other end of the spectrum, according to weak embodiment assumptions abstract 

concepts are grounded via multiple representations of meaning with the involvement of both 
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sensorimotor and linguistic processing. These grounding mechanisms place a greater emphasis 

on the context in which abstract concepts are used (e.g., Barsalou, 1999; 2003; Wiemer-hasting 

and Xu, 2005). Several studies have shown that abstract concepts activate social and 

introspective aspects of situations (Barsalou & Wiemer-Hastings, 2005), emotional features 

(Kousta, Vigliocco, Vinson, Andrews & Del Campo, 2011; Lenci, Lebani & Passaro, 2018), 

information about events, and thematic roles (Ferretti, McRae & Hatherell, 2001), and, more 

generally, linguistic information acting as a shortcut to conceptual simulation (Barsalou, 

Santos, Simmons & Wilson, 2008). Such assumptions have the advantage of being sufficiently 

general to apply to a variety of abstract concepts.  

Whether seen from the distributional or embodied end of the spectrum, all accounts agree 

on the importance of relationships between concepts for the organisation of semantic 

knowledge. Two kinds of relationships have been widely investigated: semantic similarities 

(theft-burglary) and verbal association (theft-prison), and a lot of effort has gone into creating 

databases of material to use in semantic priming studies regarded as the gold standard for 

studying how semantic knowledge is organised (see Hutchinson, Balota, Cortese & Watson, 

2008; Hutchison et al., 2013; Pulvermüller, 2013; Mandera, Keuleers & Brysbaert, 2017). 

Semantic priming and semantic similarity for concrete and abstract concepts 

Semantic priming 

In a semantic priming study, participants are presented with a prime word followed by a target 

word (Meyer & Schvaneveldt, 1971). The relationship between the two words is one of either 

semantic similarity, where the two words belong to the same superordinate category (e.g., 

prime: eagle; target: owl), or verbal association, where the two words are frequently found 

together across spoken and written language (e.g., prime: fireman; target: truck; McNamara, 

1992; Plaut, 1995). In a lexical decision task, participants make a decision on the target by 
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indicating whether or not it is a word. The semantic priming effect refers to the robust result, 

which has been replicated hundreds of times, showing that participants respond faster for related 

primes and targets compared to unrelated ones (Hutchison et al., 2008, 2013). This phenomenon 

has been widely studied as it provides considerable insight into the organisation and 

mechanisms of semantic knowledge. In actual fact, each theoretical view discussed above can 

account for this priming effect. According to the holistic view (Fodor et al.,, 1980; Berg & 

Levelt, 1990; Roelofs, 1997), the priming effect is the result of spreading activation from the 

prime to the target along strongly linked nodes, whereas according to the distributional, 

embodied and hybrid accounts, it results from the activation of features shared between the 

prime and the target (Mahon & Caramazza, 2008; Dove, 2009; Andrews, Frank & Vigliocco, 

2014; Carota, Kriegeskarte, Nili & Pulvermüller, 2017). Where these last accounts differ, 

however, is in the nature of the features. The distributional account suggests the priming effect 

results from the activation of linguistic features, the embodied account that it results from the 

activation of shared sensorimotor states, and the hybrid account that both linguistic and 

perceptual features are responsible for this phenomenon.  

Despite the robustness of the semantic priming effect with concrete concepts, with abstract 

concepts results have been inconsistent. Crutch (2005; Crutch, Conell & Warrington, 2009; 

Crutch and Warrington, 2010) showed that while concrete concepts are organized according to 

semantic similarity, abstract concepts are organized according to verbal association. Several 

studies tried to replicate these results but revealed discrepancies (e.g., Hamilton & Coslett, 

2008; Duñabeitia, Avilés, Afonso, Scheepers & Carreiras, 2009; Geng & Schnur, 2015). 

Indeed, these studies have attempted to replicate the results according to which concrete and 

abstract concepts have different dependencies upon semantic similarity and associative 

strength. They have however failed to find any such difference in the organization of concrete 

and abstract concepts. A more recent study found that both semantic similarity and verbal 
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association elicited a priming effect for concrete concepts whereas for abstract concepts it was 

only found with verbal association (Ferré, Guasch, García-Chico, & Sánchez-Casas, 2015). 

Crutch and Jackson (2011) suggested the relationship between concreteness and association 

type could explain these disparities. They presented evidence based on data from healthy and 

neuropsychological patients showing that when presented with triplets of low, middle and high-

levels of concreteness, the effect of semantic similarity increased with concreteness while the 

effect of verbal association decreased with concreteness. Furthermore, they suggested that 

concreteness be used as a graded variable rather than a binary one especially when studying its 

effect on the organization of semantic memory. Accordingly, this calls for a shift in the way 

abstract concepts are studied, to place more emphasis on the type and associated level of 

concreteness for selected abstract concepts. Two different procedures are used to generate 

material for semantic similarity and priming studies: feature generation tasks and semantic 

similarity ratings.  

Semantic similarity: feature generation and semantic pairs 

In a feature generation task, participants are given a list of words for which they are required to 

provide a list of features defining each word. The procedure provides measures of semantic 

similarity by comparing the feature overlap between two words. The more features two words 

have in common, the more similar they are (McRae, Cree, Seidenberg, & McNorgan, 2005; 

McRae, de Sa, & Seidenberg, 1997; Sánchez-Casas, Ferré, García-Albea & Guasch, 2006; 

Vigliocco, Vinson, Lewis and Garrett, 2004; Vinson & Vigliocco, 2008). However, it is a 

procedure which is highly time-consuming and which has limitations (see McRae et al., 2005 

for a discussion of these limitations). For instance, in feature naming, participants may provide 

only a linguistic approximation of conceptual content. It is fair to assume, therefore, that some 

parts of the concepts would be lost in verbalisation. This criticism appears to be particularly 

relevant in the case of abstract concepts which may themselves be decomposed into abstract 
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features. Indeed, many authors have suggested that, compared to concrete concepts, abstract 

concepts appear to be semantically impoverished, with their representation requiring 

associations with other concepts or grounding simulations in introspective and social states 

(Barsalou et al., 2008; Borghi, Scorolli, Caligiore, Baldassare & Tummolini, 2013; Borghi, 

Barca, Binkofski, Castelfranchi, Pezzulo & Tummolini, 2019, see also Recchia & Jones, 2012).  

On the other hand, Wiemer-Hastings and Xu (2005) suggested that this apparent paucity of 

features for abstract concepts is due mainly to the instructions given to participants during a 

feature generation task. In the original method, Wiemer-Hastings and Xu (2005) asked 

participants only to generate features defining the concept, whereas later they instructed them 

to provide context features. The results showed that the difference between abstract and 

concrete concepts in terms of semantic richness disappeared when participants were encouraged 

to provide context features. By using the same method of property listing as Wiemer-Hastings 

and Xu (2005), Harpainter, Trumpp and Kiefer (2018) gathered properties for close to 300 

abstract concepts. By doing so, they further demonstrated the richness and heterogeneity of 

abstract concepts showing that they can elicit affective, introspective, social and sensory-motor 

properties. This heterogeneity of abstract concepts was further investigated by Villani, Lugli, 

Liuzza and Borghi (2019) who evaluated more than 400 abstract concepts on 15 dimensions. 

Their results provided further support for a multiple representation view of abstract concepts. 

In addition, Bolognesi, Pilgram and van den Heerik (2017) adapted Wu and Barsalou’s 

taxonomy (2009) to include 20 feature categories belonging to four main dimensions (concept 

properties, situation properties, introspections, and taxonomic properties) that must be 

distinguished to convey the full semantic richness of concepts. Recchia and Jones (2012) have 

not, however, been able to determine whether such distinctions in respect of semantic features 

could benefit abstract concept representation. They invoked the shallowness of lexical decision 
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tasks in semantic processing. Consequently, future studies will need to reach conclusions on 

the role of feature categories for abstract concept representation.  

Another, less costly, way of creating material for semantic representation studies is to generate 

semantically similar word pairs. This option relies on a similarity-rating task where participants 

are presented with pairs of words formed by the researcher with a view to obtaining concepts 

either belonging to the same category or being similar in meaning (e.g., truck-car; Ferrand & 

New, 2003; Perea & Rosa, 2002). Participants must rate the semantic similarity of the pairs on 

a scale (Ferrand & New, 2003; Sánchez-Casas et al., 2006). Studies have shown that the pairs 

rated as being highly similar produced a strong priming effect (e.g., McRae & Boisvert, 1998; 

Plaut & Booth, 2000; Hutchison, 2003; Andrews, Lo & Xia, 2017). In addition, studies have 

shown a strong correlation between the measures from similarity-rating tasks and feature 

generation ensuring the legitimacy of this latter technique (e.g., McRae, De Sa & Seidenberg, 

1997). More recently, Maki, Krimsky and Muñoz (2006) used a semantic rating task to show 

that ratings were a good predictor of feature overlap for existing semantic feature norms. 

Normative databases for semantic similarity 

Given the importance of carefully crafted material for studying semantic representation, much 

effort has been directed towards building normative databases to provide the research 

community with the material it needs. The most commonly found datasets gather English 

feature norms. McRae and collaborators (2005), for instance, provides feature norms for 541 

living and non-living concepts. Subsequently, Buchanan, Holmes, Teasley and Hutchison 

(2013) built a searchable web portal based on the work of McRae and collaborators (2005), 

facilitating the search for experimental stimuli in their dataset. Buchanan, Valentine and 

Maxwell (2019) expanded previous databases and provided features for more that 4000 words. 

Vinson and Vigliocco (2008) provided an interesting dataset based on concrete object nouns 
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and verb events that allow semantic representation to be studied beyond the usual focus on 

concrete concepts. Devereux, Tyler, Geertzen, and Randall (2014) built on McRae and 

colleagues’ work by adding features produced by at least two participants compared to McRae 

and collaborator’s (2005) 5-feature threshold for inclusion. In other languages, De Deyne and 

Storms (2008) and De Deyne and colleagues (2008) collected normative features among Dutch 

participants. Lebani, Bondielli and Lenci (2015) collected thematic role features to study the 

semantic content of Italian verbs. Also in Italian, Lenci, Baroni, Cazzolli and Marotta (2013) 

collected semantic features from congenitally-blind and sighted participants, making it possible 

to study the role of perceptual information in concept processing. Kremer and Baroni (2011) 

collected properties and semantic relation types for German and Italian. More recently, Vivas, 

Vivas, Comesaña, Coni and Vorano (2017) published the first Spanish semantic feature 

production norms for living and non-living concepts. 

Researchers have used similarity-rating tasks to a lesser extent to produce such norms. 

Buchanan and collaborators (2013) compiled a English dataset comprising 1 808 words paired 

according to semantic similarity. In Spanish, Moldovan, Ferré, Demestre, and Sánchez-Casas 

(2015) collected normative ratings for 185 Spanish noun triplets with variation of semantic 

distance within each triplet. However, much of the effort in developing databases has been 

focused on concrete concepts. To the best of our knowledge, the present work offers the first 

database of semantically-similar abstract word pairs in French.  

The present study: Semantic similarity norms for abstract words 

The present work introduces a dataset comprising semantic similarity ratings for abstract word 

pairs obtained from French participants. We have added a measure of the concreteness of each 

word from each pair to allow for the selection of abstract concepts in line with Crutch and 

Jackson’s (2011) suggestion that there is a relationship between graded levels of concreteness 
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and semantic organisation. To provide a dataset of experimental stimuli according to the 

significant lexical variables and lexical latencies previously discussed, we have combined our 

list of words with existing databases such as the French Lexicon Project (FLP, Ferrand et al., 

2010), Lexique (New et al., 2001, 2004, 2007), MEGALEX (Ferrand et al., 2018), and Wordlex 

(Gimenes & New, 2016). 

METHOD 

Participants 

Both the similarity- and concreteness-rating tasks were presented as online questionnaires. 

Participants for the two studies were all French native speakers and between 18 and 45 years 

old. We collected data from 373 participants (334 women; Mage = 26.43; SD = 8.34) for the 

similarity-rating task, and 529 (486 women; Mage = 29.7; SD = 9.03) for the concreteness-rating 

task. Participants volunteered in response to an announcement posted on Facebook group walls 

and no compensation was paid. Participants took part in only one of the tasks in an attempt to 

ensure their ratings were not influenced by previous exposure to the items which are common 

to both tasks. Both studies obtained the approval of the Université Clermont Auvergne Research 

Ethics Committee.  

Stimuli 

To have some guarantee of the level of abstractness1 of our material before collecting our own 

ratings, we selected 1020 words having a low level of concreteness (range between 100 and 

600) from Coltheart’s (1981) concreteness norms. We then translated the selected words into 

French following a back-translation procedure (Sperber, Devellis & Boehlecke, 1994), 

                                                        
1 Both “abstractness” and “concreteness” words are used across this paper. The use of these notions is 

not arbitrary. Abstractness is a central notion to the present work as it aimed at introducing abstract 

stimuli whereas concreteness is used to refer to other studies that introduce or deal with the 

concreteness variable. 



78 
 

following which 174 words were excluded. We also added the material from Ferrand (2001) 

comprising 260 French abstract words.  

Based on our linguistic intuition, we then formed semantically similar pairs (e.g., joie-bonheur; 

[joy-happiness]). To the best of our ability (see below), we ensured that the semantic pairs were 

non-associates (according to McRae & Boisvert, 1998), and were not linked by either a 

super/supra-ordinate, part/whole or antonym relationships. The material was then divided into 

6 lists of pairs, and 30% of fillers (unrelated pairs, e.g., défaut-frisson; [flaw-chill]) were added 

per list. So that the participants would be sensitive to the abstractness of the pairs, we also added 

concrete words from Ferrand and Alario (1998) and formed semantic pairs. Accordingly, we 

were able to form 628 semantically related pairs (460 noun pairs, 99 adjective pairs and 69 verb 

pairs). Both prime and target words had the same grammatical status within each semantically-

similar pair. To ensure the pairs were semantically similar and not associated, we translated the 

target words back into English and checked for forward strength in the Small World of Words 

database2 (SWOW, De Deyne, Navarro, Perfors, Brysbaert & Storms, 2019). We identified all 

pairs for which the prime and target presented a forward associative strength of higher than 

10%. Seventy pairs were identified as both associated and semantically similar (e.g., anxiety-

fear). We kept them in the main database with the possibility to filter them out. In addition, we 

created a secondary database containing only the semantically similar and associated word 

pairs. As suggested by De Deyne et al. (2019), association data are not to be discarded and 

provide a strong indication of meaning similarity. 

For the concreteness-rating task, the pairs were separated, and the lists of individual words were 

presented in another experiment. Given the added material from Ferrand and Alario (1998), 

                                                        
2 We used the Small World of Words database because there are no databases large enough in French. 
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participants were presented with stimuli ranging from abstract to concrete, thereby ensuring 

their sensitivity to the task and avoiding learned response patterns. 

Procedure 

The stimuli (fillers included) were randomly divided into 6 lists of word pairs and 10 lists of 

isolated words respectively for the similarity-rating and concreteness-rating tasks. The 

motivation for dividing the pairs into different lists was twofold. Firstly, we wanted to keep the 

experiment concise so as to not overwhelm participants. Secondly, some words appear several 

times in different pairs, which is why we used semi-randomization to ensure that participants 

never saw pairs with the same words. The pairs and words were presented one by one on the 

screen in a randomized order. The experiment was conducted online using the Qualtrics 

software (2020). The design of the interface for this experiment allowed participants to 

complete the task on either a computer or smartphone.  

Once they had given their consent and registered their demographic information, participants 

were randomly assigned to one of the lists. Their task was to judge the similarity between the 

two words presented for the similarity ratings and whether the words were more abstract or 

concrete for the concreteness ratings. Both tasks used a 7-point Likert-like scale ranging from 

1 = “not at all similar” (“pas du tout similaires” in French) to 7 = “totally similar” (“tout à fait 

similaires”) for the similarity-rating tasks and from 1 = “very abstract” (“très abstrait”) to 7 = 

“very concrete” (très concret) for the concreteness-rating task. The words appeared one by one 

on the screen and were replaced as soon as participants had rated them. They were presented in 

the middle of the screen in Arial 12 font against a white background. We provided examples of 

items and their possible ratings in the instructions. No training was given before the tasks 

started. Both studies were self-paced, with no time limit for either the stimulus presentation 
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(word pair or isolated pair) or participant’s answer. Both tasks took about 12 minutes to 

complete.  

RESULTS 

We first computed general statistics for the entire dataset. The general statistics collected for 

the semantic similarity and concreteness variable are shown in Table 13. Tables 2 and 3 provide 

the means for associated lexical variables computed by crossing our dataset with the Lexique 

(New et al., 2004), FLP (Ferrand et al., 2010), MEGALEX (Ferrand et al., 2018) and Wordlex 

(Gimenes & New, 2016) databases. 

 

Table 1.  Semantic similarity for word pairs and associated concreteness for prime and target words. 

 

 

 

 

 

 

It is apparent from the general statistics in Table 1 that the semantic similarity ratings range 

from 1.13 to 6.93 on a 7-points scale. This shows participants used the full range of the scale 

but also reflects the diversity of the word pairs in terms of semantic similarity. Separating very 

similar (M = 5.13; SD = 0.41) and less similar (M = 3.67; SD = 0.59) pairs based on the median 

revealed a significant effect of semantic similarity [t(300) = 35.78, p < 0.001, d = 2.06]. This 

                                                        
3The semantic similarity variable reported in Table 1 corresponds to the mean similarity ratings for word pairs. 

The concreteness variable corresponds to the mean concreteness for the prime word and target word separately 

as ratings were obtained on individual words for concreteness and on pairs of words for semantic similarity. 

 
Pair Semantic 

Similarity 

Prime Word 

Concreteness 

Target Word 

Concreteness 

Mean 4.43 4.41 4.40 

SD 1.63 1.48 1.54 

Min 1.13 1.63 1.51 

Max 6.93 6.92 6.95 

Median 4.65 4.43 4.47 

Range 5.80 5.29 5.44 

Skewness -0.52 -0.31 -0.35 

Q1 3.37 3.44 3.38 

Q3 5.60 5.40 5.46 
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effect is particularly large, given that Cohen’s d suggests the difference is greater than 2 

standard deviations. This will allow for the use of semantic similarity either as a continuous or 

categorical variable for researchers who would wish to study the effect of variation in semantic 

similarity. Concerning the concreteness variable, the means for prime and target are very close 

to one another, showing a good concreteness match within each pair (Mean prime concreteness 

= 4.41; Mean target concreteness = 4.40). A paired-samples T-test showed no significant 

difference between the mean concreteness ratings for prime and target words (t(628) = 0.27, p 

= 0.80 ns). This close match is further demonstrated in the correlation we computed between 

prime and target words with a strong and highly significant correlation [r = .87, t(628) = 44.50, 

p < 0.001]. 

 

Table 2. Descriptive and behavioural data for target words. 

 

 

 

 

 

 

Note. OLD20: orthographic Levenshtein distance (Yarkoni, Balota, & Yap, 2008); Movie subtitles frequency 

(from Lexique ; New et al., 2004). 

 

 

 

 min max M SD 

Movie Subtitles Frequency 0.00 2751.99 56.21 186.30 

Book Frequency 0.00 4696.15 64.51 286.62 

Blog Frequency 0.06 3095.93 84.85 279.23 

Twitter Frequency 0.00 4070.02 77.11 309.32 

Newspaper Frequency 0.00 3782.26 78.54 295.09 

N-letters 3.00 13.00 6.88 2.03 

N-orthographic Neighbours 0.00 23.00 2.52 3.73 

OLD20 1.00 5.40 2.06 0.62 

Reaction Times (FLP) 515.54 915.85 653.09 62.71 

Reaction Times 

(MEGALEX) 

473.48 747.84 549.10 43.01 
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Table 3. Descriptive and behavioural data for prime words. 

 

 

 

 

 

 

Note. OLD20: orthographic Levenshtein distance (Yarkoni, Balota, & Yap, 2008); Movie subtitles frequency 

(from Lexique ; New et al., 2004). 

 

Table 2 and 3 display the lexical characteristics for the primes and targets composing our 

word pairs. The statistics presented in Table 2 and 3 were obtained by cross-referencing our 

dataset with Lexique (New et al., 2001, 2004, 2007), the French Lexicon Project (Ferrand et 

al., 2010), Wordlex (Gimenes & New, 2016), and MEGALEX (Ferrand et al., 2018). Movie 

Subtitles Frequency corresponds to the freqfilms2 variable from Lexique and refers to word 

frequency based on movie subtitles. The other frequencies were computed from books 

(Lexique: New et al., 2004), blog posts, Twitter and Newspapers (Wordlex: Gimenes & New, 

2016).  

We also computed correlations between semantic similarity for the pair and lexical variables as 

well as concreteness levels for the prime and target respectively. Such correlations were all non-

significant except for the correlation between semantic similarity and concreteness. Indeed, the 

concreteness level of the prime and target respectively was negatively and moderately 

correlated to the semantic similarity of the pair (Rprime_concreteness = -0.26; Rtarget_concreteness = -0.28, 

p<0.001), suggesting that the higher the semantic similarity, the lower the level of concreteness. 

However, the mean concreteness is not as different for highly similar pairs (Mconcreteness = 4.14; 

 min max M SD 

Movie Subtitles Frequency 0.00 986.59 31.02 81.43 

Book Frequency 0.00 835.47 35.36 81.71 

Blog Frequency 0.15 2866.60 53.28 150.60 

Twitter Frequency 0.07 4070.02 46.79 189.88 

Newspaper Frequency 0.00 1556.37 46.37 118.08 

N-letters 3.00 14.00 6.99 2.00 

N-orthographic Neighbours 0.00 20.00 2.43 3.58 

OLD20 1.00 4.55 2.10 0.60 

Reaction Times (FLP) 515.54 1005.15 657.94 67.18 

Reaction Times 

(MEGALEX) 

473.92 738.03 553.11 44.78 
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SD = 1.59) as for less similar pairs (Mconcreteness = 4.78; SD = 1.39). This means researchers 

using the present database will be able to study phenomena of semantic similarity and their 

relationship with graded levels of concreteness without having to worry that the concreteness 

variable and the lexical variables might act as confounding variables. 

In addition, we computed correlations between the concreteness variable and other 

lexical variables. It is clear from Table 4 that the concreteness variable shows a negative 

correlation to frequencies based on blog posts and Twitter. Such correlations are rather weak (r 

= -0.10), however, and should not be cause for concern as regards potential confounding 

variables. The concreteness variable is also moderately and negatively correlated with the 

number of letters and orthographic similarity, but positively correlated with the number of 

orthographic neighbours. All lexical variables are significantly intercorrelated, a result which 

replicates previous findings from the psycholinguistic norms literature. Indeed, upon comparing 

the correlations shown in Table 4 with those reported in MEGALEX (Ferrand et al., 2018), we 

found that the correlations between lexical variables were similar in size and significance levels, 

which further validates our dataset. For example, and among the most widely used, word 

frequencies computed from books are highly correlated to other word frequencies computed 

from subtitles (r=.78), blogposts (r=.73), Twitter (r=.63) and newspapers (r=.68, see Table 4).  

We computed correlations between our concreteness variable and those collected by Bonin et 

al. (2018) in French and Brysbaert, Warriner and Kuperman (2014) and Coltheart (1981) in 

English. Table 5 shows that the correlations are strong and highly significant, ensuring thus the 

validity of the concreteness variable we collected.  
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Table 4. Correlation matrix between 

concreteness levels and lexical variables 

with significance levels (*** p < 0.001; ** 

p < 0.01; * p < 0.05). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



85 
 

Table 5. Correlations of the present concreteness variable measures with those provided by other 

databases. 

  Correlation with the present study 

Language Study r N 

French Bonin et al. (2018) .95 257 
English Coltheart (1981) .91 1256 

English Brysbaert et al. (2014) .91 1256 

Note. N: number of items in common. All correlations are significant at the p < .0001 level 

 

Finally, to investigate the concreteness variable further, we implemented the package 

Ckmeans.1d.dp in R studio, an unsupervised learning algorithm for clustering univariate data 

(Wang & Song, 2011). Based on a Bayesian information criterion, the algorithm suggested the 

concreteness variable be split according to 3 clusters of abstractness, with cluster 1 the most 

abstract and cluster 3 the least abstract. The cluster variable is particularly important in relation 

to the previously discussed need to control the concreteness variable when manipulating 

semantic similarity. It is a variable which will therefore allow experimenters to select stimuli 

with matching concreteness levels. We have provided the cluster variable in the supplementary 

material.  

Availability of the database 

The dataset for the present study is available in excel format on the BRM and OSF websites 

(https://osf.io/qsd4v/). The main database is organized according to the following variables: 

Word Pairs in French, word-pairs translation in English, word-pair mean concreteness, cluster 

variable based on word-pair mean concreteness, verbal association strength based on the 

SWOW, and mean pair similarity with associated general statistics (SD, min, max, median, 

range, skewness, Q1, Q3). The rest of the database is divided according to Prime word and 

Target word for the following variables: Mean concreteness and associated general statistics, 

lexical variables (grammatical category, number of letters, phonemes, orthographic and 
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phonemic neighbours), reaction times (based on FLP and MEGALEX) and frequencies per 

million (movie subtitles, books, blogs, Twitter and newspapers). The secondary database is 

organized following the same variables but contains only the 70 word pairs that are semantically 

similar as well as verbally associated. 

DISCUSSION 

The present study aimed to produce French norms of semantic similarity for abstract 

concepts. Based on our statistical analyses, we can provide material with varying levels of 

semantic similarity. In addition, based on our collection of concreteness ratings and the 

implementation of the k-means clustering algorithm (Wang & Song, 2011), we organized the 

semantic pairs according to three clusters of abstractness. Our ultimate aim is for this database 

to be used to design material for studies such as semantic priming studies and other language-

based paradigms (see, for example, Hutchison et al., 2013). The cross-references we computed 

with previously mentioned lexical databases allow stimuli to be matched on the basis of 

frequencies and other lexical variables. The analysis based on this cross-referencing also 

provides information about the potentially confounding variables that could create noise in an 

experimental design.  

The comparison of prime and target words across the concreteness and lexical variables 

produced highly significant correlations, thus ensuring a good match within each pair. Further 

comparisons between semantic similarity and lexical variables resulted, however, in either very 

weak or non-significant correlations. This suggests there is no need to be particularly careful to 

avoid confounding lexical variables when using the similarity ratings. The strong and 

significant correlation in concreteness levels within word pairs, along with the cluster variable 

we introduced were aimed at addressing Crutch and Jackson’s (2011) suggestion that 

discrepancies found when studying the organization of semantic memory according to 

similarity or association might be due to a binary, rather than graded definition of concreteness 
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levels. Indeed, when considering the organization of semantic memory at the extremes of 

concrete vs. abstract concepts, we lose substantial evidence for the concepts in-between these 

two extremes. This limitation can be addressed by considering graded levels of concreteness. 

Previous findings have shown that concepts are organized according to semantic similarity 

when concreteness increases and according to verbal association when abstractness increases. 

Finally, we suggest that, when creating materials, researchers pay attention to the moderate 

but significant correlation between semantic similarity and the concreteness variable, insofar as 

results have shown that more abstract pairs are also perceived as more similar than concrete 

pairs. 

The aim of this database was also to fill a gap in the French literature regarding norms for 

abstract concepts. We therefore consider the present work to be a good starting point for 

developing other French-language databases focusing on abstract concepts such as verbal 

association.  

Indeed, studies using word stimuli tend to focus primarily on pairing stimuli according 

to word frequency, word length, and age of acquisition. However, such variables fail to capture 

fully the effect of word processing by the human mind, as best illustrated by the percentage of 

variance explained in norming studies and megastudies, which stagnates between .20 and .50 

(Balota, Yap, Hutchison, Cortese, Kessler, Loftis & Treiman, 2007; Keuleers, Brysbaert & 

New, 2010; Ferrand, New, Brysbaert, Bonin & Pallier, 2010; Brysbaert, Mandera & Keulers, 

2018). Newly-developed variables have therefore been introduced with a view to capturing 

more of the word-processing phenomena. For instance, Brysbaert, Mandera, McCormick and 

Keuleers (2019) introduced the word prevalence variable (the proportion of people who know 

a particular word), first in Dutch (Brysbaert, Stevens, Mandera, and Keuleers, 2016; Keuleers, 

Stevens, Mandera, & Brysbaert, 2015), and then in English (Brysbaert et al., 2019). This 
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variable was shown to explain an additional 6-10 percent of the variance in response latencies 

in a lexical decision task.  

In addition, we consider that most norming studies have focused mainly on concrete concepts, 

although, as shown by Recchia and Jones (2012), abstract concepts have a richness of their own 

which warrants further study. For instance, Chedid, Brambati, Bedetti, Rey, Wilson and Vallet 

(2019) recently introduced a perceptual strength variable for Canadian French, which aims to 

identify auditory and visual involvement in conceptual knowledge. In addition, the Sensory 

Experience ratings variable (SER, Juhasz & Yap, 2013; Bonin et al., 2015; 2018) was 

introduced as a measure of the extent to which a word can elicit sensory and perceptual 

experiences. The correlation analyses between our concreteness variable and the SER variable 

based on the 257 items in common is .33. This rather low correlation goes to show that the SER 

variable cannot capture the same psycholinguistic phenomena as the concreteness variable, thus 

ensuring the relevance of the latter. We also computed the correlation between our concreteness 

variable and the Perceptual Strength variable (Chedid, Brambati, Bedetti, Rey, Wilson & Vallet, 

2019) and found that r=.80 based on 507 items in common. Although this correlation value 

appears rather high, it is consistent with the findings of Chedid and colleagues, who reported a 

correlation value of r=.76 between Perceptual Strength and Bonin and colleagues’ concreteness 

variables. According to Chedid et al. (2019), however, this new variable cannot be regarded as 

another form of concreteness since it made an independent contribution to the prediction of 

word latencies in word processing. 

Until recently, grounding has mainly been studied in concrete concepts, owing to a previous 

consensus that abstract concepts are not grounded. However, several studies have shown that 

abstract concepts can be grounded in perceptual situations and events. In addition, Connell, 

Lynott and Banks (2018) consider interoception a forgotten modality for abstract concepts and 

report a facilitation effect of interoceptive strength. Future work will therefore focus on 
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developing norms that capture these modalities for abstract concepts to further our knowledge 

about their representation.  

 

CONCLUSION 

The present study aimed to provide French semantic similarity norms for 630 word pairs with 

varying levels of similarity and associated concreteness. The database is organized in such a 

way that semantic similarity and concreteness may be used as either continuous or categorical 

variables. The continuous variables correspond to the ratings we collected, whereas the 

categorical variables correspond to the cluster variable we computed for concreteness and the 

median for semantic similarity. The database also provides frequency and lexical variables for 

matching pairs in stimuli set design. We anticipate that it will be very useful for researchers 

working on memory and language, especially given the growing interest for studying abstract 

concepts representation.  

Open Practices Statement 

In line with an open data policy, all data discussed in this article are freely available on our web 

site on the Open Science Framework web site (https://osf.io/qsd4v/). 
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The previous chapter was intended to bridge the gap in the French literature as regards to the 

availability of semantically similar pairs for abstract concepts. As such, it proposed the first 

French database composed of abstract semantically similar pairs of concepts. The database 

also included a concreteness variable in order to answer the suggestion of Crutch and 

Warrington (2011) about a difference in the organisation of the mental lexicon in terms of 

semantic similarity and verbal association for concrete and abstract concepts respectively. In 

addition, previous findings have established the need to systematically differentiate between 

these two major types of relationships (McRae & Boisvert, 1998). Ferrand and New (2003) 

have applied this strict distinction between semantic similarity and verbal association by using 

pairs of concepts that were semantically similar but not verbally associated and obtained a 

pure semantic effect in a priming experiment. These results illustrate the need to have access 

to controlled stimuli and to provide the ability to researchers to check the link between chosen 

materials. In order to address such a need, the next chapter introduces a database for word 

associations between concepts using the same words as in the previous database. Users will be 

able to craft materials that is controlled on both the semantically similar and associative 

dimensions.  

The amount of data generated by the word association task allowed for the use of 

techniques borrowed from distributional statistics from which a vocabulary growth curve was 

plotted. Correlation analyses revealed that cue words presented to the participants elicited 

response words of a similar level of concreteness meaning that concepts are organised in the 

mental lexicon according to a gradient of concreteness. Analyses from associative strength 

have shown that concrete concepts elicited stronger associations compared to abstract 

concepts. Finally, association frequencies were computed to predict semantic processing and 

showed that the more salient a word is in the mental lexicon, the less time it takes to be 

processed. The entire database is available on OSF. 
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ABSTRACT 

The organization of concepts in the mental lexicon is a widely studied phenomenon in 

experimental psychology. For instance, several studies have shown that whereas concrete 

concepts are organized according to semantic similarity, abstract concepts are organized 

according to verbal association. However, these results are not systematically replicated, 

mainly because there is no normative database for studying the phenomenon. This is 

particularly true for the French language. To that end, we compiled a French word association 

database of 1 100 cues with varying levels of concreteness from abstract to concrete concepts. 

First results revealed stronger association strength for concrete concepts than abstract 

concepts, confirming the existence of different organisation patterns, with concrete concepts 

more closely connected to a small number of contexts while abstract concepts are more 

loosely connected to a high number of varied contexts. Additional results revealed that cues 

and responses were organised according to a concreteness and perceptual strength gradient. 

These results provide insights into the rules governing organisation of the mental lexicon. The 

full data are available in the supplementary materials as well as on OSF (https://osf.io/dhuqs/). 

Keywords: Word association norms, Concreteness, Normative ratings, French words.  
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INTRODUCTION 

Psycholinguistic experiments rely on normative stimuli. Two types of norms have a 

long tradition in the field: semantic similarity and word association norms. Semantic 

similarity refers to the overlap between the defining features of concepts (for example <bee> 

and <wasp> are semantically similar). In the case of word associations, two words are 

considered associates when they frequently occur together across language (for example 

<bee> and <honey> are verbal associates; McNamara, 1992; Plaut, 1995; Ferrand & Alario, 

1998).  

Semantic and associative priming 

The development of datasets addresses the crucial need to access carefully crafted 

material when studying cognitive phenomena such as free recall (Nelson, McEvoy & 

Schreiber, 2004), age-related lexical access (Taconnat et al., 2009), metamemory (Eakin, 

2005; Bugaiska, Morson, Moulin & Souchay, 2011; West & Mulligan, 2019), or clinical 

pathologies such as schizophrenia (Kircher, Whitney, Krings, Huber & Weis, 2008) and 

semantic refractory access dysphasia (Crutch & Warrington, 2005).  

For language study in particular, the importance of strictly differentiating between 

associative and semantic relations when studying the mental lexicon has long been established 

(McRae & Boisvert, 1998; Perea & Rosa, 2002; Thompson-Schill, Kurtz, & Gabrieli, 1998; 

Lucas, 2000; Hutchison, 2003; Ferrand & New, 2003). The semantic priming effect is one of 

the most robust effects for studying the mental lexicon. Historically, at least two types of 

major lexical relations have been used in psycholinguistic experiments, associative and 

semantic relations, occasionally with some overlaps between relation types (for example 

<cat> and <dog> are semantically similar but also verbal associates). As a result, several 

discrepancies have been reported in the literature as regards semantic and associative-priming 

effects (see, for example, Thompson-Schill et al., 1998, but also Hutchison, 2003). McRae 
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and Boisvert (1998) suggested we use semantically similar pairs that are not associates (for 

example <whale> and <dolphin>). On the basis of this suggestion, Ferrand and New (2003) 

obtained a pure semantic priming effect by using stimuli that were semantically similar while 

controlling for verbal association (e.g., <dolphin> and <whale>). Conversely, they were able 

to obtain a pure associative priming effect by using strongly associated stimuli with no 

semantic similarity (e.g., <spider> and <web>). Hence, researchers rely heavily on word 

association norms either to select associated word pairs or to check that semantically similar 

pairs are not also verbally associated. This robustness of semantic and associative priming 

reported in the literature reflects how the mental lexicon is organised. More recently, the 

debate on the nature of what is measured by associations and similarity has evolved to include 

distributional semantic models derived from co-occurrences compared to word association 

models (Schloss & Li, 2016). Recent evidence has shown that word associations collected 

from human participants usually outperform text models (De Deyne, Verheyen & Storms, 

2016; Van Rensbergen et al., 2016; Vankrunkelsven et al., 2018). This addition to the debate 

also served to re-establish the place of word associations as a way of studying psychological 

meaning rather than as just a tool for creating only semantically similar pairs. Recent studies 

have shown, for instance, how it is possible to compute cosine similarity based on word-

association data (see De Deyne, Navarro, Perfors, Brysbaert & Storms, 2019 for an example). 

With the introduction of algorithms based on distributional statistics, the frontier between 

associative strength and semantic similarity is no longer needed. To focus exclusively on the 

two aforementioned modes of organisation of the mental lexicon would not provide as full a 

picture, however, as recent studies on concreteness have shown.  

Concreteness and organisation of the mental lexicon 

Recent studies have shown that concreteness must be taken into account in addition to 

association strength and semantic similarity in order to have a fuller picture of how the mental 
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lexicon is organised. Crutch and colleagues (2005; Crutch, Connell & Warrington, 2009; 

Crutch and Warrington, 2010) reported a case study of a patient with symptoms of semantic 

refractory access dysphasia. They found that, for this patient, concrete concepts elicited only a 

semantic priming effect and no associative priming effect, whereas abstract concepts elicited 

the opposite pattern. This finding suggests that while concrete concepts are organised 

according to semantic similarity, abstract concepts are organized according to verbal 

association. Several studies tried to replicate this pattern with discrepancies (e.g., Hamilton & 

Coslett, 2008; Duñabeitia, Avilés, Afonso, Scheepers & Carreiras, 2009; Geng & Schnur, 

2015). Crutch and Jackson (2011) suggested the disparities might be due to how the 

concreteness variable was operationalised. In two semantic odd-one-out judgement and 

matching-to-sample paradigms, they used triplets of low, middle and high levels of 

concreteness. Results showed that the semantic effect increased with concreteness while the 

associative effect decreased. Furthermore, they suggested that concreteness be used as a 

graded variable rather than a binary one, especially when studying its effect on the 

organisation of semantic representation.  

Accounts of semantic representation 

In recent years, two main accounts of the nature of semantic representation have been 

debated, namely the distributional and embodiment accounts. They differ in terms of the 

information used to represent meaning. While distributional semantics relies on symbolic and 

linguistic features, embodiment relies on modality-specific information. 

According to the distributional hypothesis, words occurring in similar contexts have 

similar meanings (Harris, 1954). The meaning of both abstract and concrete concepts can 

therefore be derived from statistical co-occurrences across large corpora. Hence, this account 

makes great use of variables, such as semantic and relatedness variables, that describe 

associations between words (see Louwerse & Jeuniaux, 2010; Andrews, Frank & Vigliocco, 
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2014; Borghi, Binkofski, Castelfranchi, Cimatti, Scorolli & Tummolini, 2017). It is an account 

which has come under attack in recent years, however, because it fails to explain how concepts 

are grounded in world referents.  

The embodied account, on the other hand, defines semantic representation as being 

grounded in perceptual and motor states (Barsalou, 1999; Glenberg, 1997; Zwaan, 2004; Kiefer 

& Pulvermüller, 2012; Meteyard, Cuadrado, Bahrami & Vigliocco, 2012). Studies of this 

account usually show evidence of behavioural and brain activation of modality-specific 

processes, which makes it better suited to explain the processing of concrete concepts over 

abstract concepts. Recent hypotheses have been formulated to account for the processing of 

abstract concepts within the embodied framework, with studies showing that abstract concepts 

are grounded in social and introspective aspects of situations (Barsalou & Wiemer-Hastings, 

2005), emotional features (Kousta, Vigliocco, Vinson, Andrews & Del Campo, 2011; Lenci, 

Lebani & Passaro, 2018), information about events, and thematic roles (Ferretti, McRae & 

Hatherell, 2001).  

To capture relations other than word associations for both abstract and concrete concepts 

new variables have emerged. For example, the perceptual strength variable developed by 

Chedid, Brambati, Bedetti, Rey, Wilson & Vallet (2019) aims to yield information about 

perceptual experiences. It represents the extent to which a concept relies on sensorimotor traits 

for its representation. Accordingly, their dataset comprises perceptual strength norms for more 

than 3 000 nouns. It contributes to the study of relations between word associations and 

perceptual modalities. 

Word associations and normative datasets 

In a word association task, participants are presented with a word (the cue) and asked 

to generate the first word that comes to mind (the response). The task is particularly effective 
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and powerful because it demands barely any cognitive cost and is easily gamified, and yet it 

can unveil shared mental representations, language patterns and mechanisms of meaning 

extraction (Prior & Bentin, 2008; Mollin, 2009, De Deyne & Storms, 2008; De Deyne et al., 

2019). Word association norms have mostly been collected in English. The Edinburgh 

Associative Thesaurus (Kiss, Armstrong, Milroy & Piper, 1972), with more than 8 000 cues, 

is one of the most commonly used. More recently, Moss and Older (1996) introduced the 

Birkbeck norms with over 2 600 cues in British English. The more recent set of University of 

South Florida norms (Nelson et al., 2004) introduced free association data for 72 000 word 

pairs and is the most widely used, with more than 2 000 citations from psycholinguistics to 

computational linguistics. Even more recently, De Deyne et al. (2019) launched the Small 

World of Words project (SWOW-EN), an ongoing megastudy which aims to capture most 

word associations. It consists of over 12 000 cue words, each of which has elicited 300 

responses from half a million participants at the time of writing this paper, making this dataset 

the most comprehensive one to date. This particular project followed a similar one by De 

Deyne, Navarro & Storms (2013) which consisted of 16 000 cues in Dutch (SWOW-NL). 

Other languages also have word association datasets. The number of cues is still significant, 

albeit reduced, and the datasets are still highly valuable for researchers studying these 

languages, such as Korean (Jung, Na & Akama, 2010), Japanese (Joyce, 2005) and Chinese 

(Kwong, 2013). In Spanish, Fernández, Díez, Alonso & Beato (2004) introduced free-

association norms for 247 frequent words, and, more recently, Barron-Martinez and Arias-

Trejo (2014) presented the Spanish Word Association Norms for 234 concrete nouns in 

Mexican Spanish. In French, Ferrand and Alario (1998) introduced word associations for 366 

concrete nouns. They were quickly followed by a new dataset of 260 abstract words (Ferrand, 

2001). Later on, Duscherer and Mounoud (2006) collected free association data for 151 

French action verbs, and, more recently, Bonin, Méot, Ferrand & Bugaïska (2013) collected 
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word associations for 520 concrete words. As evidenced by all these datasets, the history of 

the collection of word associations in French is rather spread out in time, making the present 

study the first for nearly a decade and the one involving the largest number of cues from the 

largest number of participants for the French language.   

The present study 

The present study introduces a dataset comprising word association norms for 1 100 

cues obtained from French participants. The method used allowed only one response per 

word, whereas other studies such as De Deyne et al., (2019) used several. Nelson, McEvoy 

and Dennis (2000) reported a high reliability coefficient computed from the correlation 

between the probability of a single-response task and that of a first-response when two 

responses were collected. This high level of reliability suggests the discrete responses 

collected for the present dataset are sufficient to capture stable association strength. The cues 

on the concreteness spectrum varied, and we added a measure of cue word concreteness 

collected in a previous study (Lakhzoum et al., 2021) which will allow researchers who study 

the organisation of the mental lexicon to select abstract and concrete concepts for cues. To 

provide a dataset of experimental stimuli according to the significant lexical variables and 

lexical latencies previously discussed, we have combined our list of words with existing 

databases such as the French Lexicon Project (FLP, Ferrand et al., 2010), Lexique (New et al., 

2004), Megalex (Ferrand et al., 2018), and Wordlex (Gimenes & New, 2016). In response to 

Crutch and colleagues’ observations, our dataset includes the levels of concreteness for the 

cues previously collected by Lakhzoum, Izaute and Ferrand (2021). With the exception of 

Ferrand et al., 2001, to the best of our knowledge this is the first time a deliberate effort has 

been made to include abstract concepts in a French word association dataset. 
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METHOD 

Participants 

The word association task was presented as an online questionnaire. All the participants 

were native French-speakers aged between 18 and 45 years old.  We collected data from 1 200 

participants (627 women; Mage = 29.30; SD = 7.48). Participants volunteered in response to an 

announcement posted on Facebook group walls and received no payment. The study was 

approved by the Research Ethics Committee of Clermont Auvergne University.  

Stimuli 

The stimuli were composed of the isolated words used to create the materials in 

Lakhzoum, Izaute and Ferrand (2021), which were originally based on Coltheart’s (1981) 

concreteness norms so as to ensure that varying levels of concreteness were included, with 

abstract words monarchy and joy as well as concrete words such as dress and bee. The words 

had been back-translated and used to form semantically similar pairs. For the present study, the 

pairs were dissociated; cue and target were separated in different lists so that participants would 

not see two words that shared semantic features to avoid influencing their responses. To that 

end, and to keep the task short, since participants’ focus in online tasks tends to be less than in 

non-online tasks, we divided the material into 11 lists of 100 words each.  

Procedure 

The stimuli were divided into 11 lists of 100 isolated cues. Each participant was 

randomly assigned to only one of the lists. The experiment was conducted online using 

Qualtrics software (2020). The experiment interface was designed to allow participants to 

complete the task on either a computer or smartphone. Their task was to read the word that 

appeared on the screen and to answer in the space below with the first word that came to mind 

as quickly as possible. The cue words appeared on the screen one after another. They were 

replaced as soon as the participant had answered. To avoid unacceptable responses, when 
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participants could not think of an answer they were given the opportunity of leaving a blank 

and moving onto the next cue. The cues were presented in the middle of the screen in Arial 12 

font against a white background. No training was given before the tasks started. The study was 

self-paced, with no time limit for either the stimulus presentation or the participant’s answer. 

The task took about 15 minutes to complete. 

RESULTS 

Data Pre-processing 

Before performing any analysis, the dataset was cleaned to remove any responses that 

failed to meet our criteria for inclusion. Symbols and punctuation such as tags, quotes, final 

punctuation and double spaces were removed. We also removed responses that seemed to 

indicate participants did not know what to answer. For instance, they sometimes entered “rien”, 

“aucune réponse” or “aucun mot” in French (nothing, no response and no word), indicating that 

no response came to mind, instead of leaving a blank as the procedure allowed them to do. 

Finally, responses that were phrases intended to describe what the cue brought to mind were 

removed. This concerned 523 responses. The responses were then spell-checked and 

lemmatized by cross-referencing the dataset with Lexique (New et al., 2004). By the end of the 

process, 2.5% of the data had been removed. Analyses were performed on the remaining 89 

707 unique responses or tokens.  

Distributional statistics 

   A first exploration of the dataset focused on its distributional characteristics. When all 

responses were aggregated, there were 10 604 distinct words or types, 4 233 of which appeared 

only once. The responses occurring only once are known as hapax legomena responses. In 

accordance with De Deyne et al. (2013, 2018, but see Nelson et al., 2004), we decided to keep 

these responses because they reflect the long tail of the frequency spectrum. When sorting the 
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responses according to cue median concreteness, the hapax legomena were equally distributed 

at 53% for the responses elicited by abstract cues and 55% for the responses elicited by concrete 

cues. These aspects of quantitative linguistics can be a good tool for capturing common 

linguistic phenomena across datasets of varying sizes. For instance, Figure 1 is a frequency 

spectrum of the distribution of the number of types (Vm) as a function of frequency class (m). 

 

 

 

 

 

 

 

Figure 1 shows that there are more than 4 000 words in frequency class V1, which represents 

the hapax legomena, but very few words in frequency class V50. This pattern, characterized by 

few exemplars in low frequency classes and many exemplars in high frequency classes and is 

consistently found across corpora and languages (Evert & Baroni, 2005). The frequency 

spectrum indicates that the process for the present word association task is productive, meaning 

that if we were to sample more responses from participants the number of types would also 

increase. This phenomenon is best captured by Herdan’s law (1964), which describes a bounded 

exponential relation between the number of types and corpus size. The process can be illustrated 

by a vocabulary growth curve, which plots how the number of distinct cue-response pairs 

evolves as the number of collected responses increases. The V and Vm estimates of the 

Figure 1. Frequency spectrum on a logarithmic scale representing the number of 

types (Vm) as a function of frequency class (m). The class corresponding to m = 

1 corresponds to the hapax legomena. 
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frequency spectrum can be extrapolated using a finite Zipf-Mandelbrot model4 (fZM, Evert & 

Baroni, 2007; Baroni & Evert, 2006) to obtain estimates of vocabulary growth at arbitrary 

sample sizes (see Figure 2). It is customary to generate a vocabulary growth curve for about 

twice the size of the observed sample (here N = 180,000). 

 

 

 

 

 

 

 

 

The vocabulary growth curve compares the empirical growth obtained from the fZM 

model with the observed growth in our dataset. For the present word-association task, the 

curves express how the number of types (here, distinct cue-response pairs) increases as a 

function of the number of tokens (here, the responses collected). According to Figure 2, the 

observed and extrapolated curves almost completely overlap, providing a clear visual 

assessment of the model’s goodness of fit for items sampled from our dataset.  

 

 

                                                        
4 The finite ZM model was preferred to the ZM model because the latter is founded on the unlikely assumption 

of an infinite vocabulary size (Evert, 2004). 

Figure 2. Vocabulary Growth Curve (VGC) representing the increase of cue-
response pairs as new responses are collected by comparing the VGC of our dataset 

(grey curve) to an empirical VGC obtained from the fZM model red line). The 

vertical lines indicate the total number of observed tokens for our sample.  

 

 

Figure 2. Vocabulary Growth Curve (VGC) representing the increase of cue-

response pairs as new responses are collected by comparing the VGC of our dataset 

(grey curve) to an empirical VGC obtained from the fZM model red line). The 

vertical lines indicate the total number of observed tokens for our sample.  
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Cue Descriptive statistics 

General statistics were first computed for the cue words. The mean concreteness 

variable reported was taken from the Lakhzoum et al. (2021) concreteness study. The general 

statistics for the lexical variables presented in Table 1 were obtained by cross-referencing the 

present cue words with the Lexique (New et al., 2004), FLP (Ferrand et al., 2010), MEGALEX 

(Ferrand et al., 2018) and Wordlex (Gimenes & New, 2016) databases. The concreteness 

statistics indicate that the present dataset contains cue words of varying levels of concreteness 

ranging from 2.10 to 6.58 on a 7-point scale allowing users to study responses elicited by both 

abstract and concrete concepts. Separating very concrete cue words (M = 3.12; SD = 0.44) from 

very abstract ones (M = 5.52; SD = 0.92) based on the median revealed a significant effect of 

concreteness [t(910) = 56.71; p < 0.0001]. This will allow concreteness to be used as either a 

continuous or categorical variable by researchers wishing to study the effect of variation in 

concreteness of the cues that elicited the associated responses. 

Table 1. Descriptive and behavioural data for cue words. 

 

 

 

 

 

 

 

Note. OLD20: orthographic Levenshtein distance (Yarkoni, Balota, & Yap, 2008);  

Movie subtitles frequency (from Lexique ; New et al., 2004) and Mean concreteness  

(from Lakhzoum et al., 2021). 

 

A more extensive description of the cues can be found in Lakhzoum et al., (2021). 

 min max M SD 

Mean Concreteness 2.10 6.58 5.17 1.57 

Movie Frequency 0.00 2752.00 440.15 136.47 

Book Frequency 0.00 4696.15 44.92 172.65 

Blog Frequency 0.06 3095.93 61.24 193.06 

Twitter Frequency 0.00 4070.02 55.45 232.49 

Newspaper Frequency 0.00 3782.26 57.49 200.59 

N-letters 3.00 14.00 7.00 2.02 

N-orthographic Neighbours 0.00 23.00 2.42 3.60 

OLD20 1.00 5.40 2.09 0.62 

Reaction Times (FLP) 515.54 1005.15 658.41 65.67 

Reaction Times (Megalex) 473.48 747.84 553.05 44.18 
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Cue concreteness and Response frequency analyses 

General statistics were then computed for the responses following a similar cross-

referencing process. Table 2 shows the aggregated statistics for all the responses 

Table 2. Mean frequency and reaction times for response words 

 

 

 

 

 With respect to the responses, frequency and reaction time data were our main interest. 

Additional analyses compared the frequency and reaction time data for responses elicited by 

abstract and concrete cue words. They revealed an effect of movie subtitle frequencies with 

more frequent response words corresponding to abstract cue words (M = 87.44; SD = 462.69) 

than more concrete cue words (M = 72.40; SD = 418.31) – t(37146) = 3.36; p < 0.001. The 

focus on movie subtitle frequencies was due mainly to the fact that they are commonly used, 

particularly when it comes to norming stimuli in language experiments. An additional analysis 

revealed an effect of reaction times, with shorter latencies for words elicited by concrete cue 

words (M = 647.00; SD = 64.85) than abstract cue words (M = 651.12; SD = 65.72) – 

t(34184) = 5.83; p < 0.001. Taken together, the analyses revealed that abstract cue words 

elicited more frequent responses but with longer latencies (see Table 3).  

 

 

 

 M SD 

Movie Subtitles Frequency 29.85 349.18 

Book Frequency 33.38 450.23 

Blog Frequency 57.59 746.03 

Twitter Frequency 55.60 646.61 

Newspaper Frequency 55.26 797.73 

Reaction Times (FLP) 690.32 79.01 

Reaction Times (Megalex) 574.11 53.04 



113 
 

 

Table 3. Response frequencies and latencies according to cue concreteness 

 abstract cues concrete cues 

response frequencies 87.44 (462.69) 72.40 (418.31) 

response latencies 651.12 (65.72) 647.00 (64.85) 

Note. Mean (SD). All reported means are statistically significant (p < 0.0001) 

 

Cue-response organisation according to concreteness and perceptual gradients  

An additional study was designed to establish whether cue words prompted responses of 

similar concreteness levels. Using the same protocol as Lakhzoum et al., (2021), we 

conducted an additional concreteness study where the responses from the 150 most strongly 

associated pairs were submitted to an independent group of 50 French native-speakers (Mage = 

26.63; SD = 7.64). The collected concreteness levels for both cues and responses are 

presented in Table A1. Results showed a strong correlation between cue and response 

concreteness levels (r = .73) – t(147) = 13.00; p < 0.001. An additional independent t-test 

showed no statistical difference between cue and response concreteness (t(292) = 0.64; p = 

0.52 ns).  Taken together, these results show that concrete cue words tend to elicit concrete 

responses and abstract cue words tend to elicit abstract responses. Aggregating across all 

responses, cue-response pairs elicited by concrete cues were more strongly associated (M = 

3.10; SD = 5.60) than pairs elicited by abstract cues (M = 2.45; SD = 3.97) – t(35861) = 

13.00; p < 0.001.  

Finally, we considered the effect of the modality-specific perceptual strength variable 

developed by Chedid et al. (2019). A comparison of perceptual strength between cues and 

responses gave an overall moderate correlation (r = .41) – t(6466) = 35.70; p < 0.001. 
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However, when only pairs that are verbally associated (association strength ≥ .10) are 

considered, the correlation increases considerably (r = .67) – t(359) = 17.00; p < 0.001, 

signifying that participants tend to produce responses of similar perceptual strength to the 

cues that elicited said responses. This result is similar to the one obtained with the 

concreteness variable, suggesting modality-specific variables can also capture patterns of 

organisation of the mental lexicon. We then estimated the ability of perceptual strength to 

predict semantic latencies, obtaining a moderate negative correlation (r = -. 20) – t(1822) = 

8.90; p < 0.001. 

Use of association frequencies to predict semantic processing 

We verified that response frequency – i.e., the number of times word j is given as a 

response to cue word i – is correlated to the association strength between cues and responses. 

Results showed a strong correlation between frequency and strength (r = .98) – t(39911) = 

1032; p < 0.001. Response frequency offers up additional information to strength insofar as it 

emphasises the lexical centrality or saliency of a response, and thus of a word, in the mental 

lexicon. It is therefore often used to estimate other measures of semantic relatedness, such as 

reaction latencies (see De Deyne et al., 2019). The comparison between response lexical 

centrality and lexical latencies from MEGALEX (Ferrand et al., 2018) showed a substantial 

negative correlation (r = -.55)5 – t(5722) = 47.70, p < 0.001) which means that the more 

salient the less time it takes to be processed.  

DISCUSSION 

The present study aimed to produce French word-association norms with a focus on 

abstract concepts. The task yielded a sizeable number of responses that allowed for an 

exploration of the dataset’s distributional characteristics. Frequency spectrum analyses 

                                                        
5 De Deyne et al. (2018) reported a correlation of -.59 based on the SWOW dataset. 
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revealed that the dataset displayed the same commonly found pattern across language and 

corpora (Evert & Baroni, 2005). In addition, the vocabulary growth curves highlighted the 

productivity of the task, meaning that with continuous response collection, the number of 

types (or unique responses) would exponentially increase, an illustration of the fact that new 

words are constantly coined (Baayen, 2001). Taken together, the frequency spectrum and 

vocabulary growth curve reflect the productivity of the human language and the fact that new 

word types are continuously produced, be it in the context of a word-association task or as a 

broader linguistic phenomenon. 

We reported the previously collected concreteness variable for the cue words, which 

allowed for a comparison of response statistics between words prompted by an abstract cue or 

a concrete cue. The presence of the concreteness variable in this dataset, even if it is reserved 

for the cue words, is of the utmost importance when considering the previously reported 

discrepancies in the literature as to the role of concreteness in the organisation of the mental 

lexicon (see Crutch & Warrington, 2010 for example).  The additional study used to collect 

response concreteness revealed a high correlation between cue and response concreteness and 

no significant difference in concreteness levels between the two words of a pair. These 

important results shed more light on how the mental lexicon is organised according to abstract 

and concrete concepts, in that they suggest abstract concepts are closely coded in the semantic 

network if an abstract cue tends to prompt an abstract response, but, in addition, they also 

allow for a deeper exploration of the link between concreteness and frequency. For example, 

the results showed that, in comparison with concrete cues, abstract cues prompted responses 

that are more frequently distributed across movie subtitles. At first sight this result might 

seem to be a rather counterintuitive, insofar as concrete concepts appear to be more common 

in language use. In actual fact, the vast majority of meaningful words used in everyday 

language tend to be more abstract, as illustrated in particular by the regular use of abstract 
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verbs such as think, feel, and want to express volition and states of mind. According to the 

British National Corpus (Leech, Garside & Bryant, 1994), 72 % of the noun or verb tokens in 

British English are more abstract than the noun war. Nevertheless, given that previous 

language norms and studies have relied heavily on concrete concepts, it is not surprising these 

results seem counterintuitive when in fact they provide more of an incentive to further the 

study of abstract concepts.  

The introduction of a modality-specific variable such as perceptual strength is further 

testament to the intricate nature of abstract concepts. Results showed that cue words elicited 

responses of a similar level of not only concreteness but also perceptual strength. This result 

is important in light of the seeming chiasm between the distributional and grounded accounts 

of concept representation. The suggestion is that the organisation of the mental lexicon 

follows statistical patterns that can be captured by variables that are historically distributional, 

such as semantic similarity, frequency and relatedness, and by variables that are closer to the 

grounded end of the spectrum, such as concreteness and perceptual strength. Our analyses in 

respect of the latter were constrained, however, by the limited number of items between our 

cue-response pairs and the items present in Chedid and colleagues’ database. This is a further 

indication of the need to develop larger normative datasets based on these modality-specific 

variables and with an emphasis on abstract concepts.  

The aim of this dataset was to fill a gap in the French literature as regards word 

association norms by introducing 1 100 cues of varying levels of concreteness that elicited 

more than 89k responses from over a 1 000 participants. To the best of our knowledge, this is 

the first dataset since Bonin et al., (2013), nearly a decade ago, and also the most recent since 

Ferrand et al., (2001), two decades ago, to attempt to focus on abstract concepts as well. We 

anticipate that it will be very useful for researchers working on language- and memory-related 

tasks, especially those wishing to control for association when working on semantic similarity 
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or on the impact of concreteness in the organisation of the mental lexicon. The correlation 

between lexical centrality and word latencies guarantees the validity of the dataset and its 

ability to predict semantic processing.  

Open Practices Statement 

In line with an open data policy, all data discussed in this article are freely available on 

our web site on the Open Science Framework web site (https://osf.io/dhuqs/). 
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APPENDIX 

     Table A1. First 150 most associated pairs with cue and response mean concreteness 

cue translation response translation %strength cue_concreteness response_concreteness 

crainte fright peur   fear 85.71 2.95 2.37 

omelette omelet œuf egg 82.05 6.67 6.61 

chorégraphie choregraphy danse dance 79.49 5.12 4.71 

poivre pepper sel salt 78.57 6.55 6.10 

croquis sketch dessin drawing 74.39 5.46 5.57 

ruche hive abeille bee 72.73 6.43 6.67 

brasier inferno feu fire 72.37 5.75 5.76 

question question réponse answer 72.00 3.93 2.94 

homme man femme woman 71.88 6.26 5.78 

selle saddle cheval horse 71.43 6.46 6.63 

luge sledge neige snow 70.42 6.58 6.29 

primate primate singe monkey 70.27 5.36 6.43 

soucoupe saucer volant flying 69.77 5.90 5.61 

égaré misplaced perdre loose 69.57 3.49 2.86 

prévision forecast météo weather 69.57 2.74 3.88 

avalanche avalance neige snow 69.14 6.17 6.29 

aéroport airport avion plane 67.95 6.24 6.63 

nid nest oiseau bird 67.86 6.31 6.69 

effroi dread peur fear 66.67 3.16 2.37 

robinet faucet eau water 65.52 6.61 6.22 

tendance tendency mode fashion 64.84 2.57 2.82 

rouge-gorge robin oiseau bird 64.71 6.58 6.69 

cacao cocoa chocolat chocolate 64.37 6.23 6.59 

ancre anchor bateau boat 62.35 6.14 6.63 

chlore chlorine piscine pool 62.12 5.41 6.49 

bibliothèque library livre book 61.97 6.48 6.63 

baril barrel pétrole oil 61.33 6.34 5.88 

périr perish mourir die 61.29 4.11 3.51 

riche wealthy pauvre poor 61.29 3.48 2.94 

flamme flame feu fire 61.11 5.94 5.76 

réponse answer question question 60.53 3.92 3.00 

cliché stereotype photo picture 60.44 3.71 5.73 

bravoure bravery courage courage 60.26 2.97 2.69 

cercle circle rond round 60.24 5.21 4.82 

ampoule bulb lumière light 59.55 6.78 4.76 

gare train station train train 59.46 6.19 6.55 

frère brother sœur sister 59.21 5.94 5.67 

roi king reine queen 59.15 5.59 5.31 

oncle uncle tante aunt 58.82 6.46 5.75 
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pacifique peaceful océan ocean 58.75 3.64 5.82 

bien good mal bad 58.11 2.60 2.22 

décret decree loi law 57.97 4.26 3.04 

tablier apron cuisine kitchen 57.69 6.53 5.73 

tonneau cask vin wine 57.69 6.63 6.35 

vie life mort death 57.69 3.74 3.45 

femme woman homme man 57.33 5.86 5.57 

grand large petit small 57.14 4.59 3.88 

soulier shoe chaussure shoe 56.99 6.69 6.45 

réfléchir reflect penser think 56.63 3.62 2.82 

moineau sparrow oiseau bird 56.47 6.48 6.69 

célébration celebration fête party 55.95 3.97 4.06 

égalité equality fraternité fraternity 55.95 3.05 2.49 

étincelle sparke feu fire 55.26 5.58 5.76 

après after avant before 55.13 3.77 2.45 

terrier burrow lapin rabbit 54.67 6.43 6.65 

monarchie monarchy roi king 53.73 4.04 5.43 

berceau crib bébé baby 53.41 6.60 6.20 

anatomie anatomy corps body 53.09 5.82 5.96 

sapin fir noël christmas 52.63 6.76 3.88 

trébucher stumble tomber fall 52.63 5.26 4.12 

capture capture écran screen 52.44 3.75 6.41 

rusé cunning renard fox 52.05 3.27 6.73 

lait milk vache cow 51.81 6.48 6.67 

astronomie astronomy étoile stars 51.76 4.59 5.59 

émissaire emissary bouc goat 51.47 4.33 6.29 

abdomen abdomen ventre belly 51.32 6.53 6.14 

privé private public public 51.28 3.31 3.84 

bulle buble savon soap 51.16 5.71 6.43 

flore flora faune fauna 50.77 5.24 4.47 

existence existence vie life 50.55 3.52 3.14 

palpitation palpitation  coeur fever 50.53 4.87 5.47 

album album photo photo 50.00 6.23 5.73 

tentative attempt essai test 50.00 3.37 3.35 

navire ship bateau boat 49.44 6.51 6.63 

problème problem solution solution 49.41 3.47 3.10 

tasse cup café coffee 49.37 6.68 6.43 

source source eau water 49.30 4.20 6.22 

liquide liquide eau water 49.21 5.34 6.22 

torchon napkin serviette towel 48.84 6.41 6.47 

panique panic peur fear 48.78 3.49 2.37 

brise breeze vent wind 48.65 4.51 4.92 

rectangle rectangle carré square 48.61 6.56 3.55 

pauvre poor riche wealthy 48.53 3.83 3.25 
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Pâque Easter œuf egg 48.44 3.97 6.61 

bizarre weird étrange strange 48.24 2.50 2.27 

épave wreck bateau boat 47.89 5.80 6.63 

dévorer devour manger eat 47.76 4.20 4.82 

démence dementia folie madness 47.56 2.87 2.10 

étrange strange bizarre weird 47.52 2.49 2.02 

bouée buoy sauvetage rescue 47.50 6.51 3.82 

forêt forest arbre tree 47.44 6.00 6.67 

chouette owl hibou owl 47.37 5.97 6.49 

aisé convenient riche wealthy 47.13 3.26 3.25 

solution solution problème problem 46.99 3.91 2.80 

coïncidence coincidence hasard chance 46.91 2.77 2.27 

hibou owl chouette owl 46.48 6.78 5.53 

pinceau brush peinture paint 46.39 6.56 5.92 

arrivée arrival départ departure 46.38 4.07 3.51 

soi self moi me 46.34 2.84 4.12 

avoir to have être to be 46.25 3.49 2.08 

entrée entrance sortie exit 45.65 4.56 3.67 

geler congeal froid cold 45.65 5.05 3.80 

timbre stamp poste post office 45.59 6.35 4.80 

planète planet terre earth 45.56 5.68 5.98 

célébrité fame star star 45.35 3.33 4.06 

bon good mauvais bad 45.26 3.13 2.51 

monter go up descendre come down 45.24 4.50 3.82 

soir evening nuit night 45.00 4.84 2.63 

auteur author livre book 44.93 5.54 6.63 

poignée handle porte door 44.59 5.95 6.47 

vache cow lait milk 44.58 6.89 6.45 

budget budget argent money 44.44 5.03 5.24 

finance finance argent money 44.30 3.45 5.24 

cage cage oiseau bird 44.29 6.31 6.69 

collège middle school lycée high school 44.29 6.17 5.71 

divertir entertain amuser amuse 43.94 3.35 2.88 

compte account banque bank 43.90 4.44 5.47 

individu individual personne person 43.90 5.10 4.71 

mauvais bad bon good 43.84 3.26 2.71 

mélancolie melancoly tristesse sadness 43.84 2.69 2.61 

béton concrete armer reinforced 43.68 6.52 3.92 

propre clean sale dirty 43.62 3.98 3.73 

cartable schoolbag école school 43.59 6.78 5.96 

pyramide pyramid Egypte Egypt 43.53 6.31 5.31 

avenir future futur future 43.48 3.04 2.27 

plage beach sable sand 43.43 6.09 6.49 

velouté chowder soupe soup 43.43 5.35 6.33 



125 
 

faiblesse weakness force strength 43.42 2.72 3.04 

neveu nephew nièce niece 43.18 6.20 5.67 

pays country France France 42.86 5.66 4.94 

maximum maximum minimum minimum 42.71 3.04 2.96 

mal bad bien good 42.47 3.14 2.53 

ricaner giggle rire laugh 42.47 4.51 3.90 

berger shepherd mouton sheep 42.45 6.10 6.65 

aérien aerial avion plane 42.19 4.21 6.63 

action action réaction reaction 42.17 4.09 2.86 

poignard dagger couteau knife 42.17 6.39 6.61 

lit bed dormir sleep 41.98 6.84 4.37 

adulte adult enfant child 41.94 4.40 5.86 

émeraude emerald vert green 41.94 6.21 4.37 

gravir climb monter ascend 41.94 4.94 3.90 

courgette zuchini légume vegetable 41.46 6.76 6.12 

abeille bee miel honey 41.38 6.64 6.33 

printemps spring été summer 41.38 4.38 3.80 

orner adorn décorer decorate 41.05 4.61 3.82 

horreur horror film movie 41.03 3.00 5.69 

célébrer showcase fêter celebrate 40.82 3.89 3.75 

part piece gâteau cake 40.74 3.82 6.31 

colonie colony  vacance vacation 40.63 4.30 3.73 
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The aim of the previous chapter was twofold. Firstly, we wanted to provide an update 

to the availability of word association for French abstract concepts because the most recent 

database was introduced by Ferrand et al. (2001). Secondly, we developed this database in 

order to provide control for researchers over the crafting of materials when studying processes 

related to semantic similarity and verbal association. The implementation of a word 

association task produced a large amount of data which allowed for the use of methods 

borrowed from distributional statistics. Main results have shown that concepts are organised 

in the mental lexicon according to a gradient of concreteness and that concrete concepts elicit 

stronger associations compared to abstract concepts. 

The large amount of data generated by the word association task allowed for the 

application of semantic network analyses borrowed from the mathematical graph theory. A 

key advantage of cognitive network science is that is renders possible the exploration of large-

scale semantic phenomena from a structural level. The next chapter introduces the first 

semantic network built from French association data and the first to compare topological 

parameters for concrete and abstract concepts. Results have shown that the mental lexicon is 

structured according to a small-world pattern characterised by a sparse density, a short 

average path length between nodes and a high clustering coefficient.  

Comparison analyses between the networks for concrete and abstract networks 

respectively have shown that concrete concepts are organised in denser communities 

compared to abstract concepts. Additional analyses have shown that the concrete word nodes 

are more influential in the network due to their position and patterns of connectivity. This 

means that concrete nodes have a higher ability to spread information in the network 

compared to abstract nodes. We relate these characteristics to the assumptions of Paivio 

(1971) according to which concrete concepts are strongly connected to a limited number of 
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contexts while abstract concepts are more loosely connected to a great number of contexts. 

Semantic network analyses have confirmed these assumptions on a larger scale based on the 

structural parameters of the mental lexicon.  
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ABSTRACT 

In recent years, a new interest for the use of graph-theory based networks has emerged within 

the field of cognitive science. This has played a key role in mining the large amount of data 

generated by word association norms. In the present work, we applied semantic network 

analyses to explore norms of French word associations for concrete and abstract concepts 

(Lakhzoum et al., 2021). Graph analyses have shown that the network exhibits high clustering 

coefficient, sparse density, and small average shortest path length for both the concrete and 

abstract networks. These characteristics are consistent with a small-world structure. 

Comparisons between local node statistics and global structural topology showed that abstract 

and concrete concepts present a similar local connectivity but different overall patterns of 

structural organisation with concrete concepts presenting an organisation in densely 

connected communities compared to abstract concepts. These patterns confirm previously 

acquired knowledge about the dichotomy of abstract and concrete concepts on a larger scale. 

To the best of our knowledge, this is the first attempt to confirm the generalisability of these 

properties to the French language and with an emphasis on abstract and concrete concepts. 
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INTRODUCTION 

In recent years, a new interest has emerged within the field of cognitive science for 

mathematical models such as graph-theory based science networks (Baronchelli, Ferrer-i-

Cancho, Pastor-Satorras, Chater, & Christiansen, 2013; see Siew, Wulff, Beckage, & Kenett, 

2019 for a review). More specifically, the use of semantic network analysis on word 

association offers a powerful computational technique for the modelling of structures like the 

mental lexicon (De Deyne & Storms, 2008; De Deyne, Verheyen & Storms, 2016; De Deyne, 

Navarro, Perfors, Brysbaert & Storms, 2019; Stella, Beckage, Brede, & De Domenico, 2018). 

Models have shown that word associations are organised according to the same small-world 

structure found in many natural phenomena (Steyvers & Tenenbaum, 2005). 

Network science and characteristics 

A network is built as a graph that consists of nodes linked by edges or arcs. In a network 

based on association data, the nodes correspond to words connected by an undirected edge or 

a directed arc. A directed network provides additional information about the direction of the 

association from cue to response words. The arcs and edges can have weights to represent the 

frequency of association. Adjacent nodes are directly connected by an arc or edge whereas 

nonadjacent nodes are connected by a path. Based on this macroscopic structure, it is possible 

to compute network statistics of interest. The macrostructure of the network can be described 

in terms of its diameter (D), which gives the largest path length between two nodes. The 

average shortest path length (ASPL) that links two nodes is also of interest. It refers to the 

average minimum number of steps from one node to another. Nodes are characterised by the 

degree corresponding to their number of connections. In a directed network, each node has an 

in-degree (kin) that is the number of incoming arcs and an out-degree (kout) that is the number 

of outgoing arcs. An undirected network only has degree k corresponding to the number of 
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edges of a node. The average degree <k> of the network can provide valuable information 

about the connectivity of the network itself but also about nodes centrality within the network. 

The clustering coefficient (CC) constitutes such a measure of centrality. It is the probability 

that two nodes are interconnected knowing they both are connected to a common neighbour. 

Finally, the density (d) is defined as a ratio of the number of edges in the network to the 

number of all possible edges (Steyvers & Tenenbaum, 2005; De Deyne & Storms, 2008; 

Csardi & Nepusz, 2006; Kolaczyk & Csardi, 2014; see Table 1 for a summary of all network 

statistics described above).  

Table 4. Description of network characteristics used throughout the paper. 

 

Based on these characteristics, some networks exhibit small-world properties when compared 

to similar random networks (Milgram, 1967; Watts & Strogatz, 1998; Steyvers & Tenenbaum, 

2005). Humphries and Gurney (2008) introduced a quantitative measure called 

smallworldness (S) aimed to assess the small-world properties of a network. This measure 

corresponds to the ratio of the clustering coefficient (CC) to the average shortest path length 

(ASPL). The network is considered smallworded when S is higher 

Based on these characteristics, some networks exhibit small-world properties when compared 

to similar random networks (Milgram, 1967; Watts & Strogatz, 1998; Steyvers & Tenenbaum, 

2005). Humphries and Gurney (2008) introduced a quantitative measure called 

smallworldness (S) aimed to assess the small-world properties of a network. This measure 

network characteristics Description 

D the diameter of the network 

ASLP the average length of shortest path  

CC the clustering coefficient 

<k> average degree 

k, kin, kout the degree, in-degree, and out-degree 

d density of the network 

S Smallworldness 
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corresponds to the ratio of the clustering coefficient (CC) to the average shortest path length 

(ASPL). The network is considered smallworded when S is higher than 3 (Humphries & 

Gurney, 2008). A small-world network when compared to a random network of equal size 

and number of edges would have a lower average shortest path length but a higher clustering 

coefficient (Erdös & Rényi, 1960; Watts & Strogatz, 1998; Steyvers & Tenenbaum, 2005; De 

Deyne & Storms, 2008). Smallworld networks represent a vast collection of models that can 

be found in multiple real-world phenomena.  

Small-world structures and semantic networks 

Milgram (1967), in an experiment on social networks tested the principle according to 

which people are on average separated by only six social connections. He asked a group of 

participants (origin node) to send a letter to a stockbroker (destination node) using their own 

social connections. Results suggested a small degree of separation between any two people 

living in the United States at the same time. According to Milgram (1967), this suggested an 

organisation of social connections according to a small-world structure.  

Other studies later confirmed theses small-world properties in social networks (e.g., Watts 

& Strogatz, 1998; Kitsak et al., 2010), epidemiology of infectious diseases (e.g., Keeling & 

Rohani, 2008), spread of computer viruses (e.g., Pastor-Satorras & Vespignani, 2001), protein 

interaction (e.g., Bork et al., 2004), gene expression (e.g., van Noort, Snel & Huynen, 2004), 

neural (e.g., Basset & Bullmore, 2017) and semantic networks (e.g., Steyvers & Tenenbaum, 

2005).  

The use of semantic networks for the study of language corpora has a long history as 

evidenced by the development of influential computational models such as LSA (Latent 

Semantic Analysis, Landauer & Dumais, 1997). It models the assumption that words that co-

occur in similar contexts share the same meaning (Firth, 1968). This corpus approach relies 
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on the mining of large text corpora that provide a good representation of the linguistic 

environment from which language is acquired and processed (De Deyne et al. 2016). The use 

of co-occurrence to define meaning is limited however because it does not distinguish 

between similarity-based co-occurrences and purely verbal associates as it is the case for 

psycholinguistic models of semantics. The use of word associations collected from human 

participants can address this limitation by providing large-scale networks to study the mental 

lexicon from data that are psychologically plausible.  

The word association task is a simple yet powerful tool that can generate a large 

amount of data to gain insights into the organization of the mental lexicon. Tradit ionally, 

these data are used to create word association norms that are applied in factorial designs to 

study varied cognitive phenomena such as visual word recognition, memory recall, and 

semantic and lexical decision tasks (Balota, Cortese, Sergent-Marshall, Spieler & Yap, 2004; 

Hutchison, 2003; McNamara, 2005). The modelling of these data using network science not 

only is interesting because it provides psychologically plausible data or the ability to explore 

semantic memory on a larger scale than what is possible to achieve with factorial designs but 

is also theoretically sound. This technique is embedded in the seminal work of Collins and 

Loftus (1975) who established the network structure of the mental lexicon. In addition to the 

structural properties, semantic networks have the ability to model functional properties such 

as the spreading activation process that takes place when a node is activated in the network 

and all nodes that are connected to it are activated in turn. It is also possible to consider the 

weights and paths length in a directed network to model activation decay as a function of time 

and distance (Collins & Loftus, 1975; Den Heyer, & Briand, 1986; Kenett, Levi, Anaki & 

Faust, 2017).  

Many studies have investigated the above-mentioned characteristics of semantic 

networks (Motter, Moura, Lai & Dasgupta, 2002; Sigman & Cecchi 2002; Steyvers & 
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Tenenbaum 2005; Bales & Johnson 2006; Borge-Holthoefer & Arenas 2010; Choudhury & 

Mukherjee 2009; Fukś & Krzemiński 2009; Veremyev, Semenov, Pasiliao & Boginski, 

2019).  

Steyvers and Tenenbaum (2005) analysed semantic networks based on behavioural 

word associations and large text corpora. They showed that they all have a small-world 

structure characterized by sparse connectivity, short average path lengths, and a strong 

clustering coefficient. These small-world properties reflect an organisation of the lexicon in 

highly connected hubs that allow efficient information distribution and contributes to the 

robustness of the structure as a whole (Borge-Holthoefer, Moreno, & Arenas, 2012; De Deyne 

et al. 2016). It also provides insights into the network growth mechanisms as newly acquired 

concepts join tightly connected hubs over time (Steyvers, and Tenenbaum, 2005). These 

results were later replicated in Dutch (De Deyne et al., 2008), German and Spanish (Borge-

Holthoefer & Arenas, 2010), Hebrew (Kenett et al., 2017) and most recently in Persian 

(Karimkhani et al., 2021) showing that these properties still hold for Semitic languages. 

The present work 

In the present work, we applied techniques of semantic network analyses on 

behavioural abstract and concrete word associations previously collected from French native 

speakers (Lakhzoum et al., submitted). The first aim of this work is to replicate the network 

analyses and small-world properties found by Steyvers and Tenenbaum (2005) and generalise 

their results to the French language. A second aim is to explore potential differences in 

network properties when separating abstract and concrete word associations in two distinct 

networks. This is, to the best of our knowledge, the first attempt to study the characteristics of 

abstract and concrete networks and the first attempt to generalise small world properties to the 

French language.  
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METHOD 

Material and procedures 

A detailed description of the French word association data is provided in Lakhzoum et al., 

(submitted). The word associations were based on 1100 cues with varying levels of 

concreteness from very abstract to very concrete on a 7-points scale. They were collected in 

an online experiment among 1200 French native speakers. This resulted in a dataset of 92000 

responses. Following the procedure of De Deyne et al. (2019), only the responses suggested 

by at least two participants were kept. For the remaining data, a weighted adjacency matrix 

was computed. The cue words and associated responses were used to create the nodes in the 

networks. The links between cue and responses were used as the directed arcs and the 

association strength values were represented in the weights of the arcs. The whole network 

was later divided into the concrete and abstract networks based on the median level of 

concreteness of the cues.  

RESULTS 

Semantic network analyses do not rely on techniques of hypothesis testing, as it is the 

case for factorial designs (Moreno & Neville, 2013). The insights about the data are drawn 

from comparisons of directed and undirected networks with random networks of comparable 

size, density and mean connectivity <k>. More specifically, the benchmark random networks 

used to estimate smallworldness (ASPL and CC parameters) were generated with the same 

size and mean connectivity that provided the parameters ASPLrandom and CCrandom (see Table 

1). Most of the literature on semantic networks relies on unweighted, undirected networks. 

However, considering the present application in word association data, the direction of the 

edges and the frequency of the association are of importance. The following analyses are 

based on directed and undirected weighted graphs. The variable n refers to the number of 
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nodes corresponding to the word association dataset (Lakhzoum et al., submitted). The whole 

network corresponds to the graph representation of the entire dataset (see Figure 1 for a 

representation of the whole network; see Figure 2 for a more focused visualisation of the 

network) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Visual representation of the whole network. Each point represents a word. The colour 

gradient from grey to red represents the distance between connected nodes the greyer the farther and 

the redder the closer (built with the software Gephi; Bastian, Heymann & Jacomy, 2009).  
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Figure 2. Visualisation of a portion of the network with a representation of the nodes degree were the 

larger and the darker green a node is and the more connection it has. The node with the most number 

of connection on this portion is the French concept “amour” or love in English. One of the nodes with 
the smallest degree is the French concept “ennui” or boredom in English (built with the software 

Gephi; Bastian, Heymann & Jacomy, 2009). 

 

Based on our previous study, we were able to determine that concrete and abstract cue 

words tend to elicit responses of the same level of concreteness (Lakhzoum et al., submitted) 

which justified our choice to explore both levels in separate networks. The concrete and 

abstract networks correspond to the datasets for the concrete and abstract cue words 

respectively. 

The first parameter of interest is the diameter (D) of the network that defines the 

maximum distance between two nodes. It provides information about the macrostructure of 

the network and an estimation of the overall connectivity as it relates to the density parameter 

(d). For the whole network, the diameter shows that the most distant nodes are separated by 
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20 (directed) and 9 (undirected) connections. In the concrete network, the most distant nodes 

are separated by 24 (directed) and 9 (undirected) connections. Finally, in the abstract network, 

the most distant nodes are separated by 19 (directed) and 10 (undirected) connections. These 

diameters are overall higher than the ones found in the Leven dataset (De Deyne et al., 2008) 

which is explained by the higher density of their network.  

Table 2. Network statistics for the directed and undirected associative networks for the whole, 

concrete and abstract datasets. 

 Whole network Concrete network Abstract network 

variables directed undirected directed undirected directed undirected 

n 4,758 2,961 2,827 

D 20 9 24 9 19 10 

d 5.10-3 6.10-3 7.10-3 

ASPL 7.07 4.90 8.46 5.13 7.20  5.00 

ASPLrandom 10.00 7.05 10.21 6.63 10.13 6.58 

kin/out 2.46 - 1.97 - 2.07 - 

<k> 4.92 4.92 3.94 3.94 4.13 4.13 

CC 0.15 0.07 0.15 0.07 0.14 0.06 

CCrandom 0.0005 0.0005 0.001 0.0008 0.0007 0.001 

S 682 925 657 

Q 0.62 0.70 0.64 

Note. n = the number of nodes; D = the diameter of the network; <k> = the average number of 

connections; ASPL = the average shortest path length; CC = clustering coefficient; 

ASPLrandom = the average shortest path length with random graph of same size and density; 

CCrandom = the clustering coefficient for a random graph of same size and density. 

 

The density of the network serves two purposes. Firstly, it allows to create a 

comparable random network to provide a benchmark for small-world analyses. Secondly, it 

serves to check the sparseness of the network. The sparseness of the whole network is shown 

by a very low density of 5.10-3. This means that about 0.05% of all possible associations 

between words are represented. When comparing the density of the concrete and abstract 
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networks, the concrete network presents an even lower density, which is in accordance with 

its higher diameter. This extreme sparseness can be explained by the variety of the dataset in 

terms of levels of concreteness of the cues. We expect that the concrete and abstract data 

share very few connections and belong to separate clusters. The sparseness of these networks 

-very low density- is the first mark of their small-world structure. 

Based on the average shortest path length (ASPL), there was an average of 7.07 

(directed) and 4.90 (undirected) steps from one node to another in the whole network. This 

average number of steps was higher in the concrete network (8.46 for the directed and 5.13 

for the undirected) compared to the abstract network (7.20 for the directed and 5.00 for the 

undirected). This pattern is in accordance with the diameter. A series of random networks 

were generated with comparable size n and mean connectivity <k> to serve as benchmark for 

smallworldness estimation. All networks had the same density as their corresponding random 

benchmarks. According to Table 2, the ASPL statistics were consistently smaller for the 

actual networks compared to the randomly generated ones. A small ASPL is a fundamental 

characteristic of a small-world structure. 

The clustering coefficient is a measure of the probability that associates of a word are 

also connected to each other. This parameter is evaluated against a comparable random 

network. Table 2 shows that associates of a word in the directed networks were also 

connected to each other about 15% of the times for the whole and concrete networks and 14% 

of the times for the abstract network. For the undirected networks, this probability dropped to 

approximately 6-7 % of the time. The clustering coefficients of the whole, concrete and 

abstract networks were very high compared to the ones found for the benchmark random 

networks that ranged from 0.05 to 0.1% probability to find a link between two nodes that have 

a neighbour in common. The clustering coefficient is among the most important indicator of a 
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small-world structure. It suggests that when additional nodes are introduced in the network, 

they join a tightly connected hub, which insures the stability of the entire network. 

Taken together, the sparseness, average short path lengths and clustering coefficient 

show that the present networks exhibit the same small-world properties found by Steyvers and 

Tenenbaum (2005). A final measure established by Humphries and Gurney (2008) was 

computed for each network and their corresponding random networks to evaluate their 

smallworldness. Based on this parameter, Humphries and Gurney (2008) indicated that an S 

measure > 3 indicates a small-world structure. All the networks presented a very high S 

measure.  

Finally, the modularity measure (Q) introduced by Newman (2006) indicates the 

extent to which a network is composed of sub-communities. Communities are non-

overlapping groups of nodes with a high number of within community connections and a low 

number of between-community connections. The concrete network is more modular (Q = 

0.70) compared to the abstract network (Q = 0.64). 

Network analysis is rooted in the seminal work of Collins and Loftus (1975) who 

described the spreading of activation according to which the activation of concepts in memory 

spreads and activates other closely related concepts. This process is fundamental in cognitive 

science for its ability to explain many phenomena related to the mental lexicon (see Siew et 

al., 2019 for a review). Given the structural differences we have found in the concrete and 

abstract networks, it is fair to assume that the two types of concepts would exhibit different 

patterns of spreading scores.  In the same way that spreading activation mimics the diffusion 

of discrete events such as the spread of disease among individuals, it is possible to identify 

initial “infected” nodes and their ability to spread the discrete event which is modelled (Siew 

et al., 2019). Salavaty, Ramialison and Currie (2020) have proposed a computational method 
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to identify the most influential nodes in a network that have a higher spreading scores for each 

node. Spreading scores are an indication of the capacity for a node to spread information 

within the network.  The algorithm was used for each abstract and concrete network and 

generated a vector of spreading scores for each node. Comparison of spreading scores for 

abstract and concrete nodes respectively showed that abstract nodes (M=2.56; SD=4.75) have 

a lower spreading score compared to concrete nodes (M=3.72; SD = 6.57) – t(5390) = 7.70; p 

< 0.001. These results suggest that the abstract nodes in the network are less influential and 

have a lesser ability to spread information within the network compared to concrete nodes. 

DISCUSSION 

In the present work, the data obtained from word associations was represented as 

several networks using graph-theory based principles. This aimed at extracting structural and 

organisational patterns of the mental lexicon that would not be possible to gain from the raw 

dataset (De Deyne & Storms, 2008; Csardi & Nepusz, 2006; Kolaczyk & Csardi, 2014). The 

whole network represented the entire dataset. Next, based on a previously established pattern 

of cues eliciting responses of the same level of concreteness (Lakhzoum et al., 2021), the 

whole network was divided into a concrete and an abstract network by using the median 

concreteness level to separate them. A first series of analyses used random networks of a 

similar density and connectivity as benchmark (Lerner, Ogrocki, & Thomas, 2009). 

Comparisons between the present networks and comparable random ones showed that the 

networks exhibited a small ASPL and a high clustering coefficient characteristic of a small-

world structure (Watts & Strogatz, 1998; Steyvers & Tenenbaum, 2005; De Deyne & Storms, 

2008). The small world structure provides valuable information not only about the structural 

characteristics of the networks but also about the way the networks will expand with the 

addition of new nodes. In a small-world network, when new nodes are included they join an 

already established cluster of existing nodes. This means that the network does not expand 
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proportionally with the addition of new nodes. This small-world effect insures that networks 

present a highly robust architecture that is resistant to change and disturbances (Peng, Tan, 

Wu & Holme, 2016).  

When comparing the topological properties of the concrete and abstract networks, the 

concrete networks seems more spread out (higher ASPL), more connected (higher S 

measure), more modular (higher Q measure) than the abstract network. This pattern of 

densely connected but loosely interconnected nodes for the concrete network concurs with the 

pattern found in association strength with concrete cues eliciting stronger associates compared 

to the abstract ones. It also concurs with the dichotomy established by Paivio (Paivio, Yuille 

& Madigan, 1968; but see Della Rosa, Catricalà, Vigliocco & Cappa, 2010) between concrete 

and abstract concepts with concrete concepts being more highly connected to a smaller 

number of contexts while abstract concepts are more loosely connected to a higher number of 

contexts. This pattern of abstract concepts was confirmed in previous studies on feature-

listing norms (Recchia & Jones, 2012) and now on a larger scale as evidence by a smaller 

modularity measure in the abstract network.  

Taken together with previous findings, these local node statistics suggest that abstract 

and concrete concepts do not differ in their pattern of connectivity but rather on the strength 

of these connections with concrete concepts presenting stronger association compared to 

abstract concepts (Lakhzoum et al., submitted). This pattern of weaker connection for abstract 

nodes compared to concrete nodes is further reflected in their respective spreading scores with 

abstract nodes presenting a lesser ability to spread information in the network compared to 

concrete nodes. These scores are reflective of the position of the nodes in the network and 

influenced by clustering and modularity as well as the weights of their connections. This 

suggests that abstract concepts, due to their more diffuse pattern of organisation and weaker 

connections given by associative strength from the word association data have a lesser ability 
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to spread semantic activation in the mental lexicon. This is in accordance with previous 

findings according to which abstract concepts present a processing disadvantage compared to 

concrete concepts as evidenced by the longer response times they elicit (see Borghi, 

Binkofski, Castelfranchi, Cimatti, Scorolli & Tummolini, 2017).  

Taken together, these characteristics suggest that the local organisation of abstract and 

concrete concepts is similar while their structural position within the network shows a 

different pattern with concrete concepts presenting a more modular pattern compared to 

abstract concepts. 

FUTURE WORK 

The present work represents a first attempt to study the structural dichotomy in the 

organisation of concrete and abstract concepts in the mental lexicon. A future project will 

have to replicate the same analyses using an English word association dataset such as the 

SWOW-EN database of De Deyne and colleagues (2019). This will allow for a replication on 

a higher scale because the database contains 12.000 cues for more than 4 million responses. 

Realising the same network in English will also provide a baseline comparison for the 

research community and the opportunity to compare between English and other languages. By 

cross-referencing with concreteness ratings norms (Brysbaert, Warriner & Kuperman, 2014), 

it will be possible to understand the same structural organisation of abstract and concrete 

concepts on a larger scale.  

Additionally, it must be kept in mind that the present network representation is not a 

neural network and does not yield any insights into the mapping of abstract and concrete 

concepts representation in the human brain. Network science can be applied to study brain 

connectivity based on the same techniques and parameters used in the present work (Siew et 

al., 2019 for a review). Based on recording of brain activity during a word association task for 
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abstract and concrete concepts, it will be possible to map the cognitive patterns obtained in 

the present work to the neural substrates that generated said cognitive patterns.  
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The previous chapter was an application of the mathematical graph-theory on French 

word association data for concrete and abstract networks. Graph analyses have extended 

previous findings as regards to the small-world structure of the mental lexicon characterised 

by a sparse density, a short average path length and a high clustering coefficient to the French 

language. Comparison of the concrete and abstract networks have shown that abstract 

concepts are organised in a more diffuse pattern of connectivity compared to concrete 

concepts which confirms our findings about the weaker associative strength exhibited by 

abstract concepts compared to concrete concepts on a larger scale and on a structural level. 

Additional comparison of spreading scores for abstract and concrete nodes have shown that 

concrete concepts are more influential in the network compared to abstract concepts meaning 

they have a higher ability to spread information in the network. These results are providing 

some insights as regards to the apparent paucity in semantic content of abstract concepts 

compared to concrete concepts and the processing advantage of concrete concepts over 

abstract concepts (Paivio et al., 1986, but see Borghi et al., 2017 for a discussion).  

More recent studies have explored the richness of abstract concepts and have found 

that what abstract concepts lack in physical features they gain in other types of features such 

as emotion, social, introspective and metacognitive (see for example Recchia & Jones, 2012). 

The next chapter builds on the work of McRae et al. (2018) who used a picture-word 

paradigm and provided evidence for the extraction of situational features in abstract concept 

processing. In contrast, Kuipers et al. (2018) showed that abstract concepts can be activated 

by abstract pictures, which lack such tangible situational features. In a series of experiments, 

we compared the role of situational and intangible features in the processing of abstract 

concepts. Results have shown that even when compared with situational picture primes, 

extraction mechanisms still occurred in the case of abstract pictures. We interpreted these 
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results as further evidence of the richness of abstract concepts which can be activated from 

features other than lexical or situational, namely also abstract and intangible. 
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ABSTRACT 

Over the last decade, hypotheses ranging from linguistic symbol processing to 

embodiment have been formulated to account for the content and mechanisms responsible for 

the representation of abstract concepts. Results of recent studies have suggested that abstract 

concepts, just like concrete ones, can benefit from knowledge of real-world situational 

context, but that they can also be processed based on abstract pictures devoid of such 

situational features. This paper presents two semantic priming experiments to explore such 

mechanisms further. The first experiment replicates Kuipers, Jones, and Thierry (2018) in a 

cross-linguistic setting which shows that abstract concepts can be processed from abstract 

pictures devoid of tangible features. In the second experiment, we studied extraction 

mechanisms that come into play when participants are presented with abstract and concrete 

pictures that provide situational information to illustrate target abstract concepts. We expected 

this facilitatory effect to be limited to concrete picture primes. Our data analysed with both 

Bayesian and Frequentist tests showed however that even when presented with tangible 

situational information, the extraction of features still occurred for abstract pictures. We 

discuss the implications of this with respect to future avenues for studying the processing of 

abstract concepts. 
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INTRODUCTION 

Abstract concepts have long been a riddle for the brain and cognitive sciences. The 

past decade saw a greatly enhanced research effort as regards abstract concepts representation 

(e.g., [1]; see [2] for a review). In spite of such efforts, challenging questions remain as to 

how abstract concepts convey meaning and the type of information in which their 

representation is encoded.  

Dimensions of abstract concepts 

With abstract concepts, there is no one-to-one matching between the concept–word 

and a single referent. Usually they refer to complex situations involving multiple objects and 

entities [3–5]. Until recently, their definition was formulated primarily in opposition to 

concrete concepts, therefore constraining the scope of the debate because the dichotomy 

between abstract and concrete concepts is not clear-cut [6]. For a long time, the most 

commonly used dimension was imageability, with concrete concepts referring to highly 

imageable entities that can be perceived through the senses and abstract concepts having low 

imageability. This dimension is the direct consequence of Paivio’s Dual Coding Theory 

(DCT, [7]) according to which concrete concepts trigger processing based on two 

informational systems, one visual, the other verbal, whereas abstract concepts are processed 

only in the verbal system. More specifically, imageability is the ability of “words [to] arouse 

sensory experience” (Paivio et al., 1968, p.4; see also [8]). In that sense, it is implicitly 

equated with abstractness, so much so, in fact, that abstract concepts stimuli were often 

chosen among words with low imageability ratings.  

A closely related dimension used to distinguish abstract concepts comes from the 

Context Availability Theory (CAT, [9]) according to which concrete concepts refer to a set 

number of contexts whereas abstract concepts are loosely connected to a variety of contexts. 
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The argument here is that the availability of a strong network of highly defined features 

provides concrete concepts with a processing advantage over abstract concepts. This 

distinction perpetuates the inaccurate view that abstract concepts are poor in features. It has 

been somewhat invalidated, however, by recent evidence showing that although abstractness 

is highly correlated with imageability, the two dimensions are not equivalent. Kousta, 

Vigliocco, Vinson, Andrews, and Del Campo (2011) found a processing advantage in favour 

of abstract concepts once the imageability and context variables were controlled, a finding 

which intensified the perceived need to uncover more dimensions to define abstract concepts 

[10]. To that end, Villani et al., (2019) introduced a novel database of 15 dimensions clustered 

around sensorimotor, linguistic, inner, social states and hand and mouth effectors [5].  The 

database offers researchers the ability to select abstract stimuli along more defined 

dimensions and allows for better-controlled experiments.  

The study of abstract concepts is benefiting from the greater emphasis placed on their 

variety, dimensions and richness. Not only has this intensified interest been concerned with 

defining their dimensional content, it has also produced theoretical accounts to explain how 

they are processed. Several theories on a spectrum ranging from amodal to grounded 

assumptions have been formulated to answer questions about processing mechanisms for 

abstract concepts. 

Theoretical accounts in the study of abstract concepts 

At the amodal end of the spectrum, traditional accounts of semantics use symbolic 

representations to define the meaning of concepts [11–14]. In recent years, this account has 

been integrated in models of distributional semantics able to extract meaning from statistical 

distribution across corpora (see [15] for a review of these models). Given that word co-

occurrences can be computed for concrete and abstract concepts alike, this account finds no 
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issue with explaining the representation of abstract concepts. However, use of amodal 

linguistic symbols as a proxy for representing meaning has been under fire for its lack of 

grounding in modality-specific brain areas [16–20]. 

At the grounded end of the spectrum, the meaning of concepts is derived from 

perceptual and motor states [21–23]. For instance, Pulvermüller, Shtyrov, and Ilmoniemi 

(2005) used MEG techniques to show that brain areas responsible for motor actions of the 

face or leg are activated when action words such as lick or kick are processed [24]. Such 

evidence is challenged, however, when faced with abstract concepts such as truth or freedom, 

as they do not refer directly to physical features of the world. That explains why the embodied 

account had to be extended to include hypotheses for the grounding of abstract concepts. 

Several studies have investigated the representation of abstract concepts through 

feature-listing paradigms and have demonstrated that abstract concepts also benefit from some 

form of representation in modality-specific. For example, abstract concepts activate social and 

introspective aspects of situations [25,26], emotional features [27], event information and 

thematic roles [28]. More generally, these studies unveiled representation mechanisms for 

abstract concepts that place greater emphasis on the context in which they are used (e.g., [29–

31]). For instance, Wilson-Mendenhall, Martin, Simmons and Barsalou (2013) performed a 

task requiring deep conceptual processing of abstract concepts such as convince [32]. They 

observed neural activation patterns of non-linguistic brain areas associated with mentalizing 

and social cognition. In a more recent study, Harpainter et al. (2020) studied brain activation 

patterns for visual and motor abstract concepts such as beauty and fight [33]. In line with the 

grounding of representation framework, their results suggest some categories of abstract 

concepts benefit from a similar grounding mechanism to concrete concepts. Middle-ground 

theories, however, consider that both amodal and grounded content contribute to the 
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representation of abstract concepts. For instance, Dove’s representation pluralism ([34–36] 

see also [2] and [37] for a review) represents just such a hybrid approach, according to which 

abstract concepts activate both linguistic and modality-specific features. 

Picture priming paradigms in the study of abstract concepts 

The representation of abstract concepts in situations and contexts has been further 

investigated in recent years [25,29,30]. More recently, McRae, Nedjadrasul, Pau, Pui-Hei Lo 

and King (2018) presented abstract target words primed by pictures depicting scenes either 

related or unrelated to the target words [38]. For example, the concept discipline was primed 

by the picture of students lined up. When target words were preceded by related pictures, 

lexical decision latencies were shorter than when unrelated pictures were shown. Such results 

support the assumption of extraction of situational features in abstract concept processing.  

In another recent study, Kuipers, Jones and Thierry (2018) used a similar priming 

paradigm, but with abstract picture primes, which lack tangible situational features [39]. The 

results showed shorter manual latencies and a smaller N400 amplitude in the EEG data for 

related abstract picture-word pairs than unrelated ones. The authors inferred that the abstract 

pictures conveyed the same meaning as the abstract words. The fact that abstract images 

devoid of situational context elicited an activation pattern similar to the abstract concepts they 

primed suggests the need for further investigation of the mechanisms involved in abstract 

concept processing. 

The present study 

After norming the abstract picture-word pairs from Kuipers et al. (2018) with French 

participants, we replicated their study in French in a first experiment to make sure their 

findings remained valid in a cross-linguistic setting. In a second experiment, we expanded on 
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their study by comparing abstract picture primes to concrete ones within the same experiment 

[39]. For the first experiment, we expected to find the same facilitatory effect as in English, 

with shorter manual latencies for related abstract picture-word pairs than for unrelated ones. 

In a second experiment, we compared concrete picture primes allowing for situational 

grounding to abstract picture primes composed of intangible features. For this second 

experiment, in which concrete and abstract picture primes were presented together we also 

expected shorter latencies for related picture-word pairs than for unrelated ones in the 

concrete picture condition. However, and in line with the previously discussed role of 

situational features in the representation of abstract concepts, we expected this facilitatory 

effect to be limited to concrete picture primes, insofar as they allow for a more tangible form 

of situational or contextual information, and to disappear in respect of abstract picture primes 

(see [38]). Tangible features, as opposed to intangible ones, should allow for easier processing 

[40]. We expected that when presented with both types of features the participants would 

develop a strategy by allocating more resources to extracting tangible features, to the 

detriment of intangible ones.  

Experiment 1 

MATERIALS and METHODS 

Participants 

The same number of participants were tested in Experiment 1 as were tested by 

Kuipers et al. (2018) [39]. Twenty native French speakers from Université Clermont 

Auvergne, France, took part in this experiment (4 males; Mage = 24, SD = 3). All participants 

were right-handed with corrected-to-normal vision. They all gave their informed written 

consent before taking part in the study. They were rewarded for their participation with a 10€ 
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gift card. The study was approved by the local ethics committee (Comité d’éthique de la 

Recherche IRB-UCA).  

Materials 

The material used in Experiment 1 was crafted on the basis of the norming study 

described hereafter. For Experiment 1, the purpose was to create a set of semantically related 

and unrelated picture-word combinations based on the stimuli used in [39]. We obtained the 

abstract images and words collected for their study by contacting the authors. The materials 

consisted of 100 abstract images, each paired with one related and one unrelated abstract 

word. We translated the words into French and submitted the picture-word combinations to a 

group of 166 French participants (56 men, Mage = 21.7, SD = 4.6) using Qualtrics (2020) in a 

preliminary study. As in Kuipers et al. (2018), participants were asked, “How strongly does 

the word below match the above picture?” (on a scale of 0 to 10) [39].  We kept only the 71 

picture-word combinations that elicited the highest scores for the related conditions, and those 

that elicited the lowest scores for the unrelated conditions (MRelated = 6.5, SD = 1.0; 

MNon_Related = 2.2, SD = 1.1; t(70) = 21.6, p < 0.001, d = 2.6, 95CI [2.1-3.0], see Figure 1 for 

an example of combination).  

Procedure 

Experiment 1 used exactly the same procedure as Kuipers et al. (2018), except that we 

recorded only reaction times, and not EEG. We presented abstract image-word combinations 

that were either semantically related or unrelated (see Figure 1 for example stimuli) [39]. Both 

the related and unrelated modalities were presented in a within-subjects design. Stimuli were 

presented using E-prime software v2.1 on a 15-inch Dell PC colour monitor with a refresh 

rate of 60 ms and connected to an AZERTY keyboard. Participants were seated at a distance 
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of 50 cm from the monitor.  Each trial began with a fixation cross, displayed in the middle of 

the screen for 300ms followed by an abstract picture that remained on the screen for 5000ms. 

The fixation cross was then replaced with an abstract target word, which stayed on the screen 

until the participant answered, or until 5000ms had elapsed. The participant’s task was to 

indicate, using the D and K keys on the AZERTY keyboard, whether the target word was 

semantically related or unrelated to the previous picture. Response latencies were recorded, as 

well as accuracy. The experiment took approximately 20 minutes to complete.  

 RESULTS 

Reaction times 

Latencies > 3 SDs above or below each participant’s mean latencies for each condition 

were excluded from the analyses (less than 2% of the data). Mean correct latencies were 

analysed by means of a one-sided paired-samples t-test testing the same directional hypothesis 

as Kuipers et al., (2018). We conducted analyses within a Bayesian framework relying on 

prior specification of theoretical knowledge which includes effect sizes and the direction of 

hypotheses [33], see also [41]. The analysis revealed an effect of Target Word Type with 

shorter latencies for the related pairs than the unrelated ones (MRelated = 1411 ms; SD = 429; 

MNon_Related = 1529 ms; SD = 464; Mean Difference = 118 ms; 95CI [21, 214]; t(19) = 2.55, p 

= 0.01, Cohen’s d = 0.57, see Figure 2). We conducted a Bayesian paired-samples t-test using 

JASP [42]. For the informed prior we used Oosterwijk’s recommendation (t-distribution with 

location 0.350, scale 0.102, and 3 degrees of freedom), because it is considered a good prior 

for small-to-medium effect sizes (see [43]). This analysis showed a Bayes Factor of 10.93 

(median = 0.39; 95CI [0.19-0.67]). This means the results are about 11 times more likely 

under the alternative hypothesis compared to the null. Taken together, the Bayesian analyses 
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show substantial to strong support for the finding that abstract images can elicit a semantic 

priming effect [44].  

Yet, this effect is somewhat surprising and rather counter-intuitive with respect to the 

role of situational grounding in concept representation. We therefore conducted 

supplementary analyses in a Bayesian replication framework to test for the robustness of such 

an effect. To that end, we applied a Replication Test in Rstudio [45] (ReplicationBF package 

[46]) which can be used to assess the success or failure of a replication attempt by testing 

whether the effect identified in previous studies is present or absent in the replication attempt 

[46], whether the effect size in the replication is equal to that found  in the original study [47], 

and whether the effect is present when the data are pooled in a meta-analysis [48]. The 

replication test relies on sample sizes and t-values and requires no specification of a prior 

distribution, thus escaping the influence of a researcher’s choice of priors, but it uses the 

posterior distribution of the original study as a prior for the replication attempt ([49,50] but 

see [51]). The results of the replication tests are reported in the supplementary analyses. For 

the equality-of-effect size Bayes factor, support for the null hypothesis, according to which 

there is no difference between effect sizes, is indicative of a successful replication. The tests 

provided substantial support for the equality of effect sizes (Equality B01 ≈ 5; see Table A.1), 

with the fixed-effect meta-analysis Bayes factor test showing strong support for the presence 

of an overall effect (Meta B10 ≈ 30). Finally, the new Bayes factor for replication shown in 

Figure A.1 indicates that the results are about 12.5 times more likely under the proponent’s 

hypothesis that the effect is consistent with the one found in the original study as opposed to 

the sceptic’s hypothesis that the effect is spurious [46].  
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Errors 

A paired-samples t-test showed no effect of Target Word Types for the errors (t(19) = 

0.14; p = 0.90 ns).  

DISCUSSION 

The aim of Experiment 1 was first to extend the replicability of Kuipers et al. (2018) 

to another language before considering expanding it in a follow-up experiment [39]. As in the 

study by Kuipers and colleagues, we obtained shorter latencies for related combinations than 

for unrelated ones. They interpreted their results in terms of meaning processing and 

concluded that it was possible that abstract pictures can convey the same meaning as lexical 

abstract concepts. Given the counter-intuitive results obtained by Kuipers et al. (2018), 

especially given the important role of situational information, we decided to conduct Bayesian 

analyses [46], the results of which provided strong evidence in favour of Kuipers and 

colleagues’ alternative hypothesis, according to which abstract pictures can convey the same 

meaning as abstract concepts. Furthermore, we conducted a supplementary replication test to 

ensure our attempt at replication was successful. We demonstrated therefore that the effect of 

picture-word priming using abstract pictures could be replicated in a cross-linguistic setting 

using different abstract images. Despite our analyses confirming the evidence uncovered by 

Kuipers and colleagues we do not rule out other possible interpretations (see General 

Discussion).  Having confirmed the replicability of a study using such stimuli, we are now 

keen to expand Experiment 1 in a paradigm that would allow abstract concepts to be extracted 

from situational pictures. Experiment 2 aimed to implement such a paradigm. To that end, we 

kept the abstract priming pictures from Experiment 1 and added a condition for which 

participants were presented with concrete priming pictures that provided situational 

information. 
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Experiment 2 

MATERIALS and METHODS 

 

Participants 

An independent group of 90 students from Université Clermont Auvergne who met the 

same criteria as for Experiment 1 took part in Experiment 2 (18 males; Mage = 20.2; SD = 

2.86). They all gave their informed written consent before taking part in the study. The study 

was approved by the local ethics committee (Comité d’éthique de la Recherche IRB-UCA).  

Materials 

The materials used for Experiment 2 were the result of a second norming study. The 

purpose of the norming study for Experiment 2 was to find corresponding concrete images for 

each picture-word combination in Experiment 1. To that end, we searched online databases 

for images likely to elicit the same meaning as the abstract words. For each word, we selected 

two potential images which we then submitted to an independent group of 146 French 

participants (38 men, Mage = 22.4, SD = 5.6) using Qualtrics. Participants were asked, “How 

strongly does the word below match the above picture?” (on a scale of 0 to 10). Picture-word 

combinations that obtained a low score (< 5 on a scale of 0 to 10) for both image options were 

discarded. The remaining 56 stimuli combinations (abstract/concrete image-related/unrelated 

word) were used in Experiment 2 (see Figure 1 for an example of stimuli).  

 Procedure 

We used a similar procedure as for Experiment 1, but expanded it with 2 within-

subjects variables: Priming Image Type (abstract vs. concrete) and Target Word Type (related 
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vs. unrelated). The stimuli were divided in a Latin square with 4 modalities: abstract prime 

images, concrete prime images, semantically-related target words and unrelated target words. 

Following this Latin-square design, the pictures were divided into two lists so that each 

picture presented in the related condition to participant 1 was also presented to participant 2 in 

the unrelated condition. Participants were exposed to all variables but saw only one of the 4 

possible types of picture-word combination for each stimulus (see Figure 1 for an illustration 

of the trial procedure with an example of stimuli). 

   

Figure 1. Trial procedure for the concept royalty (“royauté” in French).  

Note. For this concept, each participant was exposed to either the abstract or the concrete image prime 

followed by the related or unrelated target word. The trial procedure for Experiment 1 consisted of 

only the abstract images paired with related or unrelated words, whereas Experiment 2 also had 
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concrete images in addition to the abstract pictures. The abstract image stimulus is a fractal created by 

Sven Geier (http://www.sgeier.net/fractals/fractals/07/The%20Road%20Ahead.jpg) and the concrete 

image stimulus is a coronation picture credited to the National Film Board of Canada. Photothèque. 

Library and Archives Canada, PA-196667; CC BY 2.0; https://tinyurl.com/pxfvv8p7). 

 

RESULTS 

Reaction times 

Latencies > 3 SDs above or below each participant’s mean latencies for each condition 

were excluded from the analyses (i.e. ~ 2% of the total data). Data from 3 participants were 

discarded based on z-scores that showed very slow RTs in all conditions (z-scores > 2.99). 

The following analyses are based on the data from 87 participants.   

Mean correct latencies are presented in Figure 2. Mean correct latencies were analysed with a 

2(Priming Image Type = Concrete vs. Abstract) * 2(Target Word Type = Related vs. 

Unrelated) repeated measures ANOVA.  

This analysis revealed a main effect of Priming Image Type with shorter latencies for 

concrete images compared to abstract images (respectively, MConcrete_Image = 1183 ms; SD = 

357; MAbstract_Image = 1338 ms; SD = 383; Mean Difference = 116 ms; 95CI [80, 152]; F(1, 86) 

= 40.65, p < 0.001, ɳp² = 0.32). The results also showed a main effect of Target Word Type 

with shorter latencies for the related targets compared to unrelated targets (MRelated = 1144 ms; 

SD = 346; MNon_Related = 1300 ms; SD = 372; Mean Difference = 193 ms; CI [145, 241]; F(1, 

86) = 63.74, p < 0.001, ɳp² = 0.43 ). The results showed an interaction effect between Priming 

Image Type and the Target Word Type (F(1, 86) = 70.48, p < 0.001, ɳp² = 0.45). Contrast 

analyses were conducted to investigate this interaction further. There was a significant effect 

of word type within each level of image type, with shorter latencies for the related targets 

compared to unrelated targets for the abstract images (MAbstract_Related = 1265; SE = 40; 95CI 

http://www.sgeier.net/fractals/fractals/07/The%20Road%20Ahead.jpg
https://tinyurl.com/pxfvv8p7
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[1185, 1344]; MAbstract_NonRelated = 1334; SE = 40; CI [1255, 1414]; t(86) = 2.33; p = 0.011; d = 

0.3; CI [0.04, 0.5]) and concrete images (MConcrete_Related = 1025; SE = 34; CI[957, 1093]; 

MConcrete_NonRelated = 1341; SE = 42; CI [1258, 1426]; t(86) = 12.00; p <  0.001; d = 1.3; CI 

[0.99, 1.56], see Figure 2). The semantic facilitatory effect was therefore present for both 

types of prime stimuli.  

 

Figure 2. Mean correct latencies (in ms with standard error bars) for Type of Image Prime 

and Type of Target Word (R = related pairs; NR = non-related pairs; **p = 0.01; ***p < 

0.001) in both Experiments 1 and 2.  

A Bayesian repeated measures ANOVA compared four models to the null model. We 

kept the default JAPS prior for fixed effects (r scale prior width = 0.5; [47,48]). Based on 

Bayes Factors, the model including only the types of priming images was 5770 times more 

likely than the null model. There is therefore strong evidence for the type of prime model. 

There was also strong evidence for the model including only the type of word target (BF = 

1.902x1013), for the model including both main effects (BF = 2.990x1018), and for the 

interaction model (BF = 2.551x1025). Finally, we compared the main effects model to the 
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interaction model (2.551x1025/ 2.990x1018 = 8.533 x106; based on the Baws Factor suggested 

by Mathôt, 2017 [52]) and obtained strong evidence for the interaction model. 

We used a Bayesian paired-samples t-test to explore this interaction, with an informed 

prior following Oosterwijk’s recommendation. The analysis showed a Bayes Factor of 7.67 

(median = 0.30; CI [0.13, 0.45]) in favour of the alternative hypothesis for the difference 

between related and unrelated target words in the abstract picture primes condition, and a 

Bayes Factor of 4.42x1015 (median = 1.19; CI [0.89, 1.48]) in favour of the alternative 

hypothesis for the difference between related and unrelated target words in the concrete 

picture primes. These Bayesian analyses concur with the ones obtained from traditional 

paired-samples t-test and confirm substantial evidence for the effect of the abstract picture 

primes and extreme evidence for the concrete ones.  

Errors 

Given the difficulty of the task, especially concerning the abstract image condition, we 

expected larger rates of errors overall, but more specifically for the abstract image primes. 

Indeed, a repeated measures ANOVA revealed a main effect of Priming Image Type with a 

higher percentage of errors for the abstract images compared to the concrete images 

(MAbstract_Image = 29%; SD = 16.5; MConcrete_Image =12%; SD = 10; F(1,87) = 189.87, p < 0.001, 

ɳp² = 0.69). As for Experiment 1, the results showed no main effect of Target Word Type. 

DISCUSSION 

Experiment 2 expanded on Experiment 1 by comparing abstract to concrete pictures 

priming abstract lexical concepts. We opted for a semantic, as opposed to a lexical decision 

task given that Recchia and Jones (2012) suggested the latter did not yield deep semantic 
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processing and therefore accounted for the discrepancies between results in the abstract 

concept processing literature [53]. Recognising this might be a concern, however, we checked 

for such surface features based on analyses of emotional valence in an additional study. We 

presented the pictures to an independent pool of 49 participants online and asked them to rate 

the emotional valence of the pictures on a scale of 0-10. We then used this valence variable in 

a post-hoc analysis and found it failed to explain the variance in latencies for semantic 

priming (based on a repeated measures ANOVA (F(2, 48) = 1.76 ; p = .19 ns)). Based on this 

analysis we can rule out a shallow picture-word association based only on surface physical 

features. 

This facilitatory effect was significantly stronger for concrete pictures than for abstract 

ones. However, it was weaker in relation to Experiment 1, although it did not disappear for 

abstract pictures.  

This result expands on those obtained by Kuipers et al. (2018), showing that abstract 

concepts can be processed on the basis of abstract and concrete pictures alike and more 

broadly from tangible and intangible features. The Bayesian models provide decisive 

evidence in favour of the alternative hypothesis of semantic priming. The error rates obtained 

were quite high compared to traditional effects in the semantic priming literature. We were 

not surprised by these rates, however, as the task was more difficult in comparison to 

traditional priming studies. We asked Kuipers et al. (2018) for the error rates for their study 

(27% error rates for the related and 31% for the unrelated items), which confirmed our 

intuition that such stimuli would elicit higher error rates compared to more traditional 

semantic priming studies.  

 



166 
 

GENERAL DISCUSSION 

The aim of the present studies was to investigate conceptual processing mechanisms 

based on picture-word combinations in terms of the role of situational features compared to 

intangible abstract features. 

In the first experiment and in line with Kuipers and colleagues, we investigated 

conceptual processing mechanisms in relation to abstract pictures. The results showed 

participants were able to process concepts from abstract pictures devoid of tangible features 

(therefore replicating Kuipers et al., 2018 results and extending them to the French language). 

To the best of our knowledge, Kuipers et al. (2018) were the first to provide evidence that 

abstract pictures can activate the meaning of abstract concepts. The data of Experiment 1 

which was analysed using a Bayesian replication framework, corroborated their findings. This 

fact alone broadens the scope of conceptual representation beyond the usual debate of 

linguistic vs. situational features (see for e.g., [14,25,34]). It also goes to show that abstract 

concepts are even richer and activate features beyond their linguistic or situational 

components [53].  

In a second experiment, we gave participants an opportunity to extract situational 

features (see also [38]). Results showed a stronger facilitatory effect for concrete picture-

words pairs compared to abstract ones. Participants relied more heavily on the priming 

pictures with distinguishable features. Our results support previous findings according to 

which some types of abstract concepts are grounded in situations and events [25,32,40].  

From the evidence from the two experiments, it appears that is possible to represent 

abstract concepts based on abstract and intangible pictures as well as on concrete and tangible 

ones. McRae et al. (2018) showed that in a picture-priming paradigm similar to our “concrete 

images” condition, participants could process the meaning of abstract concepts derived from 
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pictures depicting scenes. Kuipers et al. (2018) showed how this processing could also be 

derived from abstract pictures that differ from the stimuli used by McRae and colleagues 

because they are devoid of tangible features. In the present study, and based on the 

assumption that it is costlier to extract intangible features when tangible ones are available, 

we showed that extraction mechanisms still occurred in the case of abstract pictures.  

The immediate interpretation of these results refers to how Kuipers and colleagues and 

McRae and colleagues interpreted meaning processing based on tangible and intangible 

features. This initial interpretation infers that there is a semantic level of processing and 

implies a featural view of semantic representation according to which concepts can be broken 

up into a set of defining features that represent their meaning (see [54] for an account of the 

featural view). If confirmed, this assumption would mean such features can be other than 

lexical or situational, namely also abstract and intangible.  

For instance, Bolognesi and Vernillo (2019) proposed ‘Abstraction by Metonymy’ as a 

novel grounding mechanism for abstract concepts in the pictorial mode, where they use 

verbo-pictorial metaphors to investigate people’s ability to illustrate abstract concepts [55]. 

According to their hypothesis, this abstraction process allows for an inferential mechanism 

that moves from concretely depicted entities to more abstract ones. In the present studies, the 

reverse mechanism seems to have occurred. It might be that in the abstract image condition, 

participants extracted intangible features and inferred a more tangible representation of the 

concept. Therefore, these results could be construed as complementing the Abstraction by 

Metonymy.  

In conclusion, by directly comparing the two types of features for representation, we 

were able to show that abstract concepts can be processed based on situational features and 
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abstract ones. For us, these conclusions signal the need to explore further the mechanisms of 

concept representation and abstraction. 
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Appendices: supplementary analyses 

Table A.5. Results of the Bayesian Replication Test. 

 BFr0 Equality B01 Meta B10 

Original  N/A N/A  

30.3 

   Replication  12.5 5.0 

Note. “Rep Br0” is the new Bayes factor test for replication; “Equality B01” is the equality-of-

effect-size Bayes factor test; and “Meta B10” is the fixed-effect meta-analysis Bayes factor 

test. 

 

 

 

Figure A.1. Results of the Bayes factor replication test applied to our replication attempt 

based on Kuipers et al. (2018).  

Note. The dotted line represents the posterior from the original study, which was used as the prior for 

the effect sizes in the replication tests. The solid line represents the posterior distributions once data 
from the present replication attempt have been taken into account. The grey dots indicate the ordinates 

of this prior and posterior for the null hypothesis according to which the effect size is zero. The ratio 

between these two ordinates gives the result of the replication test [46]. 
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The previous chapter introduced a series of experiments which compared the role of 

situational information with intangible features in the processing of abstract concepts. Results 

have shown that even when compared with situational picture primes, extraction mechanisms 

still occurred in the case of abstract pictures. We interpreted these results as further evidence 

of the richness of abstract concepts which can be composed of features other than lexical or 

situational, namely also abstract and intangible. These intangible features could be construed 

as evidence of abstracted representations from varied exemplars of concepts becoming 

generalised statistical traces in long-term memory (see for example Barsalou, 2003).  In this 

context, we draw the distinction between two dimensions of abstraction, one referring to a 

form of content, the other to a mechanism. The first dimension is a horizontal abstraction that 

refers to the type abstract concepts such as ‘justice’. The abstraction in this case refers to the 

featural content of the concept. The second dimension is vertical and refers to a mechanism of 

generalisation through abstraction in concept learning tasks for instance. As such, abstraction 

refers to the process of extracting features across multiple instances of a concept so that 

common features can be generalised to novel instances. The question of concept processing is 

closely related to the latter mechanisms of abstraction and generalisation. 

 In the next chapter, we introduce a database of novel abstract concepts in a series of 

experiments to investigate the effect of similarity and contextual diversity on the ability to 

generalise the meaning of abstract concepts to all instances. An important question that we 

aim to address is what would be the optimal set of training exemplars to learn a concept so 

that it generalises to new exemplars. In the case of similarity-based generalisation, 

participants are expected to better generalise the meaning of concepts when exposed to similar 

exemplars. In contrast, contextual diversity assumes a generalisation of meaning to novel 

instances based on exposure to contextually diverse exemplars. Results have shown that 
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exposure to contextually diverse exemplars enhanced performance in the testing phase 

compared to similarity-based exposure.  
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Chapter 6. Generalisation mechanisms in the processing of 

abstract concepts 

Chapter 6 is in preparation as Lakhzoum et al. (in preparation). Generalisation mechanisms 

in the processing of abstract concepts. 

Supplementary material: https://osf.io/svm2p/ 

 

INTRODUCTION 

The question of how concepts are represented is impossible to treat without addressing 

mechanisms of abstraction and generalisation. Abstraction refers to the process of extracting 

features across multiple instances of a concept so that common features are given more 

weight in the representation of meaning compared to idiosyncratic features (see Murphy, 

2002; Glenberg, 2006; Altmann, 2017; Yee, 2019). The resulting abstracted representations 

can be generalised to all instances of a concept that become aggregated under a common 

categorisation label (Thorndike, 1924; Thorndike & Woodworth, 1901, see also Gardner, 

1987; Goldstone, Kersten, Carvalho & 2018). This ability to extract meaningful 

representations from a few exemplars and generalise to novel situations is the hallmark of 

human cognition. During the last decade, this feat has been emphasised especially when 

comparing human performances to those of computational models, which are constantly 

outperformed due to their failure to implement efficient rules of generalisation (see Cambria, 

& White, 2014 for a review). Since the early 20th century, this particular cognitive ability has 

been the object of much work in the concept learning literature focused on abstraction 

mechanisms. Yet, despite more than a century worth of research, the cognitive principles that 

give rise to such mechanisms are still poorly understood. In order to elucidate these 
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principles, two major questions need to be answered: (1) What sort of features are acquired 

during the learning of concepts through exposure to a set of exemplars? (2) How are these 

features generalised to novel instances? As Murphy (2013) observed, the literature on concept 

learning is still dominated by the debate opposing prototype and exemplar models of 

abstraction as it has been for decades. This debate has been fuelled by many experiments and 

models that simulate the categorisation of concepts as the result of an abstraction process.  

The prototype and exemplar accounts  

According to the prototype theory of Rosch (1975; Rosch & Mervis, 1975; see also 

Barsalou, 1990), mental representations require a summary description of fundamental 

properties that form a category. The categorisation of concepts is determined by their 

similarity with the most prototypical member or ideal example of the category. In a series of 

priming experiments, Rosch showed a facilitation effect for members of categories that had 

the most properties in common with other members of the category and the least properties in 

common with other categories (Posner & Keele, 1968; Hampton, 1979; Rosch & Mervis, 

1975; Smith & Medin, 1981; Murphy, 2002; 2016). 

Exemplar models are an alternative theory according to which prototypes are not 

necessary. According to exemplar theories, categories are represented by memories of 

instances and situations where the concept applies (Medin & Schaffer, 1978). Generalisation 

based on exemplars offers a better explanation compared to prototypes especially for poorly 

defined categories (Blair & Homa, 2001; Medin & Schwanenflugel, 1981; Murphy, 2002; 

2005). The probability of generalising a category label from encountering a set of examples is 

a function of the similarity between the examples and each member of the category (Medin & 

Schaffer, 1978; Nosofsky, 1986). A child that would encounter three instances of a bird and 

recognise it as such would have formed three “bird” exemplars that can be generalised to all 

instances and serve for classification (Barsalou, Huttenlocher, & Lamberts, 1998; Nosofsky, 
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1988). One of the most influential models of the exemplar account is the GCM (generalised 

categorisation model) of Nosofsky (1986). In the GCM, similarity is modelled according to a 

multidimensional scaling (MDS; see Kruskal, 1984; Shepard, 1958; 1987) that represent 

exemplars as points in a multidimensional psychological space. Similarity is a function of the 

distance between exemplar points: the closer they are, the more similar. In recent years, 

Vanpaemel and Storms (2008) proposed the VAM (varying abstraction model) as a middle-

ground position that combined both the rich amount of stored informational features from the 

exemplar account and the cognitive economy of the prototype account. The model is rooted in 

the assumption that protype and exemplar exist on a continuum where exemplars represent 

minimal abstraction whereas prototypes represent maximal abstraction.  

This notion of a dichotomy between exemplar account and abstraction process has 

been challenged by recent models and experiments which suggest that both assumptions of 

storing exemplars and abstraction process are not contradictory. For instance, studies of 

concept learning in children have shown that they develop more abstract representation as 

their language grows until they are able to generalise across common features of meaning 

(Savage, Lieven, Theakston & Tomasello, 2006; Rowland, Chang, Ambridge, Pine & Lieven, 

2012). In addition, hybrid models posit that abstracted representations are composed of stored 

exemplars (Abbot-Smith & Tomasello, 2006; Goldberg, 2006; Langacker, 1988). 

Most of the literature on concept learning and abstraction has been dedicated to 

learning generic concepts such as lines, triangles, faces that are easier to generate, to norm 

and to diversify along chosen dimensions which provides the researchers with an opportunity 

to simulate the underlying mechanisms in a computational model such as GCM or VAM for 

instance. The combination of word learning experiments and concept learning can provide a 

powerful framework for studying how semantic concepts are abstracted and generalised. Most 

of the literature points to seemingly opposite assumptions to explain these mechanisms 
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namely similarity-based generalisation and contextual diversity. One view proposes that 

generalisation happens when the set of training exemplars of a category are relatively similar; 

the other view proposes that generalisation happens when the set of training exemplars is 

relatively diverse. 

The role of similarity and contextual diversity on abstraction and generalisation  

Similarity-based generalisation 

Similarity is one of the core tenets of cognitive processes (Medin, Goldstone & 

Gentner, 1993; Goldstone, 1994; Goldstone & Son, 2012). The seminal work of Gentner 

(1987) established similarity as a key parameter of a successful generalisation process. 

According to this account, similarity refers to a mental experience sparked by a current 

situation similar to a prior experience stored in memory. Gentner, Loewenstein and Hung 

(2007) tested this similarity principle in children’s ability to name parts of objects and found 

that children showed a facilitated process of structure-mapping when presented with set of 

similar exemplars. Structure-mapping refers to a process of finding commonalities between 

conceptual representations based on relational similarities through structural alignment 

(Gentner, 2003; Gentner & Markman, 2007). Gentner has shown that this alignment can 

strengthen the ability to generalised extracted common relational features to novel objects and 

situations (Gentner & Namy, 2016; Gentner, 2010; Gentner, Anggoro, & Klibanoff, 2011; 

Gentner, Loewenstein, & Hung, 2007; Kotovsky & Gentner, 1996).  

The benefit of similarity in generalisation depends on the weight attributed to shared 

underlying structure at the expense of variations in superficial features (Braithwaite & 

Goldstone, 2015; Hammer, Bar-Hillel, Hertz, Weinshall, & Hochstein, 2008). Other accounts 

have shown that a high degree of similarity between stored exemplars can hinder the ability to 

generalise to new instances of a concept. This can be explained by a failure to recall relevant 

examples particularly when stored exemplars and the novel instance differ in surface features 
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(Gick & Holyoak, 1980; Keane, 1988; Holyoak & Koh, 1987; Simon & Hayes, 1976; 

Weisberg, DiCamillo, & Phillips, 1978; Gentner, Loewenstein & Thompson, 2003; Gentner 

& Bowdle, 2008; Braithwaite & Goldstone, 2015). Studies have shown that exposure to 

exemplars presenting a diversity of superficial features can emphasise common underlying 

structures, thereby promoting generalisation (Gomez, 2002; Onnis, Monaghan, Christiansen, 

& Chater, 2004; Perry, Samuelson, Malloy and Schiffer, 2010; Rost & McMurray, 2010). In 

recent years, many studies have reported the importance of contextual diversity on the 

representation and abstraction of semantic concepts (see Jones, Dye, & Johns, 2017 for a 

review). 

Contextual diversity and generalisation 

The importance of diversity for generalisation stems from the work of Posner and 

Keele (1968) on the classification of abstract patterns. They have shown that when learning a 

set of abstract patterns, the ability to classify new instances correctly increases with the 

variability of memorised patterns. More broadly, the hypothesis of generalisation from stored 

exemplars to novel instances assumes a presentation of common core features between 

exemplars while idiosyncratic surface features may vary (Belenky & Schalk, 2014; Day & 

Goldstone, 2012; Gentner, 1983; Gick & Holyoak, 1983). In this way, stable concept 

representations rely on a common core of overlapping features while varied superficial 

surface features become anecdotic information. This assumption also insures the flexibility of 

conceptual representations as learners become able to overlook such anecdotic features as 

noise and recognise the core meaning of a concept (see Braithwaite & Goldstone, 2015).   

Context generalisation studies have shown that children exposed to multiple exemplars 

of novel words across varied contexts can better abstract over training examples and 

generalise meaning to novel test exemplars (Vlach & Sandhofer, 2011; Goldenberg & 

Sandhofer, 2013; Twomey & Westermann, 2018, Sandhofer & Schonberg, 2020). Smith and 
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Handy (2014) examined the decontextualization of memories in adult learners and found that 

acquisition trials presented in varied situations resulted in memory retrieval independently of 

context. Braithwaite and Goldstone (2015) built on the assumptions that learning abstract 

concepts through concrete examples could inhibit abilities to generalise to novel instances. In 

a series of experiments, they showed that varying superficial features of exemplars resulted in 

better transfer abilities from learned examples to new situations.  

Finally, Pagan and Nation (2019) examined the effect of contextual diversity in a word 

learning experiment where participants had to learn the meaning of low-frequency words 

through exposure to varied or similar situations. They found that although words presented in 

diverse contexts were acquired more slowly, participants had more facility answering 

inferential questions about word meaning compared to similar contexts which they interpreted 

as better performances of generalisation.  

 Taken together, the literature centered on similarity and contextual diversity provides 

inconsistent evidence as regards to the underlying mechanisms involved in abstraction and 

generalisation in concept learning. Most of the literature is centered on the use of generic 

concepts such as faces, triangles and dot patterns. Consequently, there is little evidence as 

regards to the generalisation mechanisms of semantic concepts. This is even truer for abstract 

concepts such as fantasy or justice.  

Application to the generalisation of abstract concepts 

The variety and complexity of abstract concepts makes them difficult to classify in 

categories with clear-cut boundaries. This complexity represents even more of a challenge 

mainly due to the fact that the literature on abstract concepts is rather young and the majority 

of studies and models have been dedicated to their representation and grounding (see Pecher, 

2011; Borghi et al., 2017; Pecher, 2011, 2018 for reviews). Studies have shown that the 
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preferred mechanism of abstraction depends on the structure of the category. For instance, 

Minda and Smith (2001) have shown that the prototype account provides a better explanation 

for large categories. In contrast, Feldman (2003) suggests that the exemplar account provides 

a better explanation for complex categories. Instead of categories, the literature on abstract 

concepts representation has established some domains which are number concepts, morals, 

aesthetics, social and cultural dimensions, as well as emotion that can be grounded in 

dimensions such as sociality, language, interoception, perception-action, and metacognition 

(see Barsalou, 2003; Borghi, Barca, Binsofsky & Tummolini, 2018 for a review of these 

domains and dimensions of abstract concepts). As a result, little is known about how abstract 

concepts are generalised to all instances of a concept. Given this complexity and lack of clear 

categorisation for abstract concepts, we suggest that the exemplar end of the exemplar-

prototype continuum would provide a better explanation for their mechanisms of 

generalisation than a prototype view would (see Vanpaemel & Storms, 2008). According to 

Paivio’s Dual Coding Theory (DCT, 1968, 1971), abstract concepts are more loosely related 

to a multitude of contexts compared to concrete concepts. Taken together the exemplar view 

and the DCT would suggest that the generalisation of abstract concepts could benefit from 

exposure to multiple exemplars in diverse contexts. 

The present work 

The combination of word learning experiments and concept learning models provides 

a powerful framework for studying how semantic concepts can be generalised to all instances. 

While this framework has been applied successfully to studying the abstraction mechanisms 

of concrete objects, very little is known about how abstract concepts are abstracted and 

generalised. The present project was intended as an attempt to bridge this gap in the literature.  

The literature on conceptual representation tends to consider the keywords “concept” 

and “word” as interchangeable on principles (Murphy, 2002). This is not strictly true however 
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and a distinction does exist between the two notion (Murphy, 2002). A conceptual view based 

on a strict one-to-one mapping between words and concepts would mean that for each mental 

representation there is one and only one word and that each word of the mental lexicon is 

associated with a single mental representation. This view of one-to-one mapping between 

concepts and words is oversimplified and impractical as it cannot account for the complexity 

of abstract concepts. On the theoretical and empirical levels, this distinction is of little 

importance to the ability of researcher to design and conduct experiments. It becomes 

important in the context of the present project however, which takes advantage of this lack of 

one-to-one mapping between words and concepts to introduce the NewAbstractConcepts 

database. This database was motivated by the difficulty to craft experimental stimuli for word 

learning experiments in adults. In contrast with children, adults present a vast knowledge of 

concepts. Introducing concepts that have no word referent provides some control of 

participants’ background knowledge compared to previous studies that have used existing 

low-frequency words (see for example Pagan & Nation, 2019).  

In the present project, we introduce a database of 42 novel abstract concepts which 

describe situations that are commonly encountered in an everyday setting but for which no 

word label exists. Each abstract concept is composed of 9 exemplars of scenarios (3 sets of 

scenarios composed of 3 exemplars each). The database was presented to participants who 

rated the similarity between exemplars. On the basis of these similarity judgments, a 

psychological space similar to GCM model of Nosofsky (1986, 1992, 2014) was built. This 

attempt aimed to establish a proof of concept for the use of semantic concepts composed of 

linguistic exemplars in computational models such as GCM that are usually applied to generic 

concepts. The database was then used in a word learning experiment for which participants 

were exposed to a series of exemplars that were either similar or dissimilar to each other. 
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EXPERIMENT 1a: selection of the NewAbstractConcepts database 

To create the database, samples were selected from the book That should be a word by author 

Lizzie Skurnick (Skurnick, 2015). The book is a collection of fake words and their definition 

that correspond to situations and feelings that people can relate to on an everyday basis but 

that do not have words to label them. For instance, one such word is JOUSKA coined by 

Skurnick (2015) and which described A hypothetical conversation that you compulsively play 

in your head. The samples were presented to participants in Experiment 1a in order to ensure 

that people could relate to the concepts.  

METHOD 

Participants 

Eighty psychology students took part in this experiment (6 males; Mage = 20.55, SD = 4.99) 

presented online using Qualtrics (2020). They all gave their informed consent before taking 

part in the study. They were awarded course credits for their participation.  

Materials and Procedure  

The material consisted of 76 concepts with description selected from the book That 

should be a word (Skurnick, 2015). The fake word labels composed by the author such as 

Jouska, Sonder or Gistake were not presented to the participants as they had not been normed 

and could influence the perception of the concepts. Each concept was presented as a 

description of a situation or feeling (e.g., A hypothetical conversation that you compulsively 

play in your head; The realisation that each passer-by has a life as vivid and complex as your 

own; Using incorrect words that still get the point across). 

For each concept, participants were asked to indicate in a forced multiple-choice 

questionnaire whether they had experienced the described situation, or had not experienced 

but could image the situation, or if they could neither relate to nor imagine the situation. They 
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were then asked to provide an example where the described concept could apply in a free text 

entry question to ensure that they understood the concept. Participants were randomly 

presented with 20 out of the 76 concepts. The concepts were presented one-by-one on the 

screen. The study was self-paced and could be completed in about 30 minutes.  

RESULTS and DISCUSSION 

We aggregated the percentage of response from all the participants for each choice. 

According to Figure 1, 80% of responses indicated that the concept had been experienced or 

imagined by the participant. Only 20% of responses indicated that the participant could not 

relate at all to the concept.  

 

Figure 1. Percentage of response for each choice. 

On the basis of this first analysis, the concepts that were not understood by participants were 

removed. The concepts for which at least 25% of the responses indicated that the participant 

could not relate were removed. As a result, 26 concepts out of 76 such as The art of saying 

"no" by seeming overly pleased were removed. In contrast, 7 concepts were judged as 

relatable or understood by all participants such as A hypothetical conversation that you 

compulsively play out in your head or The desire to care less about things. After removing 
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concepts that were the least understood or relatable, the remaining 50 concepts were used to 

generate the database. 

EXPERIMENTS 1b and 1c: generating the NewAbstractConcepts 

database 

For each selected concept, 3 different scenarios where the concept could apply were 

generated. Each scenario was then described by 3 different exemplars of statements that were 

similar to each other. This process resulted in 9 different exemplars to describe each concept. 

For instance, the concept SONDER described as The realization that each passer-by has a life 

as vivid and complex as your own was described by 3 scenarios each of them, illustrated 

exemplars presented in Table 1. For the concept SONDER, the first scenario described a 

stranger on a train; scenario 2 described a colleague who speaks a different language and 

finally scenario 3 described a teacher in a private setting.  

Table 1. Examples of scenarios and exemplars for the concept SONDER. 

Scenarios Exemplars Descriptive statements 

1 A On the train, he looked at the woman in the opposite seat as she opened 

her laptop and wondered what type of work she might do. 

1 B The man on the train was looking at sheet music and humming to himself 

and she thought he might be a musician travelling all over the country to 

give concerts. 

1 C She kept thinking that the woman sitting across the aisle on the train 

might be a scientist because she was studying papers with complicated 

looking graphs. 

2 A Listening to her colleague answer the phone in his mother tongue, she 

suddenly realized that he grew up in a tropical country. 

2 B She heard the office manager talk to his children in a foreign language 

and started daydreaming about how their upbringing might have differed 

from her own. 

2 C When he heard the team manager answer her phone in fluent Japanese, he 

imagined what it was like growing up in the Japanese culture. 

3 A It was strange to see the math teacher in the dairy section but he realized 

that the teacher must have a family too. 

3 B At the concert he became aware of the coach's private life when he saw 

him dressed for a party rather than in his usual sports outfit. 

3 C When the history teacher proudly told them he ran the New York City 

marathon, they knew he must have spent a lot of his free time training. 
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The triplets of statements generated for each scenario were made to provide a within-

scenario similarity. The exemplars were then reorganised by mixing the scenarios to generate 

dissimilar combinations as shown in Table 2.  

Table 2. All combinations for the concept SONDER 

 Version 1 Version 2 

 

Version 3 

similar 1A/1B/1C 2A/2B/2C 3A/3B/3C 

dissimilar  1A/2C/3B 1B/2B/3C 1C/2A/3A 
 

The within-scenarios similarity and between-scenarios dissimilarity were tested in Experiment 

1b using a paradigm of paired similarity judgments.  

METHOD 

Participants 

Seventy-one British native speakers were recruited online using the Prolific platform to take 

part in this experiment (32 males; Mage = 27.01, SD = 5.13) presented online using Qualtrics 

(2020). They all gave their informed consent before taking part in the study. They received 

£2.50 for their participation.  

Materials and Procedure 

The material was composed of the exemplars from 50 concepts organised by pairs that were 

either similar to each other or dissimilar. For instance, for the concept SONDER, the pairs 

were organised as described in Table 3 below so as to obtain 9 pairs in each similar or 

dissimilar condition.  
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 Table 3. Example of similar and dissimilar pairs for the concept SONDER 

 

 

 

 

 

 The material was composed of 900 exemplars that were divided into 16 blocks of 6 or 

7 concepts for a total of 54 to 63 pairs per block (due to some blocks having 1 additional 

concept with 9 more pairs). The concept labels such as SONDER were never shown to the 

participants. The material was divided so that each participant saw only 1 condition for each 

concept either similar or dissimilar. Each participant was randomly assigned to only one 

block.  The order of the pairs within a block was also randomised. For each pair, participants 

were asked to rate on a scale from 0 to 100 to what extent the two statements describe similar 

situations. Pairs of exemplars appeared one by one on the screen. The study was self-paced 

and took about 20 minutes to complete.  

 

RESULTS and DISCUSSION 

The aim of this similarity judgment study was twofold. Firstly, it was designed to 

ensure that the distance between pairs could reflect the similar and dissimilar conditions 

meaning that the similar and dissimilar pairs constructed by the researchers were also judged 

similar and dissimilar by an external pool of participants. Secondly, the similarity judgment 

were embedded in a psychological space that reflected Euclidian distances between exemplars 

(see Shepard, 1991 for a review).  

Similar pairs Dissimilar pairs 

1A-1B 1A-2C 

1A-1C 1A-3B 

1B-1C 2C-3B 

2A-2B 1B-2B 

2A-2C 1B-3C 

2B-2C 2B-3C 

3A-3B 1C-2A 

3A-3B 1C-3A 

3B-3C 2A-3A 
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For the first objective to adjust the database only the concepts that elicited the highest 

similarity ratings for the similar pairs and the lowest ratings for the dissimilar pairs were kept. 

Mean similarity between pairs were analysed to build the similar and dissimilar conditions for 

the whole concepts. For the entire dataset, mean similarity ratings for similar and dissimilar 

combinations were compared by means of a paired-samples t-test. The analysis revealed that 

the constructed similar pairs elicited higher similarity ratings compared to the dissimilar pairs 

(MSimilar = 70.08; SD = 12.28; MDissimilar = 44.74; SD = 6.61; Mean Difference = 25.29; 95CI 

[24, 27]; t(449) = 29.00, p < 0.001, Cohen’s d = 1.32). These results were satisfactory as they 

validated the pairs generated based on the researcher’s intuition. Although this analysis 

provided satisfactory results, a closer examination on a qualitative level of each concept 

revealed that some combinations presented a reversed pattern with dissimilar pairs showing a 

higher similarity rating compared to similar pairs. According to this qualitative examination, 

25 concepts presented a reversed pattern for some combinations. The reversed pairs were 

reworked so as to increase within-scenario similarity compared to between-scenario 

dissimilarity. Although, sometimes only 1 pair from a concept was problematic, the 25 

concepts were re-tested in their entirety so as to ensure the validity of the combinations after 

modifications were applied. The new version of the concepts was presented in Experiment 1c 

to a new pool of participants.  

METHOD 

Participants 

One hundred and twelve British native speakers were recruited online using the Prolific 

platform to take part in this experiment (34 males; Mage = 30.01, SD = 6.63) presented online 

using Qualtrics (2020). They all gave their informed consent before taking part in the study. 

They received £2.50 for their participation.  
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Materials and Procedure 

The material was composed of the exemplars from 25 modified concepts organised by 

pairs that were either similar to each other or dissimilar. The procedure was the same as 

Experiment 1b.  

RESULTS and DISCUSSION 

A first qualitative exploration of the data revealed that 8 concepts still presented a 

reversed pattern of similarity with some dissimilar pairs showing a higher similarity rating 

compared to dissimilar pairs. The rest of the analyses is based on the remaining 42 concepts. 

As shown in Figure 2, the analysis revealed that the constructed similar pairs elicited higher 

similarity ratings compared to the dissimilar pairs (Msimilar = 72.80; SD = 10.10; MDissimilar = 

40.08; SD = 12.13; Mean Difference = 32.72; 95CI [31, 34]; t(383) = 49.63, p < 0.0001, 

Cohen’s d = 2.53).  

 

Figure 2. Mean ratings for the similar and dissimilar conditions in Experiment 1c (* p < 

0.001). 
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These results showed an improvement of all the statistics compared to Experiment 1b. 

The mean rating for the similar condition was higher while the mean rating for the dissimilar 

condition was lower compared to the same statistics obtained from Experiment 1b. Overall 

mean difference between the similar and dissimilar conditions was higher compared to 

Experiment 1b (Mdiff_1b = 25.29; Mdiff_1c = 32.72). The consistency of the similarity pattern 

for pairs in the similar and dissimilar condition was established upon visual inspection of the 

concepts and was statistically confirmed by the increase in the effect size from Experiment 1b 

to 1c (Cohen’s d 1b = 1.32; Cohen’s d 1c = 2.53). Taken together, these statistics indicate that 

the database is composed of a robust combination of stimuli. These similarity ratings were 

then used to build the psychological space as a graphical representation of the Euclidian 

distance between similar and dissimilar dimension for each exemplar. 

According to the GCM model, stimuli can be represented as points in a 

multidimensional psychological space (Nosofsky, 1986, 1992, 2011, 2014). This geometric 

representation of exemplars is based on a multidimensional space (MDS) algorithm developed 

by Kruskal (1964; see also Shepard, 1987). The MDS represents the pairwise similarities 

obtained from a similarity rating task. For instance, when considering the concept SONDER, 

the coordinates are given by the similarity rating of exemplar 1A in the similar condition and 

in the dissimilar condition (see Figure 3). The similar and dissimilar conditions represent the 2 

dimensions of the psychological space which reflects the stored exemplars in memory that are 

the basis for comparison in a categorisation task. In the present case, let 𝑥𝑠𝑜𝑛𝑑𝑒𝑟 =

(𝑥𝑠𝑜𝑛𝑑𝑒𝑟𝑠
 ; 𝑥𝑠𝑜𝑛𝑑𝑒𝑟𝑑

) be the coordinate locations for concept SONDER in the 2-D 

psychological space with  𝑥𝑠𝑜𝑛𝑑𝑒𝑟𝑠
  the exemplars’ mean similarity rating in the similar 

dimension and 𝑥𝑠𝑜𝑛𝑑𝑒𝑟𝑑
 the exemplars’ mean similarity rating in the dissimilar dimension. 
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Figure 3. 2-dimensional graphical representation of the psychological space for 

concept SONDER. Each point represents an exemplar with coordinates 𝑥𝑠𝑜𝑛𝑑𝑒𝑟𝑠
 as the 

exemplar’s mean similarity rating in the similar dimension and 𝑥𝑠𝑜𝑛𝑑𝑒𝑟𝑑
 as the exemplar’s 

mean similarity rating in the dissimilar dimension. 

 

This psychological space is a graphical representation of the exemplars that are stored 

in memory. Each concept was described by 9 exemplars that could be combined so as to have 

similar or dissimilar combinations. In a second experiment, the NewAbstractConcepts 

database was used to test the ability to generalise the meaning of concepts learned through 

exposure to either similar or dissimilar combinations to a novel test exemplar. Studies have 

produced incoherent results as regards to the mechanisms involved in the generalisation of 

meaning to novel situations. The literature has suggested two opposite mechanisms that are 

similarity-based generalisation and contextual diversity. According to similarity accounts, 

generalisation mechanisms are dependent on commonalities between conceptual 

representations. In contrast, contextual diversity posits that a diversity of superficial features 

can emphasise common underlying structures, thereby promoting generalisation. Experiment 

2 aimed at testing these two hypotheses using abstract concepts that have no word referent but 

are described by exemplars either similar to each other or contextually diverse.  
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EXPERIMENT 2 

METHOD 

Participants 

Seventy-two British native speakers were recruited online using the Prolific platform to take 

part in this experiment (16 males; Mage = 30.29; SD = 8.29) presented online using Qualtrics 

(2020). They all gave their informed consent before taking part in the study. They received 

£2.50 for their participation.  

Materials and Design 

The material was composed of 42 NewAbstractConcepts from the database developed 

in the previous Experiment 1. For each concept 9 exemplars were constructed following 3 

different scenarios. The triplet of exemplars belonging to one scenario were constructed as 

similar to each other. The dissimilar triplets of exemplars were obtained from reordering the 

scenarios so as to create combinations of exemplars that are different from one another. The 

concepts were then divided in 2 lists of 3 blocks each. Each block was composed of 3 

exemplars either similar or dissimilar. Participants were randomly assigned to a single block 

following a Latin Square design meaning that each participant was presented with 1 triplet of 

similar or dissimilar exemplars from 1 scenario for each concept (see Table 4). Participants 

were all presented with the similar and dissimilar conditions. 
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Table 4. Latin square for Experiment 2 following a mixed design with exemplars 

presented as between-subjects while the similar and dissimilar conditions were presented in a 

within-subject design. 

 

 

For each concept, a pseudo-word was generated using Wuggy (Keuleers & Brysbaert, 

2010) to serve as a referent label (e.g., Remation, Unglith). The pseudo-words were generated 

based on the English language and were matched for lexicality and number of letters. For 

each concept, a test exemplar that corresponded to a novel scenario composed of a single 

exemplar was constructed (e.g., When he entered the living room, he saw a picture on a 

mantelpiece and was astonished that his neighbour had apparently met Bill Gates). Finally, 

nonsensical sentences were constructed to serve as filler in an attention check during the 

reading phase. The fillers were constructed following the same rules as for the actual 

exemplars but contained unrelated words to create a sense of semantic ambiguity (e.g., 

Getting upstairs, she could not remember whether she had poisoned the front door). The 

experiment contained a proportion of 18% fillers which were also presented with a pseudo-

word generated using Wuggy that served as a referent.    

Procedure 

During the reading phase, participants were presented with a pseudo-word (e.g., 

REMATION) and 3 exemplars -either similar or dissimilar- that appeared one by one on the 

screen. Participants were never provided with a definition of the concepts but were asked to 

pay attention to the pseudo-word and the corresponding exemplars that were meant to 

illustrate their meaning. Each exemplar was presented alongside its pseudo-word referent. To 

make sure that they were paying attention, nonsensical sentences were randomly scattered 

 LIST A LIST B 

 Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 

Concept 1 1A-1B-1C  2A-2B-2C 3A-3B-3C 1A-2C-3B 1B-2B-3C 1C-2A-3A 

Concept 2 1B-2A-3B 1C-2A-3C 1A-2B-3A 1A-1B-1C  2A-2B-2C 3A-3B-3C 

…       
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during the reading phase. After reading each exemplar, participants had to choose the “next” 

button to go to the next trial or the “nonsensical” button to indicate that they had spotted a 

nonsensical sentence. The blocks were divided in series of 7 concepts. The presentation of 

exemplars and their corresponding pseudo-word were all randomised within each series. 

Following each series of 7 concepts, participants entered a testing phase.  

During the testing phases, participants were presented with a novel test exemplar that 

was constructed as part of a 4th scenario for each concept. The test exemplars were presented 

alongside their corresponding pseudo-word. The task of the participants was to judged on a 

scale from 0 to 100 whether this novel exemplar was a good example to describe the pseudo-

word.  

The study was self-paced and took about 30 minutes to complete.  

 

RESULTS and DISCUSSION 

The similarity judgments of novel exemplars to those stored during the reading phase 

were compared by means of a paired samples t-test. The analysis revealed that the test 

exemplars were judged as better examples of the concepts when participants were exposed to 

dissimilar exemplars during the reading phase (MDissimilar = 70.28; SD = 7.54) compared to 

when they were exposed to similar exemplars (MSimilar = 63.04; SD = 9.06) - t(71) = 5.66, 

p<0.001; Mean Difference = 7.20; 95CI [4.65, 9.74]; Cohen’s d = 0.71; see Figure 4). 
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Figure 4. Mean similarity judgments (on a scale from 0 to 100) as a function of reading phase 

exposure (similar vs. dissimilar exemplars; p<0.001) 

 

We conducted a Bayesian paired-samples t-test using JASP (2020). For the informed 

prior we used Oosterwijk’s recommendation (t-distribution with location 0.350, scale 0.102, 

and 3 degrees of freedom), because it is considered a good prior for small-to-medium effect 

sizes (see Gronau & Wagenmakers, 2019). This analysis showed a Bayes Factor of 51900 

(median = 0.53; 95CI [0.33-0.82]; see Figure 5). This means the results are about 51900 times 

more likely under the alternative hypothesis compared to    

the null.  
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Figure 5. Prior and Posterior distribution for the paired samples t-test comparing the 

similar and dissimilar conditions.  

 

The aim of Experiment 2 was to test for the generalisation of meaning on the basis of 

exposure to similar or contextually diverse exemplars. According to the account of similarity-

based generalisation, participants were expected to better generalise the meaning of concepts 

when exposed to similar exemplars. In contrast, the account of contextual diversity assumes a 

facilitation of generalisation to novel exemplars when participants are exposed to contextually 

diverse exemplars.  

Results have shown that exposure to contextually diverse exemplars enhanced 

performance in the testing phase. Participants had less difficulty identifying the novel test 

exemplars presented as a 4th scenario when stored exemplars were learned through exposure 

to diverse exemplars.  This result could be explained by the fact that contextual diversity 

during reading allows for the representation of words to become more context independent 

(e.g., Bolger et al., 2008; Pagan & Nation, 2019). 
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These results are in accordance with previous studies on the importance of diversity 

for generalisation. Posner and Keele (1968) have demonstrated that the ability to classify new 

instances of learned concepts correctly increased with the variability of stored patterns. More 

broadly, the hypothesis of generalisation from stored exemplars to novel instances assumes a 

mechanism of abstraction of idiosyncratic surface features while common core features are 

better identified in diverse contexts (Belenky & Schalk, 2014; Day & Goldstone, 2012; 

Gentner, 1983; Gick & Holyoak, 1983). This mechanism of abstraction assumes an attention 

parameter with more attention allocated to well attended dimensions compared to unattended 

ones. This assumption is at the core of GCM model of Nosofsky (1986, 1992, 2014; 

Vanpaemel, 2009). The model posits a set of selective-attention weights that modify the 

dimensions of the psychological space in which the exemplars are embedded (Carroll & 

Wish, 1974; Nosofsky, 2014). These results are in accordance with accounts of exemplar-

based abstraction which posit a process of extracting features across multiple instances of a 

concept so that idiosyncratic features provide representation that are context independent (see 

Yee, 2019 for a review).  

The literature on abstract concepts is rather young and most of it has been dedicated to 

their mechanisms of representation and grounding (see Borghi, 2017; Pecher, 2018 for 

reviews). As a result, little is known about how abstract concepts are generalised to all 

instances of a particular concept. Gentner and Asmuth (2017) have suggested a process of 

abstraction they refer to as Career of Metaphor that describes how abstract meaning can be 

generalised through figurative language. For example, they consider that the abstract 

relational meaning of the concept <anchor> can be abstracted through figurative expressions 

such as <religion is an anchor>. Repeated exposure to such figurative instances would 

highlight the common features between the concepts <anchor> and <religion> by abstracting 
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the meaning of the metaphor in favour of an underlying common relational structure which 

can be extended to other situations that share similar structures.  

This process of abstraction through metaphors seems compatible with an assumption 

of exemplar-based generalisation particularly as it assumes exposure to multiple instances of a 

concepts in diverse contexts. However, studies have shown that learning abstract concepts 

through metaphors could hinder the ability to grasp the full richness of abstract concepts and 

in turn the ability to generalise (see for e.g., Braithwaite and Goldstone, 2015; Pecher, Boot & 

Van Dantzig, 2011). In addition, this assumption of learning relational similarities between 

concepts though metaphors is limited by a lack of one-to-one mapping between abstract 

concepts and metaphors (Pecher, 2018). The assumption of generalising abstract concepts 

from exposure to multiple exemplars in diverse contexts seems to offer a better account. This 

is particularly true when considering Paivio’s Dual Coding Theory (DCT, 1968, 1971) 

according to which abstract concepts are more loosely related to a multitude of contexts 

compared to concrete concepts. Taken together, contextual diversity and the DCT would 

suggest that the generalisation of abstract concepts could benefit from exposure of exemplars 

in diverse contexts. 

GENERAL DISCUSSION 

The ability to extract meaningful representations from a few exemplars and generalise 

to novel situations has been the object of much work in the concept learning literature focused 

on abstraction mechanisms. This process of abstraction is a cognitive feat without which it 

would not be possible to make sense of the world. Many accounts have been proposed to 

explain the mechanisms underlying such an ability. The literature has long been dominated by 

the debate opposing prototype and exemplar models of generalisation (Murphy, 2013). The 

prototype account assumes a mechanism of generalisation based on the similarity of novel 

instances to the most prototypical exemplar stored in memory (Rosch, 1975; Rosch & Mervis, 
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1975). This assumption does not provide a good explanation for the generalisation of abstract 

concepts due to their complexity and lack of organisation in clear-cut categories (Borghi, 

Barca, Binsofsky & Tummolini, 2018; Minda & Smith, 2001). As a result, this account has 

mostly been abandoned in favour of an exemplar view of concept learning (Feldman, 2003; 

Yee, 2019).   

The exemplar view is best illustrated by the GCM model which posits that 

generalisation is a function of similarity between stored exemplars and novel instances 

(Medin & Schaffer, 1978; Nosofsky, 1986). This assumption suggests that the exemplar view 

provides a better explanation for mechanisms underlying the generalisation of abstract 

concepts as it allows for more flexibility in the description of how abstract concepts are 

categorised. The present studies have attempted to uncover such mechanisms by introducing a 

custom-made database of concepts called NewAbstractConcepts which refer to situations that 

are familiar to everybody but for which no word referent exist.  The introduction of the 

database had many advantages. First, it offers a set of normed stimuli that would allow for the 

design of experiments to study mechanisms of concept learning, abstraction and 

generalisation for abstract concepts, which is a crucial aspect that has been missing from the 

abstract concept literature. Secondly, the introduction of stimuli that have no word referent 

avoids issues of background knowledge when testing adult participants in word learning 

experiments.  Finally, crafting and testing such materials allowed for a better control of the 

exemplars that could be embedded in a psychological space that varied along two dimensions 

of similarity. Experiments 1a to 1c were designed to create such a psychological space 

following a technique of multidimensional scaling (MDS; Kruskal, 1964; Shepard, 1987). As 

a result, it was possible to represent the exemplars of the database in a psychological pace that 

varied along two dimensions on a similarity gradient from similar to dissimilar. Experiment 2 

showed that dissimilar exemplars produced better performances of generalisation in the 
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processing of abstract concepts. The use of the psychological space and a Bayesian account of 

the GCM model (see Vanpaemel, 2009; Lee & Wagenmakers, 2014) provides a powerful 

framework the two questions that this project set out to answer: (1) What sort of features are 

acquired during the learning of concepts through exposure to a set of exemplars? (2) How are 

these features generalised to novel instances of an abstract concept?   

The creation of this psychological space answers a first assumption of the GCM model 

as regards to the dimensions of stored exemplars. In the present case, the similar and 

dissimilar dimensions were obtained from a series of similarity rating tasks and the exemplars 

of the NewAbstractConcepts concepts were leaned and stored during the reading phase of 

experiment 2. A second assumption of the GCM model relates to selective attention weights 

allocated to chosen dimensions. According to the results of Experiment 2 which showed 

better performances for generalisation to novel instances, when stored exemplars were 

dissimilar to each other, the attention parameter allocated more weight to the dissimilar 

dimension compared to the similar dimension. This might seem counter-intuitive to allocate 

more attention to the dissimilar dimension when from a theoretical viewpoint, results from 

Experiment 2 suggest an abstraction of idiosyncratic surface features compared to common 

core features.  However, this parameter of selective-attention strategy is implemented to 

model the influence of each dimension on classification predictions (Nosofky, 2014). 

Experiment 2 suggests that contextual diversity is a better predictor of people’s ability to 

recognise the novel exemplars as a good example of a previously stored concept and as such 

should receive a higher attention weight. Taken together, the psychological space obtained 

from Experiment 1a to 1c and the attention parameters from Experiment 2 provides the 

necessary background information to build a generalisation model for abstract concepts using 

the GCM model in a Bayesian framework which allows for flexible parameter estimation (see 

Figure 6). 
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The benefit of a Bayesian implementation of the GCM model lies in its ability to 

represent dependencies between mechanisms involved in the overall process of exemplar 

generalisation to novel instances. The stored exemplars are embedded in a dimensional space 

that represent the 2 salient dimensions of similarity or contextual diversity. The model also 

allows to allocate selective-attention weights to these dimensions with the idea a parameter 
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Let 𝑥𝑖 = (𝑥𝑖1, 𝑥𝑖2) denote the coordinate locations of stimulus 𝑥𝑖  in 
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The first dimension 𝑥𝑖1 has attention weight 𝑤 with 0 ≤ 𝑤𝑑 ≤ 1 

and the second dimension 𝑥𝑖2 has attention (1 − 𝑤). Given the 

coordinate of the stimulus, the distance between stimuli 𝑥𝑖  and 𝑥𝑗  is 

computed according to the Minkowski metric: 

𝑑(𝑥𝑖 , 𝑥𝑗) = [𝑤 |𝑥𝑖1 − 𝑥𝑗1|
𝑟

+ (1 − 𝑤)|𝑥𝑖2 − 𝑥𝑗2|
𝑟
]

1/𝑟
    

With 𝑟 is a Euclidean metric (𝑟 = 2) used for stimuli varying on 

integral dimensions (see Shepard, 1991 for a review). 

Similarity between the 𝑖𝑡ℎ stored exemplar and 𝑗𝑡ℎ test exemplar is 

modelled as a decaying function of the distance between the 

stimuli: 

𝑠(𝑥𝑖 , 𝑥𝑗) = exp{−𝑐𝑑(𝑥𝑖 , 𝑥𝑗)} 

where 𝑐 is a generalisation parameter such as 𝑐 ~ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,5) 

The overall probability that a test exemplar will be recognised as a 

good example of the NewAbstractConcepts is given by: 

𝑟𝑖 =
𝑏𝑠𝑖𝐴

(𝑏𝑠𝑖𝐴 + (1 − 𝑏)𝑠𝑖𝐵
  𝑤𝑖𝑡ℎ 𝑏 = 0.5 

The observed decision is given by  

𝑦𝑖~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑟𝑖 , 𝑡)                   

with 𝑡, the total number of trial presentations.  
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that can “stretch” attended dimensions and “shrink” unattended ones (Nosofsky, 2014). 

Finally, the overall probability of generalisation meaning that people would be able to 

correctly recognise new instances of a concept is dependent on this psychological space, the 

attention and generalisation parameters which reflect prior knowledge established on the basis 

of the results obtained from Experiment 2 according to which abstract concepts such as those 

defined in the NewAbstractConcepts database are better generalised to new instances when 

learned through exposure to contextually diverse exemplars.  

CONCLUSION and FUTURE WORK 

The present project provides a stepping stone for the study of generalisation mechanisms in 

the processing of abstract concepts. When considering the variability and complexity of 

abstract concepts, it is fair to assume that many other studies will need to be implemented in 

order to get a fuller picture of these mechanisms especially as regards to particular types of 

abstract concepts illustrated by the dimensions proposed by Borghi and colleagues (2018) 

about the variety of abstract concepts. It can be expected that the present model would require 

to implement more complex parameters especially as regards to the attention parameter. For 

emotion concepts for instance, generalisation could not only rely on the similar vs. dissimilar 

dimensions but emotional valence could also play a role. In using novel abstract concepts, the 

issue of the complexity of abstract concepts was side-stepped in order to propose a general-

purpose model that could be used as a template for richer assumptions of generalisation of 

abstract concepts. The availability of the NewAbstractConcepts database will also provide an 

opportunity to implement other assumptions of the GCM model that were not specifically 

tested in the present project but also to use other models as a framework referent. With this 

project, we hoped to provide a satisfactory articulation of the literature on abstract concepts 

representation and generalisation mechanisms in concept learning which has mainly been 

missing in the literature.  
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Chapter 7. General discussion and perspectives 

Research on abstract conceptual knowledge is rooted in a long tradition which 

translates into a diversity of approaches, models and theories that aim to answer the 

fundamental questions we set out to explore in the present thesis such as (1) How is the 

meaning of abstract concepts represented? (2) How does it relate to other concepts whether 

similar or associated? (3) How does meaning relate to conceptual structure? (4) How is 

meaning generalised to all instances of the concept? The following chapter offers an overview 

of the results that were obtained to answer these questions. Such questions are a testament to 

the different levels of exploration that we set out to investigate in our study of the abstract 

concept phenomenon. More broadly, the long tradition of studying the semantic processing of 

concepts has often been compartmentalised into separate levels from semantics dealing with 

conceptual entities at the word-level to pragmatics dealing with complex utterances and 

statements (Cruse, 2010; Aitchison, 2012; Yule, 2020). As a result, the present chapter 

introduces a theoretical model of the semantic organisation and generalisation mechanisms of 

abstract concept processing. We consider this model to be an attempt to bridge the gap 

between different levels of investigation of psycholinguistic phenomena.  

Summary of results 

The first two chapters of this thesis introduced normative databases that bridged the gap in 

the French literature as regards to the availability of normed stimuli used to study abstract 

concepts processing at the word level.  As such, their main incentive was methodological and 

practical. The first database (Chapter 2) measured semantic similarity between pairs of French 

abstract concepts while the second database (Chapter 3) measured associative strength 

generated in a word association task. A second motivation for the creation of the two 

databases was to address previous findings that have shown that concepts are organized 

according to semantic similarity when concreteness increases and according to verbal 
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association when abstractness increases (see Crutch & Jackson, 2011). To address this 

observation, both databases included a variable of graded levels of concreteness. The 

computed descriptive statistics revealed stronger association strength for concrete concepts 

compared to abstract concepts, which confirmed different organisation patterns where 

concrete concepts are more tightly connected to a few contexts while abstract concepts are 

more loosely connected to a larger number of varied contexts (Chapter 3). In addition, word 

associations have shown a high correlation between cue and response concreteness which 

shed more light on the organisation of the mental lexicon as a function of concreteness that 

suggests abstract concepts are closely represented in the mental lexicon. 

We then used the large amount of data generated by the word association task to build a 

graphical representation of the mental lexicon and apply methods of cognitive network 

science (Chapter 4). This was introduced as the first instance of building a semantic network 

based on French word association data and the first to explore structural differences between 

concrete and abstract concepts in the mental lexicon for any language. Graph analyses have 

shown that the network exhibits a high clustering coefficient, sparse density, and a small 

average shortest path length for both the concrete and abstract networks which is consistent 

with a small-world structure therefore confirming seminal findings of Steyvers and 

Tenenbaum (2005). Comparisons between local node statistics and global structural topology 

have shown that abstract and concrete concepts present different overall patterns of structural 

organisation with concrete concepts presenting an organisation in densely connected 

communities compared to abstract concepts. These patterns confirmed previously acquired 

knowledge about the differences between abstract and concrete concepts on a larger scale. 

Previous studies have used simulations of spreading activation to derive highly predictive 

judgments of similarity (see for example Kenett, Levi, Anaki & Faust, 2017; De Deyne et al., 

2018). As such, when considering the word level of semantic processing, both semantic 
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similarity and verbal association can refer to similarity-based processes. Taken together, this 

suggests that the mental lexicon is organised according to patterns of similarity whether 

measured in terms of semantic similarity between pairs of words in a database or as node 

coordinates extracted by an algorithm of spreading activation in a semantic network built 

from word association data. In Chapter 4, simulations of spreading activation have shown that 

abstract and concrete concepts present different thresholds of activation with abstract concepts 

being less influential in the network and therefore exhibiting lower activation levels compared 

to concrete concepts. This pattern confirmed findings obtained from graph analyses according 

to which abstract concepts are organised in a more diffuse pattern in the mental lexicon. This 

also confirms previous findings according to which abstract concepts are more loosely 

connected to a diversity of contexts (Paivio et al., 1968).  

Many authors have suggested that, compared to concrete concepts, abstract concepts 

appear to be semantically impoverished, with their representation requiring associations with 

other concepts (Barsalou et al., 2008; Borghi, Scorolli, Caligiore, Baldassare & Tummolini, 

2013; Borghi, Barca, Binkofski, Castelfranchi, Pezzulo & Tummolini, 2019, see also Recchia 

& Jones, 2012). In Chapter 5, we explored the richness of abstract concepts and the nature of 

their features. In a preliminary norming task, we constructed a set of pictures to illustrate a list 

of lexical abstract concepts. The pictures were either concrete pictorial depictions of the 

chosen lexical concepts or abstract pictures devoid of tangible features. These materials were 

then used to form picture-word pairs where each lexical concept was paired with a picture 

either concrete or abstract. The main hypothesis posited that participants would use a strategy 

when presented with both picture-types and process the meaning of abstract concepts based 

only on clear depictions rather than intangible pictures. On the contrary, results have shown 

that participants continued to process concepts from abstract pictures devoid of tangible 

features even when presented with more concrete ones. This suggested abstract pictures can 
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convey the same meaning as lexical abstract concepts which we took as evidence of the 

richness of abstract concepts as they activate features beyond their linguistic or situational 

components. These results were complementary to those of Bolognesi and Vernillo (2019) 

who proposed a process of abstraction based on an inferential mechanism that moves from 

concretely depicted entities to more abstract ones. These intangible features could be 

construed as evidence of abstracted representations from varied exemplars of concepts 

becoming generalised statistical traces in long-term memory (Barsalou, 2003).  

This process of generalisation refers to an ability to extract meaningful representations 

from exemplars and transfer to novel situations which reflects a higher-level mechanism with 

pragmatic implications. In Chapter 6, we explored generalisation mechanisms in the 

processing of abstract concepts by introducing a novel database of new abstract concepts 

which were used to test whether abstract concepts are generalised based on patterns of 

similarity or contextual diversity. A first series of norming studies aimed to build the database 

composed of novel abstract concepts described by exemplars that were paired into similar or 

dissimilar combinations. The abstract concepts were then presented to participants in a 

similarity judgment task (Chapter 6, Experiment 2).  Experiment 2 showed that dissimilar 

exemplars produced better performances of generalisation compared to similar exemplars. 

Exposure to contextually diverse exemplars enhanced participants abilities to generalised 

learned abstract concepts to novel instances of said concepts. These results were construed as 

evidence of the role of contextually diverse patterns for the processing of abstract concepts at 

a higher level of complexity.  

Taken together, results from all empirical chapters reveal a reversed pattern when moving 

up in levels from the semantics of the word-level databases which revealed a pattern of 

similarity to complex abstract exemplars which are generalised on the basis of contextual 

diversity. The complexity of psycholinguistics phenomena means that scientific explorations 
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of the mental lexicon are often compartmentalised with studies focusing on a single identified 

level of processing. The present thesis is evidence of this complexity with several studies each 

focused on one single level. Further exploration will need to account for the link between 

levels of processing. The present chapter summarises the findings across our empirical data 

into a theoretical model as an attempt to render a fuller picture of the semantic organisation 

and generalisation of abstract concepts.  

 

A theoretical model and some implications for abstract concept 

processing 

A central controversy in cognitive science concerns the roles of similarity versus 

contextual diversity. To gain some insights on this issue, we propose a theoretical model that 

draws on the results from the present thesis. The model posits that similarity-versus diversity-

based processes can be characterized as extremes in a multilevel space with similarity-based 

organisation at the word level and contextual diversity at the pragmatic level. The transition 

from similarity-based to diversity-based processing is conceptualized as a transition through 

levels.  
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Figure 1. Schematic representation of our theoretical model. Level I represents abstract 

concepts and features at the word levels. Concepts and features are activated following a 

threshold of activation. Thicker traits represent more influential nodes which possess a higher 

activation potential compared to thinner traits. Level II represents exemplars in memory as 

instances of a concepts. Level III represents the generalised concepts based on the processing 

of contextually diverse exemplars which allow for the recognition of novel instances. 

 

The theoretical model presented in Figure 1 suggests a hierarchical structure based on an 

integration across levels of processing from features to generalised concepts. This hierarchical 

structure posits a reverse pattern of processing with the lowest level relying on similarity 

while the highest level describes a pattern of contextual diversity. At the word level, features 

are activated when they reach the required threshold. This notion of activation threshold 

comes from the modelling of a semantic network of the mental lexicon (Chapter 4). Results 
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from Chapter 4 revealed that some concepts are more influential than others due to their 

structural position in the network meaning that they facilitate the spread of activation within 

the network. Levels of activation are also determined by the weights attributed to links 

between nodes. In a network built from word association data, weights reflect the strength of 

word associations. Other aspects such as the number of inward or outward connections also 

impact the influence of a node and consequently the spread of activation. The comparison of 

node influence in the network suggested that abstract concepts have a lower threshold of 

activation compared to concrete concepts meaning that more features need to be activated in 

order to reach the required threshold. This notion of activation threshold is illustrated in 

Figure 1 by the thickness of traits that link the first and second levels of the model with 

thicker traits for more influential concepts. One aspect that could not be shown on the Figure 

is the nature of the features that activate a concept which could be intangible as well (Chapter 

5). This has been confirmed by previous feature naming tasks according to which participants 

may provide only a linguistic approximation of conceptual content of abstract concepts which 

may themselves be decomposed into abstract features (McRae, Cree, Seidenberg, & 

McNorgan, 2005; McRae, de Sa, & Seidenberg, 1997; Sánchez-Casas, Ferré, García-Albea & 

Guasch, 2006; Vigliocco, Vinson, Lewis & Garrett, 2004; Vinson & Vigliocco, 2008). This 

has been previously regarded as a limitation of feature naming tasks but in light of the results 

obtained from Chapter 5, this could also be construed as evidence of the intangible nature of 

certain features that compose abstract concepts (see McRae et al., 2005 for a discussion of 

these limitations). 

 To the best of our knowledge, the semantic network we build in Chapter 4 was the 

first attempt in the French language and the first to investigate the structural properties of 

abstract and concrete concepts in a network. This attempt provided important insights as to 

the structural differences between abstract and concrete concepts. In a future project, we aim 
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to test the replicability of these findings in a larger English database by using the Small World 

of Words data collected by De Deyne et al. (2019). 

 While the passage from level I to level II in the model was determined by similarity-

based processes, the passage between level II and level III is determined by diversity-based 

processes which reflects a reversed pattern from lower to higher-level processing. The overall 

incentive of studying conceptual knowledge is aimed to explore the ability to extract 

meaningful representations from encountering a few instances of a concept. In Chapter 6, we 

explored this ability for abstract concepts. When studying the acquisition of concepts, 

researchers encounter some methodological difficulties such as the necessity to control 

people’s background knowledge. In order to avoid such difficulties, we introduced a database 

of novel abstract concepts described by several exemplars that were either similar or 

dissimilar to each other. Abstract concepts present such complexity and diversity that they 

cannot be precisely arranged in categorises with clear-cut boundaries. As a result, we 

suggested that the processing of abstract concepts would be better described using an 

exemplar account of generalisation (see Feldman, 2003). The newly introduced database was 

first used to create a psychological space based on two within exemplars dimensions which 

were similarity and dissimilarity. The materials were then used in a word-learning experiment 

where participants were presented with a pseudo-word to label the novel abstract concept 

along with a set of exemplars that were either similar or dissimilar. In the test phase, they 

were presented with a novel instance of each abstract concept and were asked whether this 

could be construed as a new example of the learned concept. Participants performed better at 

recognising the novel instances as an example when the abstract concepts were learned 

through dissimilar set compared to similar sets of exemplars. We took these results as 

evidence that abstract concepts are generalised following a mechanism based on contextual 

diversity. Taken together with the previous level, this suggests that the more abstracted 
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conceptual knowledge becomes and the more its processing relies on a reversed pattern that 

moves from a similarity-based mechanism for lower-levels of processing to a diversity-based 

mechanism for higher-levels of processing.  

 When considering a broader cognitive framework, this reversed pattern is not specific 

to the processing of semantic abstract concepts. The CAL model (Category Abstraction 

Learning) developed by Schlegelmilch and von Helversen (2021) is a model that combines 

similarity-based lower-level processes with dissimilarity-based higher abstraction processes to 

explain many phenomena of category and reinforcement learning. Their model was aimed to 

answer a major limitation present in most models of category learning which are unable to 

explain the underlying generalisation mechanisms from features to exemplars to generalised 

concepts. The model builds on the principle of stimulus generalisation (Shepard, 1987) 

according to which the presentation of a stimulus activates stored exemplars in memory with 

a level of activation that decays following the psychological distance between a novel 

stimulus and exemplars stored in memory.  

 The parallel between the reversed pattern inferred from the results of our model to the 

one described in the broader cognitive framework proposed by Schlegelmilch and von 

Helversen (2021) highlights the importance of explaining language mechanisms within a 

larger cognitive framework. This observation is in line with our attempt in Chapter 6 to 

describe the mechanism for the generalisation of abstract concepts using the GCM model. 

This pertains to the maturity of the cognitive science in general and its ability to grapple with 

the challenge of defining unified models and theories without loosing sight of specificities 

that are intrinsic to a specific level of explanation. 

The present observations have been centered on psycholinguistic phenomena at the 

behavioural level of explanation. Our results present some implications for neural and 

computational levels. 
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Implications for neural evidence 

 Network semantic analyses have shown a structural difference in the activation 

patterns for abstract and concrete concepts (Chapter 4). Previous studies have confirmed the 

impact of this concreteness gradient in neurological data. The literature on the neurological 

profile of semantic processing has established that language is represented in a distributed 

neural network (Patterson et al., 2007; Binder & Desai, 2011; Han et al., 2013; Martin, 2016; 

Huth et al., 2016). The literature however has not reached a consensus on the nature of the 

semantic neural network and proposes two distribution patterns which are debated namely: 

the distributed-only models and the hub-and-spoke hypothesis (Patterson et al., 2007, 2015; 

Mahon & Caramazza, 2009; Lambon Ralph et al., 2010; Martin et al., 2014; Martin, 2016). 

According to distributed-only theories, conceptual knowledge is represented in a modality-

specific pattern which put an emphasis on the role of sensorimotor modalities such as shapes, 

colours, sounds and actions which coincide with a grounded view of cognition (Martin, 2007; 

Barsalou, 1999; 2008; Binder et al., 2009). The hub-and-spoke hypothesis posits the existence 

of amodal hubs of processing in addition to modality-specific regions (Lambon Ralph, 2014; 

Lambon Ralph & Patterson, 2008; Lambon Ralph, Sage, Jones, & Mayberry, 2010; Patterson, 

Nestor, & Rogers, 2007; Rogers et al., 2004). In the hub-and-spoke model, some regions 

called spokes process the modality-specific features of concepts which are connected through 

cortical routes to hub regions. These hubs code for similarity-based processes that abstract 

specific features in favour of similar core components of concepts (Patterson & Lambon 

Ralph, 2016). In light of results from Chapter 6, this role of the hub regions coincides with the 

description of the exemplar theory which posits a mechanism responsible for the abstraction 

of idiosyncratic features in the generalisation of abstract concepts.  
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Neuropsychological data such as profiles of semantic dementia (SD) provide support 

for the hub-and-spoke hypothesis and identify the ATL (anterior temporal lobe) as a semantic 

hub region (see for example Patterson et al., 2007). Semantic dementia is a neurodegenerative 

disorder characterised by a selective loss of conceptual knowledge regardless of their 

modality and can be associated with bilateral lesions to the ATL (Hodges et al., 1992; 

Patterson et al., 2007; Binney et al., 2010; Gainotti, 2012; Hoffman et al., 2014; Lambon 

Ralph, 2014; Rice et al., 2015; Zhao et al., 2017). As a result, SD patients exhibit a poor 

comprehension of conceptual items presented in every modality (Bozeat et al., 2000, Coccia 

et al., 2004, Luzzi et al., 2007). Consequently, this pattern of cross-modality deficit has been 

construed as evidence of the amodal nature of the ATL and its role as a convergence zone 

which form amodal conceptual representations (see Figure 2; Patterson et al., 2007, Rogers et 

al., 2004; Rogers & McClelland, 2004).  

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Representation of the hub-and-spoke model with spoke regions which code for modality-
specific components of concepts while the ATL is a semantic hub which aggregates across modalities 

and form amodal conceptual representations (see text for more details). From Lambon et al. (2017).  
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Despite such evidence, the specific role of the ATL remains unclear. For instance, 

Loiselle et al. (2012) have explored the comprehension of concrete and abstract concepts in 

patients with a selective ATL resection. Typically, the concreteness effect refers to the robust 

behavioural phenomena found in neurologically intact participants which describes a 

facilitated processing of concrete concepts compared to abstract concepts in terms of speed 

and accuracy in varied tasks such as memory retrieval and lexical decision (see Paivio, 1991 

for a review). In contrast, patients who exhibit patterns of semantic dementia have been 

known to present a reversed concreteness effect with a facilitated processing in favour of 

abstract concepts compared to concrete concepts (Breedin et al., 1994; Cipolotti & 

Warrington,1995; Macoir, 2009; Papagno, Capasso, & Miceli, 2009; Warrington,1975; Yi, 

Moore, & Grossman, 2007). It remains unclear whether this greater impairment for concrete 

concepts originates from damage to the ATL in SD patients or from degraded visuo-

perceptual features from damaged inferior temporal lobe in SD patients (Desgranges et al., 

2007; Nestor, Fryer, & Hodges, 2006). This latter hypothesis emerged from the role of the 

inferior temporal lobe in the processing of visual objects that often present lesions in SD 

patients. To test these two hypotheses, Loiselle et al. (2012) compared the processing of 

abstract and concrete concepts using a semantic judgment task in patients who underwent a 

selective ATL surgical resection and patients with selective medial temporal lobe damage 

sparing the ATL. Results have shown that both groups exhibited impaired processing for both 

concept types compared to the control group. Comprehension of concrete concepts were 

significantly more impaired for patients with selective ATL resection while both concept 

types were equally impaired in other patients. Loiselle et al. (2012) interpreted these results in 

relation with the dichotomy between abstract and concrete concepts with concrete concepts 

that are more dependent on similarity-based patterns while abstract concepts are inscribed in 

more diffuse associative patterns. This concurs with Paivio’s assumption (Paivio, 1991) 
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according to which concrete concepts show stronger connections to a smaller number of 

contexts while abstract concepts are more loosely connected to a larger number of contexts. In 

the case of a lesion to the ATL, this loose pattern becomes an advantage as more diffuse 

statistical memory traces are maintained for abstract concepts while stronger and more 

localised connections are lost as a whole in the case of concrete concepts. These results 

confirm our conclusions on a neurological level of explanation which showed that abstract 

concepts present weaker associative connections (Chapter 3), are organised in a diffuse 

structural pattern in a semantic network which resulted in lower activation levels (Chapter 4), 

and can be processed and decomposed based on intangible features that leave memory traces 

which can be activated even when the concept is not clearly depicted but evoked based on 

pictures devoid of tangible features (Chapter 5).  

Other studies have shown the existence of an abstract-to-concrete gradient in the ATL 

with concrete concepts represented in the medial-ventral ATL while abstract concepts are 

represented in the dorsal-lateral ATL (Lambon Ralph et al., 2017). More recently, Vignali, 

Turini, Collignon, Crepaldi and Bottini (2020) have explored the time course of the abstract 

and concrete concepts convergence in the ATL. They have shown the existence of a dorsal-to-

medial and abstract-to-concrete gradient in the ATL which emerges in late stages of 

processing. According to this time course, abstract and concrete concepts are initially encoded 

in posterior temporal regions before converging in the ATL. These results provide additional 

evidence of the fact that semantic information for concrete and abstract concepts travel along 

different cortical routes with concrete concepts that originate from the ventral stream before 

converging to the ventral-medial ATL while abstract concepts originate from the posterior 

STG (superior temporal gyrus) and the orbito-frontal cortex before converging to the dorsal-

lateral ATL. 
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Taken together, evidence from SD patients and the graded convergence in the ATL 

seem to suggest that the ATL could act as a lever between newly processed concepts 

grounded in modal and linguistic features to generalised concepts in the form of amodal 

conceptual representations through a mechanism responsible for the abstraction of 

idiosyncratic features (Patterson & Lambon Ralph, 2016). However, several questions on the 

role of the ATL in the processing of abstract concepts need to be answered. The processing 

advantage of abstract concepts in the ATL would suggest that being composed of abstract 

features themselves, abstract concepts should benefit from a faster mechanism of 

generalisation. Time course analyses of concrete and abstract concepts have not produced 

faster convergence for the abstract concepts compared to the concrete concepts however 

(Loiselle et al., 2012). In addition, the hub-and-spoke mechanisms are said to be similarity-

based whereas we have seen in Chapter 6 that concepts were more easily generalised on the 

basis of dissimilar exemplars. A way to elucidate these seemingly contradictory assumptions 

would be to test for the processing of abstract concepts by replicating the experiments from 

Chapter 5 and 6 using fMRI techniques. In Chapter 5, we have seen that abstract concepts 

could be activated by intangible pictures. An fMRI implementation of this experiment would 

provide some evidence as to the nature of these features based on brain activation during the 

processing of the pictures and the retrieval of the corresponding abstract concepts. Results 

from chapter 6 have shown that abstract concepts are better generalised from dissimilar 

exemplars. We propose an implementation of the newAbstractConcepts database in an 

experiment that would test for the effect of similar and dissimilar exemplars on the activation 

of the ATL using fMRI techniques to explore whether dissimilar exemplars produce higher 

levels of activation of the ATL given that they should facilitate generalisation.   

Our study and findings of such psycholinguistic phenomena were meant to advance 

our knowledge of language processing in the human cognitive system and provide insight as 
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to the challenge posed by abstract concepts. Due to the interdisciplinary nature of the 

cognitive sciences, these findings can be interpreted on a larger scale beyond the frontiers of 

psycholinguistics or even cognitive psychology. In the next section, we deal with the 

implications of the present findings for natural language processing which falls under the 

umbrella of the cognitive sciences due to its ties to the field of computer science.  

 

Implications for natural language processing  

Natural language processing (NLP) is a field of Artificial Intelligence (AI) motivated 

by the comprehension of human language by machines which uses computational techniques 

to analyse, represent and reproduce human language. From the advent of the Internet and the 

Social Web, a vast amount of unstructured linguistic content has been generated so much so 

that it becomes impossible to manipulate using traditional techniques. This vast amount of 

information has also provided us with an opportunity. Never before have we had access to 

such a wealth of data which provides insights into the ecological use of language by humans. 

For instance, the use of large linguistic corpora obtained from the mining of social media 

platforms has allowed for the development of word frequency databases such as Wordlex 

(Gimenes & New, 2016) which provides a more accurate and up-to-date picture of the 

common use of language compared to previous databases which were computed from books.  

The unstructured nature of linguistic information generated by humans for humans 

presents a major challenge for machines as it is not directly processable to them. That is why, 

NLP uses algorithms able to mine, aggregate and parse large text corpora but which are 

unable to interpret their meaning (Allen, 1987; Dyer, 1994; Cambria & White, 2014). 

According to Dyer (1994), these limitations are due to the lack of high-level symbolic 

capabilities of NLP algorithms. Such capabilities would require the acquisition of lexical 
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semantic representation, grounding language in perceptual and motor experiences and the 

ability to abstract and generalise conceptual knowledge. This lack of capabilities keeps NLP 

models from achieving human-level language understanding despite major advances since the 

advent of the field in the 1950s.  

 

Figure 3. Advances in NLP research cross 3 major era following the syntactics, semantics and 

pragmatics curves (From Cambria & White, 2014).  

 

In recent years, more efforts of collaboration between cognitive and computational 

fields have been put forward in order to achieve psychologically plausible NLP models. 

Cambria and White (2014) envisioned the advance of NLP research according to three major 

eras represented as overlapping curves (see Figure 3). The leap between the syntactic and 

semantic curves represent the current interest for the use of cognitively plausible models at 

the word level which have been used as a paradigm shift from models centered on words as 

single linguistic units to the notion of concepts as meaningful representation grounded in 
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actions, events and situations (Cambria & Hussain, 2012). One example of this collaborative 

effort is the development of semantic networks which were first motivated by the need to 

represent semantic concepts in a computer memory slot (Quillian, 1969; Chapter 1). On the 

other side of this collaboration, psycholinguistics researchers borrowed powerful 

computational tools for the representation of the semantic information on a large scale (see 

Chapter 4).  

The semantics curve includes the representation of common-sense knowledge built on 

intuitive theories about physics (forces, masses, gravity…) and psychology (desires, beliefs, 

intents...; see for example Gerstenberg & Tenenbaum, 2017). This interest for the 

representation of common sense is inscribed within a larger goal to build machines that learn 

and think like humans do (Lake, Ullman, Tenenbaum, & Gershman, 2017). The field of AI as 

a whole has become aware of the invaluable blueprint that the human mind can provide in its 

ability to learn quickly and flexibly new concepts in relation to previously acquired concepts 

(Lupyan & Bergen, 2016; Lupyan & Clark, 2015). This ability when implemented in 

intelligent systems using deep learning techniques can provide a powerful framework for 

tasks of scene understanding based on object recognition and the comprehension of intent in 

acting agents (Karpathy & Fei-Fei, 2015; Vinyals et al., 2014; K. Xu et al., 2015). Current 

algorithms have made tremendous progress in object recognition but still struggle with scene 

understanding which would allow for a leap between semantics and pragmatics curves (Figure 

3). This leap would require the implementation of causality, intuitive physics and intuitive 

psychology in computational models (Lake et al. 2017). In chapter 6, we developed a database 

of novel abstract concepts to study mechanisms of generalisation to novel instances. This 

human capacity requires the ability to recognise a pattern between memorised exemplars and 

novel instances of a concept. Future work in cognitive sciences will have to provide answers 

as to the role such intuitive theories about psychology and physics come into play in the 
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representation, acquisition and generalisation of concepts in the mind which would benefit for 

both cognitive and computational sciences. Cognitive systems provide blueprints for the 

development of intelligent systems while computational implementation represent an 

additional incentive to apply a sense of mathematical formalism to verbal theories and test 

them in a computational framework.  

 

Conclusions and future work 

The present thesis was designed to study the representation of abstract concepts 

according to several levels of processing. We first explored the word level of processing and 

proposed two databases of semantically similar and verbally associated word pairs. Our 

findings have put an emphasis on the importance to consider concreteness as a graded 

variable and revealed the role of concreteness as a gradient of organisation in the mental 

lexicon. The data from the associative database was then used to build a multidimensional 

semantic network which allowed us to explore the structural organisation of the mental 

lexicon and its impact on the processing of concepts.  These databases and network used only 

the verbal modality for the representation of concepts. The next study used both the verbal 

and visual modality of abstract concepts to explore the featural nature of abstract concepts and 

found that abstract concepts can be activated by pictures devoid of tangible features. We 

interpreted this activation as evidence of statistical memory traces which can be activated 

even in the absence of the clear depiction of a concept. We construed these findings as a part 

of mechanisms of abstraction and generalisation mechanisms. We used this study as a 

transition to the study of generalisation in the processing of abstract concept within the 

framework of the exemplar theory and found that abstract concepts are more easily abstracted 

from their idiosyncratic features and generalised to novel instances on the basis of contextual 

diversity. This accumulation of evidence revealed a reversed pattern of organisation from 
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similarity-based processes at the word-level to diversity-based processes at the level of 

generalised concepts. This reversed pattern was summarised in a theoretical model which 

represented the three levels of processing from the word-level to pragmatics considerations. 

Finally, we explored the implications for neural and computational evidence. 

The present thesis represents a snapshot of our reflection on the processing of abstract 

concepts at the time of writing which can be construed as a launchpad for future projects. For 

instance, the techniques of semantic network analysis are common to both the exploration of 

behavioural data and neurological data. This means that it would be possible to create a 

database of verbal association using a neurological association task and create a neural 

network of the same data to explore the parallels between the structural and neural 

organisation of the mental lexicon. More importantly, the reversed pattern illustrated in the 

theoretical model in particular provided an incentive to incorporate all levels of processing in 

a same experiment. This experiment would use the framework already developed in Chapter 5 

and the newAbstractConcepts database. This follow-up study would attempt to replicate the 

previous findings according to which abstract concepts are better generalised on the basis of 

contextual diversity in a first phase and in a second phase, the pseudowords used to label 

these novel concepts would be used in a semantic priming experiment to explore the role of 

generalisation mechanisms at the word-level also. Finally, we hope that the availability of the 

databases and network we have proposed will serve for future researchers and students 

interested in the study of the French mental lexicon for abstract concepts.  

 

 

 



222 
 

REFERENCES 

 

Andrews, M., Frank, S., & Vigliocco, G. (2014). Reconciling embodied and distributional 

accounts of meaning in language. Topics in Cognitive Science, 6(3), 359–370. 

https://doi.org/10.1111/tops.12096 

Andrews, M., Vigliocco, G., & Vinson, D. (2009). Integrating Experiential and Distributional 

Data to Learn Semantic Representations. Psychological Review, 116(3), 463–498. 

https://doi.org/10.1037/a0016261 

Andrews, S., Lo, S., & Xia, V. (2017). Individual differences in automatic semantic priming. 

Journal of Experimental Psychology: Human Perception and Performance, 43(5), 1025–

1039. https://doi.org/10.1037/xhp0000372 

Baayen, R. H. (2001). Word frequency distributions (Vol. 18). Springer Science & Business 

Media. 

Bales, M. E., & Johnson, S. B. (2006). Graph theoretic modeling of large-scale semantic 

networks. Journal of Biomedical Informatics, 39(4), 451–464. 

https://doi.org/10.1016/J.JBI.2005.10.007 

Balota, D. A., Cortese, M. J., Sergent-Marshall, S. D., Spieler, D. H., & Yap, M. J. (2004). 

Visual word recognition of single-syllable words. Journal of Experimental Psychology: 

General, 133(2), 283–316. https://doi.org/10.1037/0096-3445.133.2.283 

Balota, D. A., Yap, M. J., Cortese, M. J., Hutchison, K. A., Kessler, B., Loftis, B., … 

Treiman, R. (2007). The english lexicon project. Behavior Research Methods. Springer 

New York LLC. https://doi.org/10.3758/BF03193014 

Baronchelli, A., Ferrer-i-Cancho, R., Pastor-Satorras, R., Chater, N., & Christiansen, M. H. 

(2013). Networks in cognitive science. Trends in Cognitive Sciences, 17(7), 348–360. 

https://doi.org/10.1016/j.tics.2013.04.010 

Baroni, M., & Evert, S. (2006). The zipfR package for lexical statistics: A tutorial 

introduction. 

Barrón-Martínez, J. B., & Arias-Trejo, N. (2014). Word association norms in Mexican 

Spanish. The Spanish Journal of Psychology, 17. 

Barsalou, L. W. (1999). Perceptions of perceptual symbols. Behavioral and Brain Sciences. 

https://doi.org/10.1017/S0140525X99532147 

Barsalou, L. W. (2003). Situated Conceptualization: Theory and Application. 

Barsalou, L. W. (2003). Situated simulation in the human conceptual system. Language and 

Cognitive Processes. Psychology Press Ltd. https://doi.org/10.1080/01690960344000026 

Barsalou, L. W. (1999). Perceptual symbol systems. Behavioral and Brain Sciences. 

https://doi.org/10.1017/S0140525X99002149 

Barsalou, L. W. (2008). Grounded Cognition. Annual Review of Psychology, 59(1), 617–645. 

https://doi.org/10.1146/annurev.psych.59.103006.093639 

Barsalou, L. W. (2003). Abstraction in perceptual symbol systems. Philosophical 

Transactions of the Royal Society B: Biological Sciences, 358(1435), 1177–1187. 

https://doi.org/10.1098/rstb.2003.1319 

Barsalou, L. W. (2003, July 29). Abstraction in perceptual symbol systems. Philosophical 

Transactions of the Royal Society B: Biological Sciences. Royal Society. 

https://doi.org/10.1098/rstb.2003.1319 

Barsalou, L. W., Santos, A., Simmons, W. K., & Wilson, C. D. (2012). Language and 

simulation in conceptual processing. In Symbols and Embodiment: Debates on Meaning 



223 
 

and Cognition. Oxford University Press. 

https://doi.org/10.1093/acprof:oso/9780199217274.003.0013 

Barsalou, L. W., & Wiemer-Hastings, K. (2005). Situating abstract concepts. In Grounding 

Cognition: The Role of Perception and Action in Memory, Language, and Thinking (pp. 

129–163). Cambridge University Press. 

https://doi.org/10.1017/CBO9780511499968.007 

Bassett, D. S., & Bullmore, E. T. (2017). Small-World Brain Networks Revisited. 

Neuroscientist, 23(5), 499–516. https://doi.org/10.1177/1073858416667720 

Bayarri, M. J., & Mayoral, A. M. (n.d.). Bayesian Design of “Successful” Replications. The 

American Statistician. Taylor & Francis, Ltd.American Statistical Association. 

https://doi.org/10.2307/3087300 

Berg, T., & Levelt, W. J. M. (1990). Speaking: From Intention to Articulation. The American 

Journal of Psychology, 103(3), 409. https://doi.org/10.2307/1423219 

Bimler, D. L., Snellock, M., & Paramei, G. V. (2019). Art expertise in construing meaning of 

representational and abstract artworks. Acta Psychologica, 192, 11–22. 

https://doi.org/10.1016/j.actpsy.2018.10.012 

Binder, J. R., Conant, L. L., Humphries, C. J., Fernandino, L., Simons, S. B., Aguilar, M., & 

Desai, R. H. (2016). Toward a brain-based componential semantic representation. 

Cognitive Neuropsychology, 33(3–4), 130–174. 

https://doi.org/10.1080/02643294.2016.1147426 

Bolognesi, M., Pilgram, R., & van den Heerik, R. (2017). Reliability in content analysis: The 

case of semantic feature norms classification. Behavior Research Methods, 49(6), 1984–

2001. https://doi.org/10.3758/s13428-016-0838-6 

Bolognesi, M., & Vernillo, P. (2019). How abstract concepts emerge from metaphorical 

images: The metonymic way. Language and Communication, 69, 26–41. 

https://doi.org/10.1016/j.langcom.2019.05.003 

Bonin, P., Méot, A., & Bugaiska, A. (2018). Concreteness norms for 1,659 French words: 

Relationships with other psycholinguistic variables and word recognition times. 

Behavior Research Methods, 50(6), 2366–2387. https://doi.org/10.3758/s13428-018-

1014-y 

Bonin, P., Méot, A., Ferrand, L., & Bugaïska, A. (2013). Normes d’associations verbales pour 

520 mots concrets et étude de leurs relations avec d’autres variables psycholinguistiques. 

L’Année Psychologique, 113, 63–92. 

Bonin, P., Méot, A., Ferrand, L., & Bugaïska, A. (2015). Sensory experience ratings (SERs) 

for 1,659 French words: Relationships with other psycholinguistic variables and visual 

word recognition. Behavior Research Methods, 47(3), 813–825. 

https://doi.org/10.3758/s13428-014-0503-x 

Borge-Holthoefer, J., & Arenas, A. (2010). Semantic networks: Structure and dynamics. 

Entropy, 12(5), 1264–1302. https://doi.org/10.3390/e12051264 

Borge-Holthoefer, J., Moreno, Y., & Arenas, A. (2012). Topological versus dynamical 

robustness in a lexical network. International Journal of Bifurcation and Chaos, 22(7), 

1–9. https://doi.org/10.1142/S021812741250157X 

Borghi, A. M., Barca, L., Binkofski, F., Castelfranchi, C., Pezzulo, G., & Tummolini, L. 

(2018). Words as social tools: Language, sociality and inner grounding in abstract 

concepts. Physics of Life Reviews, 29, 120–153. 

https://doi.org/10.1016/j.plrev.2018.12.001 

Borghi, A. M., Binkofski, F., Castelfranchi, C., Cimatti, F., Scorolli, C., & Tummolini, L. 

(2017). The challenge of abstract concepts. Psychological Bulletin, 143(3), 263–292. 

https://doi.org/10.1037/bul0000089 



224 
 

Borghi, A. M., & Cimatti, F. (2010). Embodied cognition and beyond: Acting and sensing the 

body. Neuropsychologia, 48(3), 763–773. 

https://doi.org/10.1016/j.neuropsychologia.2009.10.029 

Borghi, A. M., & Pecher, D. (2011). Introduction to the special topic Embodied and Grounded 

Cognition. Frontiers in Psychology. https://doi.org/10.3389/fpsyg.2011.00187 

Borghi, A. M., Scorolli, C., Caligiore, D., Baldassarre, G., & Tummolini, L. (2013). The 

embodied mind extended: Using words as social tools. Frontiers in Psychology, 4. 

https://doi.org/10.3389/fpsyg.2013.00214 

Borghi, A., Tummolini, L., & Borghi, A. M. (2020). Behavioral and Brain Sciences-

Commentary on Gilead, Trope & Liberman Touch me if you can: the intangible but 

grounded nature of abstract concepts. https://doi.org/10.1017/S0140525X19003091 

Bork, P., Jensen, L. J., Von Mering, C., Ramani, A. K., Lee, I., & Marcotte, E. M. (2004). 

Protein interaction networks from yeast to human. Current Opinion in Structural 

Biology, 14(3), 292–299. https://doi.org/10.1016/J.SBI.2004.05.003 

Bruni, E., Tran, N. K., & Baroni, M. (2014). Multimodal distributional semantics. Journal of 

Artificial Intelligence Research, 49, 1–47. https://doi.org/10.1613/jair.4135 

Brysbaert, M., Mandera, P., & Keuleers, E. (2018). The Word Frequency Effect in Word 

Processing: An Updated Review. Current Directions in Psychological Science, 27(1), 

45–50. https://doi.org/10.1177/0963721417727521 

Brysbaert, M., Mandera, P., McCormick, S. F., & Keuleers, E. (2019). Word prevalence 

norms for 62,000 English lemmas. Behavior Research Methods, 51(2), 467–479. 

https://doi.org/10.3758/s13428-018-1077-9 

Brysbaert, M., Stevens, M., Mandera, P., & Keuleers, E. (2016). How Many Words Do We 

Know? Practical Estimates of Vocabulary Size Dependent on Word Definition, the 

Degree of Language Input and the Participant’s Age. Frontiers in Psychology, 7. 

https://doi.org/10.3389/fpsyg.2016.01116 

Brysbaert, M., Warriner, A. B., & Kuperman, V. (2014). Concreteness ratings for 40 thousand 

generally known English word lemmas. Behavior Research Methods, 46(3), 904–911. 

https://doi.org/10.3758/s13428-013-0403-5 

Brysbaert, M., Warriner, A. B., & Kuperman, V. (2014). Concreteness ratings for 40 thousand 

English word lemmas. Behavior Research Methods, 46(3), 904–911. 

Buchanan, E. M., Holmes, J. L., Teasley, M. L., & Hutchison, K. A. (2013). English semantic 

word-pair norms and a searchable Web portal for experimental stimulus creation. 

Behavior Research Methods, 45(3), 746–757. https://doi.org/10.3758/s13428-012-0284-z 

Buchanan, E. M., Valentine, K. D., & Maxwell, N. P. (2019). English semantic feature 

production norms: An extended database of 4436 concepts. Behavior Research Methods, 

51(4), 1849–1863. https://doi.org/10.3758/s13428-019-01243-z 

Bugaiska, A., Morson, S., Moulin, C. J. A., & Souchay, C. (2011). Metamemory, recollection 

and familiarity in Alzheimer’s disease. Revue Neurologique, 167(1), 3–13. 

https://doi.org/10.1016/j.neurol.2010.03.001 

Carota, F., Kriegeskorte, N., Nili, H., & Pulvermüller, F. (2017). Representational Similarity 

Mapping of Distributional Semantics in Left Inferior Frontal, Middle Temporal, and 

Motor Cortex. Cerebral Cortex (New York, N.Y. : 1991), 27(1), 294–309. 

https://doi.org/10.1093/cercor/bhw379 

Chedid, G., Brambati, S. M., Bedetti, C., Rey, A. E., Wilson, M. A., & Vallet, G. T. (2019). 

Visual and auditory perceptual strength norms for 3,596 French nouns and their 

relationship with other psycholinguistic variables. Behavior Research Methods, 51(5), 

2094–2105. https://doi.org/10.3758/s13428-019-01254-w 

Chedid, G., Wilson, M. A., Bedetti, C., Rey, A. E., Vallet, G. T., & Brambati, S. M. (2019). 

Norms of conceptual familiarity for 3,596 French nouns and their contribution in lexical 



225 
 

decision. Behavior Research Methods, 51(5), 2238–2247. 

https://doi.org/10.3758/s13428-018-1106-8 

Choudhury, M., & Mukherjee, A. (2009). The Structure and Dynamics of Linguistic 

Networks. Modeling and Simulation in Science, Engineering and Technology, 42, 145–

166. https://doi.org/10.1007/978-0-8176-4751-3_9 

Collins, A. M., & Loftus, E. F. (1975). A spreading-activation theory of semantic processing. 

Psychological Review, 82(6), 407–428. https://doi.org/10.1037/0033-295X.82.6.407 

Coltheart, M. (1981). The MRC Psycholinguistic Database. The Quarterly Journal of 

Experimental Psychology Section A, 33, 497–505. 

https://doi.org/10.1080/14640748108400805 

Connell, L., Lynott, D., & Banks, B. (2018). Interoception: The forgotten modality in 

perceptual grounding of abstract and concrete concepts. Philosophical Transactions of 

the Royal Society B: Biological Sciences, 373(1752). 

https://doi.org/10.1098/rstb.2017.0143 

Cree, G. S., McRae, K., & McNorgan, C. (1999). An Attractor Model of Lexical Conceptual 

Processing: Simulating Semantic Priming. Cognitive Science, 23(3), 371–414. 

https://doi.org/10.1207/s15516709cog2303_4 

Crutch, S. J. (2005). Abstract and concrete concepts have structurally different 

representational frameworks. Brain, 128(3), 615–627. 

https://doi.org/10.1093/brain/awh349 

Crutch, S. J., Connell, S., & Warrington, E. K. (2009). The different representational 

frameworks underpinning abstract and concrete knowledge: Evidence from odd-one-out 

judgements. Quarterly Journal of Experimental Psychology, 62(7), 1377–1390. 

https://doi.org/10.1080/17470210802483834 

Crutch, S. J., & Jackson, E. C. (2011). Contrasting graded effects of semantic similarity and 

association across the concreteness spectrum. Quarterly Journal of Experimental 

Psychology, 64(7), 1388–1408. https://doi.org/10.1080/17470218.2010.543285 

Crutch, S. J., & Warrington, E. K. (2010). The differential dependence of abstract and 

concrete words upon associative and similarity-based information: Complementary 

semantic interference and facilitation effects. Cognitive Neuropsychology, 27(1), 46–71. 

https://doi.org/10.1080/02643294.2010.491359 

Crutch, S. J., & Warrington, E. K. (2005). Abstract and concrete concepts have structurally 

different representational frameworks. Brain, 128(3), 615–627. 

https://doi.org/10.1093/brain/awh349 

Csardi, G., & Nepusz, T. (2006). The igraph software package for complex network research. 

InterJournal Complex Systems, Complex Sy, 1695. Retrieved from http://igraph.sf.net 

De Deyne, S., Navarro, D. J., & Storms, G. (2013). Better explanations of lexical and 

semantic cognition using networks derived from continued rather than single-word 

associations. Behavior Research Methods, 45(2), 480–498. 

https://doi.org/10.3758/s13428-012-0260-7 

De Deyne, S., Navarro, D. J., Perfors, A., Brysbaert, M., & Storms, G. (2019). The “Small 

World of Words” English word association norms for over 12,000 cue words. Behavior 

Research Methods, 51(3), 987–1006. https://doi.org/10.3758/s13428-018-1115-7 

De Deyne, S., Navarro, D. J., Perfors, A., Brysbaert, M., & Storms, G. (2019). Measuring the 

associative structure of English: The “Small World of Words” norms for word 

association. Behavior Resarch Methods, 51(3), 987–1006. Retrieved from 

http://compcogscisydney.org/publications/DeDeyneNPBS_swow.pdf 

De Deyne, S., & Storms, G. (2008). Word associations: Network and semantic properties. 

Behavior Research Methods, 40(1), 213–231. https://doi.org/10.3758/BRM.40.1.213 



226 
 

De Deyne, S., & Storms, G. (2008). Word associations: Norms for 1,424 Dutch words in a 

continuous task. Behavior Research Methods, 40(1), 198–205. 

https://doi.org/10.3758/BRM.40.1.198 

de Deyne, S., Verheyen, S., Ameel, E., Vanpaemel, W., Dry, M. J., Voorspoels, W., & 

Storms, G. (2008). Exemplar by feature applicability matrices and other Dutch normative 

data for semantic concepts. Behavior Research Methods, 40(4), 1030–1048. 

https://doi.org/10.3758/BRM.40.4.1030 

De Vega, M., Glenberg, A., & Graesser, A. (2008). Symbols and embodiment: Debates on 

meaning and cognition. Symbols and Embodiment: Debates on Meaning and Cognition. 

Oxford University Press. https://doi.org/10.1093/acprof:oso/9780199217274.001.0001 

Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., & Harshman, R. (1990). 

Indexing by latent semantic analysis. Journal of the American Society for Information 

Science, 41(6), 391–407. https://doi.org/10.1002/(SICI)1097-

4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9 

Della Rosa, P. A., Catricalà, E., Vigliocco, G., & Cappa, S. F. (2010). Beyond the abstract-

concrete dichotomy: Mode of acquisition, concreteness, imageability, familiarity, age of 

acquisition, context availability, and abstractness norms for a set of 417 Italian words. 

Behavior Research Methods, 42(4), 1042–1048. https://doi.org/10.3758/BRM.42.4.1042 

Dellantonio, S., Job, R., & Mulatti, C. (2014). Imageability: Now you see it again (albeit in a 

different form). Frontiers in Psychology. Frontiers Media SA. 

https://doi.org/10.3389/fpsyg.2014.00279 

den Heyer, K., & Briand, K. (1986). Priming Single Digit Numbers: Automatic Spreading 

Activation Dissipates as a Function of Semantic Distance. The American Journal of 

Psychology, 99(3), 315–340. https://doi.org/10.2307/1422488 

Devereux, B. J., Tyler, L. K., Geertzen, J., & Randall, B. (2014). The Centre for Speech, 

Language and the Brain (CSLB) concept property norms. Behavior Research Methods, 

46(4), 1119–1127. https://doi.org/10.3758/s13428-013-0420-4 

Deyne, S. De, Verheyen, S., & Storms, G. (2016). Structure and Organization of the Mental 

Lexicon: A Network Approach Derived from Syntactic Dependency Relations and Word 

Associations. Understanding Complex Systems, 99, 47–79. https://doi.org/10.1007/978-

3-662-47238-5_3 

Dove, G. (2009). Beyond perceptual symbols: A call for representational pluralism. 

Cognition, 110(3), 412–431. https://doi.org/10.1016/j.cognition.2008.11.016 

Dove, G. (2011). On the need for Embodied and Dis-Embodied Cognition. Frontiers in 

Psychology, 1. https://doi.org/10.3389/fpsyg.2010.00242 

Dove, G. (2014). Thinking in Words: Language as an Embodied Medium of Thought. Topics 

in Cognitive Science, 6(3), 371–389. https://doi.org/10.1111/tops.12102 

Duñabeitia, J. A., Avilés, A., Afonso, O., Scheepers, C., & Carreiras, M. (2009). Qualitative 

differences in the representation of abstract versus concrete words: Evidence from the 

visual-world paradigm. Cognition, 110(2), 284–292. 

https://doi.org/10.1016/j.cognition.2008.11.012 

Duscherer, K., & Mounoud, P. (2006). Word association norms for 151 action verbs. Annee 

Psychologique, 106(3), 397–413. https://doi.org/10.4074/S0003503306003046 

Eakin, D. K. (2005). Illusions of knowing: Metamemory and memory under conditions of 

retroactive interference. Journal of Memory and Language, 52(4), 526–534. 

https://doi.org/10.1016/j.jml.2005.01.009 

Erdos, P., & Rényi, A. (1960). On the evolution of random graphs. Publications of the 

Mathematical Institute of the Hungarian Academy of Sciences, 5(1), 17–60. 



227 
 

Evert, S., & Baroni, M. (2007). zipfR: Word frequency distributions in R. In Proceedings of 

the 45th annual meeting of the ACL on interactive poster and demonstration sessions 

(pp. 29–32). 

Evert, S., & Baroni, M. (2005). Testing the extrapolation quality of word frequency models. 

In Proceedings of Corpus Linguistics (Vol. 2006). 

Fernández, Á., Díez, E., Alonso, M. Á., & Beato, M. S. (2004). Free-association norms for the 

Spanish names of the Snodgrass and Vanderwart pictures. Behavior Research Methods, 

Instruments, & Computers, 36, 577–583. https://doi.org/10.3758/BF03195604 

Ferrand, L. (2001). Normes d’associations verbales pour 260 mots « abstraits » [Word 

association norms for 260 “abstract” words]. Annee Psychologique, 101(4), 683–721. 

https://doi.org/10.3406/psy.2001.29575 

Ferrand, L., & Alario, F. X. (1998). Word association norms for 366 names of objects. Annee 

Psychologique, 98(4), 659–709. https://doi.org/10.3406/psy.1998.28564 

Ferrand, L., & Alario, F. X. (1998). Word association norms for 366 names of objects. [Word 

association norms for 366 concrete objects words]. Annee Psychologique, 98(4), 659–

709. https://doi.org/10.3406/psy.1998.28564 

Ferrand, L., Méot, A., Spinelli, E., New, B., Pallier, C., Bonin, P., … Grainger, J. (2018). 

MEGALEX: A megastudy of visual and auditory word recognition. Behavior Research 

Methods, 50(3), 1285–1307. https://doi.org/10.3758/s13428-017-0943-1 

Ferrand, L., & New, B. (2003). Semantic and associative priming in the mental lexicon. 

Mental Lexicon: Some Words to Talk about Words, 25–43. 

Ferrand, L., New, B., Brysbaert, M., Keuleers, E., Bonin, P., Méot, A., … Pallier, C. (2010). 

The French lexicon project: Lexical decision data for 38,840 French words and 38,840 

pseudo words. Behavior Research Methods, 42(2), 488–496. 

https://doi.org/10.3758/BRM.42.2.488 

Ferré, P., Guasch, M., García-Chico, T., & Sánchez-Casas, R. (2015). Are there qualitative 

differences in the representation of abstract and concrete words? Within-language and 

cross-language evidence from the semantic priming paradigm. Quarterly Journal of 

Experimental Psychology (2006), 68(12), 2402–2418. 

https://doi.org/10.1080/17470218.2015.1016980 

Ferretti, T. R., McRae, K., & Hatherell, A. (2001). Integrating Verbs, Situation Schemas, and 

Thematic Role Concepts. Journal of Memory and Language, 44(4), 516–547. 

https://doi.org/10.1006/jmla.2000.2728 

Firth, J. R. (1957). Applications of General Linguistics. Transactions of the Philological 

Society, 56(1), 1–14. https://doi.org/10.1111/j.1467-968X.1957.tb00568.x 

Fischer, M. H., & Zwaan, R. A. (2008). Embodied language: A review of the role of the 

motor system in language comprehension. Quarterly Journal of Experimental 

Psychology, 61(6), 825–850. https://doi.org/10.1080/17470210701623605 

Fodor, J. A., & M.I.T. Press. (2001). The mind doesn’t work that way : the scope and limits of 

computational psychology. MIT Press. 

Fukś, H., & Krzemiński, M. (2009). Topological structure of dictionary graphs. Journal of 

Physics A: Mathematical and Theoretical, 42(37), 375101. https://doi.org/10.1088/1751-

8113/42/37/375101 

Gallese, V., & Lakoff, G. (2005). The brain’s concepts: The role of the sensory-motor system 

in conceptual knowledge. Cognitive Neuropsychology. 

https://doi.org/10.1080/02643290442000310 

Geng, J., & Schnur, T. T. (2015). The representation of concrete and abstract concepts: 

Categorical versus associative relationships. Journal of Experimental Psychology: 

Learning Memory and Cognition, 41(1), 22–41. https://doi.org/10.1037/a0037430 



228 
 

Gerstenberg, T., & Tenenbaum, J. B. (2017). Intuitive theories. In The Oxford handbook of 

causal reasoning. (pp. 515–547). New York, NY, US: Oxford University Press. 

Gilead, M., Liberman, N., & Maril, A. (2012). Construing counterfactual worlds: The role of 

abstraction. European Journal of Social Psychology, 42(3), 391–397. 

https://doi.org/10.1002/ejsp.1862 

Gimenes, M., & New, B. (2016). Worldlex: Twitter and blog word frequencies for 66 

languages. Behavior Research Methods, 48(3), 963–972. https://doi.org/10.3758/s13428-

015-0621-0 

Glenberg, A. M. (1997). What memory is for. Behavioral and Brain Sciences, 20(1), 1–19. 

Glenberg, A. M. (2004). Mental models, space, and embodied cognition. In Creative thought: 

An investigation of conceptual structures and processes. (pp. 495–522). American 

Psychological Association. https://doi.org/10.1037/10227-018 

Glenberg, A. M., & Kaschak, M. P. (2002). Grounding language in action. Psychonomic 

Bulletin and Review, 9(3), 558–565. https://doi.org/10.3758/BF03196313 

Goldstone, R. L., & Rogosky, B. J. (2002). Using relations within conceptual systems to 

translate across conceptual systems. Cognition, 84(3), 295–320. 

https://doi.org/10.1016/S0010-0277(02)00053-7 

Griffiths, T. L., Steyvers, M., & Tenenbaum, J. B. (2007). Topics in semantic representation. 

Psychological Review, 114(2), 211–244. https://doi.org/10.1037/0033-295X.114.2.211 

Gronau, Q. F., Ly, A., & Wagenmakers, E.-J. (2019). Informed Bayesian t -Tests. The 

American Statistician, 1–14. https://doi.org/10.1080/00031305.2018.1562983 

Hamilton, A. C., & Coslett, H. B. (2008). Refractory access disorders and the organization of 

concrete and abstract semantics: Do they differ? Neurocase, 14(2), 131–140. 

https://doi.org/10.1080/13554790802032218 

Harpaintner, M., Sim, E. J., Trumpp, N. M., Ulrich, M., & Kiefer, M. (2020). The grounding 

of abstract concepts in the motor and visual system: An fMRI study. Cortex, 124, 1–22. 

https://doi.org/10.1016/j.cortex.2019.10.014 

Harpaintner, M., Trumpp, N. M., & Kiefer, M. (2018). The semantic content of abstract 

concepts: A property listing study of 296 abstract words. Frontiers in Psychology, 9. 

https://doi.org/10.3389/fpsyg.2018.01748 

Harris, Z. S. (1954). Distributional Structure. Distributional Structure, WORD, 10(3), 146–

162. https://doi.org/10.1080/00437956.1954.11659520 

Herdan, G. (1964). Quantitative Linguistics. London: Buttersworths. 

Heyman, T., De Deyne, S., Hutchison, K. A., & Storms, G. (2015). Using the speeded word 

fragment completion task to examine semantic priming. Behavior Research Methods, 

47(2), 580–606. https://doi.org/10.3758/s13428-014-0496-5 

Hill, F., & Korhonen, A. (n.d.). Learning Abstract Concept Embeddings from Multi-Modal 

Data: Since You Probably Can’t See What I Mean. 

Hoffman, P., Binney, R. J., & Lambon Ralph, M. A. (2015). Differing contributions of 

inferior prefrontal and anterior temporal cortex to concrete and abstract conceptual 

knowledge. Cortex, 63, 250–266. 

https://doi.org/https://doi.org/10.1016/j.cortex.2014.09.001 

Hoffman, P., McClelland, J. L., & Lambon Ralph, M. A. (2018). Concepts, control, and 

context: A connectionist account of normal and disordered semantic cognition. 

Psychological Review, 125(3), 293–328. https://doi.org/10.1037/rev0000094 

Hu, J., Chen, Y., Zhuo, S., … H. C.-B. of, & 2017, undefined. (n.d.). Word association norms 

and associated responses: Reference index for 1200 two-character Chinese words. 

Psycnet.Apa.Org. Retrieved from https://psycnet.apa.org/record/2017-52184-003 



229 
 

Humphries, M. D., & Gurney, K. (2008). Network ‘Small-World-Ness’: A Quantitative 

Method for Determining Canonical Network Equivalence. PLOS ONE, 3(4), e0002051. 

https://doi.org/10.1371/JOURNAL.PONE.0002051 

Hutchison, K. A. (2003). Is semantic priming due to association strength or feature overlap? 

A microanalytic review. Psychonomic Bulletin & Review 2003 10:4, 10(4), 785–813. 

https://doi.org/10.3758/BF03196544 

Hutchison, K. A., Balota, D. A., Neely, J. H., Cortese, M. J., Cohen-Shikora, E. R., Tse, C. S., 

… Buchanan, E. (2013). The semantic priming project. Behavior Research Methods, 

45(4), 1099–1114. https://doi.org/10.3758/s13428-012-0304-z 

Hutchison, K. A., Balota, D. A., Cortese, M. J., & Watson, J. M. (2008). Predicting semantic 

priming at the item level. Quarterly Journal of Experimental Psychology (2006), 61(7), 

1036–1066. https://doi.org/10.1080/17470210701438111 

Jenkins, J. J. (1970). THE 1952 MINNESOTA WORD ASSOCIATION NORMS. In Norms 

of Word Association (pp. 1–38). Elsevier. https://doi.org/10.1016/b978-0-12-563050-

4.50004-2 

Jones, M. N., & Mewhort, D. J. K. (2007). Representing word meaning and order information 

in a composite holographic lexicon. Psychological Review, 114(1), 1–37. 

https://doi.org/10.1037/0033-295X.114.1.1 

Joyce, T. (2005). Constructing a Large-Scale Database of Japanese Word Associations. 

Glottometrics, 10, 82–99. 

Juhasz, B. J., & Yap, M. J. (2013). Sensory experience ratings for over 5,000 mono- and 

disyllabic words. Behavior Research Methods, 45(1), 160–168. 

https://doi.org/10.3758/s13428-012-0242-9 

Jung, J., Li, N., & Akama, H. (2010). Network Analysis of Korean Word Associations. 

Proceedings of the NAACL HLT 2010 First Workshop on Computational 

Neurolinguistics, 27–35. Retrieved from 

http://www.aclweb.org/anthology/W/W10/W10-0604 

Karimkhani, F., Rahmani, H., Zare, A., Sahebnassagh, R., & Aghakasiri, K. (2021). Tarvajeh: 

Word Association Norms for Persian Words. Journal of Psycholinguistic Research, 

50(4), 863–882. https://doi.org/10.1007/s10936-020-09751-2 

Wiemer-Hastings, K., & Xu, X. (2005). Content Differences for Abstract and Concrete 

Concepts. Cognitive Science, 29(5), 719–736. 

https://doi.org/10.1207/s15516709cog0000_33 

Keeling, M., & Rohani, P. (2011). Modeling infectious diseases in humans and animals 

(Princeton:). https://doi.org/https://doi.org/10.1515/9781400841035 

Kenett, Y. N., Levi, E., Anaki, D., & Faust, M. (2017). The semantic distance task: 

Quantifying semantic distance with semantic network path length. Journal of 

Experimental Psychology: Learning Memory and Cognition, 43(9), 1470–1489. 

https://doi.org/10.1037/XLM0000391 

Keuleers, E., Brysbaert, M., & New, B. (2010). SUBTLEX-NL: A new measure for Dutch 

word frequency based on film subtitles. Behavior Research Methods, 42(3), 643–650. 

https://doi.org/10.3758/BRM.42.3.643 

Keuleers, E., Stevens, M., Mandera, P., & Brysbaert, M. (2015). Word knowledge in the 

crowd: Measuring vocabulary size and word prevalence in a massive online experiment. 

Quarterly Journal of Experimental Psychology (2006), 68(8), 1665–1692. 

https://doi.org/10.1080/17470218.2015.1022560 

Kiefer, M., & Pulvermüller, F. (2012). Conceptual representations in mind and brain: 

Theoretical developments, current evidence and future directions. Cortex, 48(7), 805–

825. https://doi.org/10.1016/j.cortex.2011.04.006 



230 
 

Kim, S. Y., Yap, M. J., & Goh, W. D. (2019). The role of semantic transparency in visual 

word recognition of compound words: A megastudy approach. Behavior Research 

Methods, 51(6), 2722–2732. https://doi.org/10.3758/s13428-018-1143-3 

Kintsch, W., McNamara, D. S., Dennis, S., Landauer, T. K., McNamara, D. S., Dennis, S., & 

Landauer, T. K. (2007). LSA and Meaning: in Theory and Application, 479–492. 

https://doi.org/10.4324/9780203936399-32 

Kircher, T., Whitney, C., Krings, T., Huber, W., & Weis, S. (2008). Hippocampal dysfunction 

during free word association in male patients with schizophrenia. Schizophrenia 

Research, 101(1–3), 242–255. https://doi.org/10.1016/j.schres.2008.02.003 

Kiss, G. R., Armstrong, C., Milroy, R., & Piper, J. (1972). The Edinburgh Associative 

Thesaurus. The Edinburgh Associative Thesaurus. Retrieved from url: https://w3id. 

org/associations/eat. nt. gz. 

Kitsak, M., Gallos, L. K., Havlin, S., Liljeros, F., Muchnik, L., Stanley, H. E., & Makse, H. 

A. (2010). Identification of influential spreaders in complex networks. Nature Physics 

2010 6:11, 6(11), 888–893. https://doi.org/10.1038/nphys1746 

Kolaczyk, E. D., & Csárdi, G. (2014). Statistical Analysis of Network Data with R. New York: 

Springer. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-

44129-6 

Kousta, S. T., Vigliocco, G., Vinson, D. P., Andrews, M., & Del Campo, E. (2011). The 

Representation of Abstract Words: Why Emotion Matters. Journal of Experimental 

Psychology: General, 140(1), 14–34. https://doi.org/10.1037/a0021446 

Kremer, G., & Baroni, M. (2011). A set of semantic norms for German and Italian. Behavior 

Research Methods, 43(1), 97–109. https://doi.org/10.3758/s13428-010-0028-x 

Kruschke, J. K. (2010). Bayesian data analysis. Wiley Interdisciplinary Reviews: Cognitive 

Science, 1(5), 658–676. https://doi.org/10.1002/wcs.72 

Kuipers, J. R., Jones, M. W., & Thierry, G. (2018). Abstract images and words can convey the 

same meaning. Scientific Reports, 8(1), 1–6. https://doi.org/10.1038/s41598-018-25441-

5 

Kwong, O. Y. (2013). Exploring the chinese mental lexicon with word association norms. 

27th Pacific Asia Conference on Language, Information, and Computation, PACLIC 27, 

153–162. 

Lakhzoum, D., Izaute, M., & Ferrand, L. (2021). Semantic similarity and associated 

abstractness norms for 630 French word pairs. Behavior Research Methods, 53, 1166–

1178. https://doi.org/10.3758/s13428-020-01488-z 

Lakoff, G., & Johnson, M. (1980). Conceptual Metaphor in Everyday Language. The Journal 

of Philosophy, 77(8), 453. https://doi.org/10.2307/2025464 

Landauer, T. K., & Dumais, S. T. (1997). A Solution to Plato’s Problem: The Latent Semantic 

Analysis Theory of Acquisition, Induction, and Representation of Knowledge. 

Psychological Review, 104(2), 211–240. https://doi.org/https://doi.org/10.1037/0033-

295X.104.2.211 

Laws, J., & Ryder, C. (2018). Register variation in spoken British English. International 

Journal of Corpus Linguistics, 23(1), 1–27. https://doi.org/10.1075/ijcl.16036.law 

Lebani, G. E., Bondielli, A., & Lenci, A. (2015). You Are What you Do. An Empirical 

Characterization of the Semantic Content of the Thematic Roles for a Group of Italian 

Verbs. Journal of Cognitive Science (Vol. 16). 

Lee, M. D., & Vanpaemel, W. (2018). Determining informative priors for cognitive models. 

Psychonomic Bulletin and Review, 25(1), 114–127. https://doi.org/10.3758/s13423-017-

1238-3 



231 
 

Leech, G., Garside, R., & Bryant, M. (1994). CLAWS4: The tagging of the British National 

Corpus. Proceedings of the 15th International Conference on Computational Linguistics, 

622–628. 

Lenci, A. (2008). Distributional semantics in linguistic and cognitive research. Italian Journal 

of Linguistics, 20, 1–31. 

Lenci, A. (2018). Distributional Models of Word Meaning. Annual Review of Linguistics, 

4(1), 151–171. https://doi.org/10.1146/annurev-linguistics-030514-125254 

Lenci, A., Baroni, M., Cazzolli, G., & Marotta, G. (2013). BLIND: A set of semantic feature 

norms from the congenitally blind. Behavior Research Methods, 45(4), 1218–1233. 

https://doi.org/10.3758/s13428-013-0323-4 

Lenci, A., Lebani, G. E., & Passaro, L. C. (2018). The Emotions of Abstract Words: A 

Distributional Semantic Analysis. Topics in Cognitive Science, 10(3), 550–572. 

https://doi.org/10.1111/tops.12335 

Lerner, A. J., Ogrocki, P. K., & Thomas, P. J. (2009). Network graph analysis of category 

fluency testing. Cognitive and Behavioral Neurology, 22(1), 45–52. 

https://doi.org/10.1097/WNN.0B013E318192CCAF 

Levelt, W. J. M.; Willem J. M. (1989). Speaking: from intention to articulation. MIT Press. 

Levelt, W. J. M., Roelofs, A., & Meyer, S. (1999). A theory of lexical access in speech 

production Ant je. Retrieved from www.mpi.nl 

Levelt, W. J. M., Roelofs, A., & Meyer, A. S. (1999). A theory of lexical access in speech 

production. Behavioral and Brain Sciences. 

https://doi.org/10.1017/S0140525X99001776 

Liu, C. C., & Aitkin, M. (2008). Bayes factors: Prior sensitivity and model generalizability. 

Journal of Mathematical Psychology, 52(6), 362–375. 

https://doi.org/10.1016/j.jmp.2008.03.002 

Louwerse, M. M. (2011). Symbol Interdependency in Symbolic and Embodied Cognition. 

Topics in Cognitive Science, 3(2), 273–302. https://doi.org/10.1111/j.1756-

8765.2010.01106.x 

Louwerse, M. M. (2008). Embodied relations are encoded in language. Psychonomic Bulletin 

and Review, 15(4), 838–844. https://doi.org/10.3758/PBR.15.4.838 

Louwerse, M. M. (2011). Symbol interdependency in symbolic and embodied cognition. 

Topics in Cognitive Science, 3(2), 273–302. https://doi.org/10.1111/j.1756-

8765.2010.01106.x 

Louwerse, M. M., & Jeuniaux, P. (2010). The linguistic and embodied nature of conceptual 

processing. Cognition, 114(1), 96–104. https://doi.org/10.1016/j.cognition.2009.09.002 

Louwerse, M., & Jeuniaux, P. (2008). Language comprehension is both embodied and 

symbolic. In Symbols and EmbodimentDebates on meaning and cognition (pp. 309–

326). Oxford University Press. 

https://doi.org/10.1093/acprof:oso/9780199217274.003.0015 

Ly, A., Verhagen, J., & Wagenmakers, E. J. (2016). Harold Jeffreys’s default Bayes factor 

hypothesis tests: Explanation, extension, and application in psychology. Journal of 

Mathematical Psychology, 72, 19–32. https://doi.org/10.1016/j.jmp.2015.06.004 

M, S., & JB, T. (2005). The large-scale structure of semantic networks: statistical analyses 

and a model of semantic growth. Cognitive Science, 29(1), 41–78. 

https://doi.org/10.1207/S15516709COG2901_3 

Machery, E. (2016). The amodal brain and the offloading hypothesis. Psychonomic Bulletin 

and Review, 23(4), 1090–1095. https://doi.org/10.3758/s13423-015-0878-4 

Mahon, B. Z., & Caramazza, A. (2009). Concepts and Categories: A Cognitive 

Neuropsychological Perspective. Annual Review of Psychology, 60(1), 27–51. 

https://doi.org/10.1146/annurev.psych.60.110707.163532 



232 
 

Maki, W. S., Krimsky, M., & Muñoz, S. (2006). An efficient method for estimating semantic 

similarity based on feature overlap: Reliability and validity of semantic feature ratings. 

Behavior Research Methods, 38(1), 153–157. https://doi.org/10.3758/BF03192761 

Mandera, P., Keuleers, E., & Brysbaert, M. (2017). Explaining human performance in 

psycholinguistic tasks with models of semantic similarity based on prediction and 

counting: A review and empirical validation. Journal of Memory and Language, 92, 57–

78. https://doi.org/10.1016/j.jml.2016.04.001 

Mate, J., Allen, R. J., & Baqués, J. (2012). What you say matters: exploring visual-verbal 

interactions in visual working memory. Quarterly Journal of Experimental Psychology 

(2006), 65(3), 395–400. https://doi.org/10.1080/17470218.2011.644798 

Mathôt, S. (n.d.). Mathôt S. (2017). Bayes Like a Baws: Interpreting Bayesian Repeated 

Measures in JASP. [Google Scholar] - Recherche Google. Retrieved October 20, 2020, 

from 

https://www.google.com/search?q=Mathôt+S.+(2017).+Bayes+Like+a+Baws%3A+Inter

preting+Bayesian+Repeated+Measures+in+JASP.+%5BGoogle+Scholar%5D&ie=utf-

8&oe=utf-8&aq=t 

McNamara, T. P. (2005). Semantic priming: Perspectives from memory and word 

recognition. Semantic priming: Perspectives from memory and word recognition. New 

York, NY, US: Psychology Press. https://doi.org/10.4324/9780203338001 

McNamara, T. P. (1992). Theories of Priming: I. Associative Distance and Lag. Journal of 

Experimental Psychology: Learning, Memory, and Cognition, 18(6), 1173–1190. 

https://doi.org/10.1037/0278-7393.18.6.1173 

McRae, K., & Boisvert, S. (1998). Automatic semantic similarity priming. Journal of 

Experimental Psychology: Learning Memory and Cognition, 24(3), 558–572. 

https://doi.org/10.1037/0278-7393.24.3.558 

McRae, K., Cree, G. S., Seidenberg, M. S., & McNorgan, C. (2005). Semantic feature 

production norms for a large set of living and nonliving things. Behavior Research 

Methods, 37(4), 547–559. https://doi.org/10.3758/BF03192726 

McRae, K., De Sa, V. R., & Seidenberg, M. S. (1997). On the Nature and Scope of Featural 

Representations of Word Meaning. Journal of Experimental Psychology: General, 

126(2), 99–130. https://doi.org/10.1037/0096-3445.126.2.99 

McRae, K., Nedjadrasul, D., Pau, R., Lo, B. P. H., & King, L. (2018). Abstract Concepts and 

Pictures of Real-World Situations Activate One Another. Topics in Cognitive Science, 

10(3), 518–532. https://doi.org/10.1111/tops.12328 

Meteyard, L., Cuadrado, S. R., Bahrami, B., & Vigliocco, G. (2012). Coming of age: A 

review of embodiment and the neuroscience of semantics. Cortex, 48(7), 788–804. 

https://doi.org/10.1016/j.cortex.2010.11.002 

Meteyard, L., Rodriguez Cuadrado, S., Bahrami, B., & Vigliocco, G. (n.d.). Coming of age: a 

review of embodiment and the neuroscience of semantics. 

Meyer, D. E., & Schvaneveldt, R. W. (1971). Facilitation in recognizing pairs of words: 

Evidence of a dependence between retrieval operations. Journal of Experimental 

Psychology, 90(2), 227–234. https://doi.org/10.1037/h0031564 

Milgram, S. (1967). The small world problem. Psychology Today, 2(1), 60–67. 

Mitchell, M. (2019). Artificial Intelligence Hits the Barrier of Meaning. Information, 10(2), 

51. https://doi.org/10.3390/info10020051 

Mitchell, M. (2019). Artificial Intelligence Hits the Barrier of Meaning. Information. 

Retrieved from https://pdxscholar.library.pdx.edu/compsci_fac/194 

Moldovan, C. D., Ferré, P., Demestre, J., & Sánchez-Casas, R. (2015). Semantic similarity: 

normative ratings for 185 Spanish noun triplets. Behavior Research Methods, 47(3), 

788–799. https://doi.org/10.3758/s13428-014-0501-z 



233 
 

Mollin, S. (2009). Combining corpus linguistic and psychological data on word co-

occurrences: Corpus collocates versus word associations, 5, 175–200. 

https://doi.org/https://doi.org/10.1515/CLLT.2009.008 

Moreno, S., & Neville, J. (2013). Network Hypothesis Testing Using Mixed Kronecker 

Product Graph Models. In 2013 IEEE 13th International Conference on Data Mining 

(pp. 1163–1168). https://doi.org/10.1109/ICDM.2013.165 

Moss, H., Older, L., & Older, L. (1996). Birkbeck word association norms. Psychology Press. 

Motter, A., Moura, A., Lai, Y.-C., & Dasgupta, P. (2002). Topology of the conceptual 

network of language. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 

65, 65102. https://doi.org/10.1103/PhysRevE.65.065102 

Neely, J. H., & Kahan, T. A. (2004). Is semantic activation automatic? A critical re-

evaluation. In The nature of remembering: Essays in honor of Robert G. Crowder. (pp. 

69–93). American Psychological Association. https://doi.org/10.1037/10394-005 

Nelson, D. L., McEvoy, C. L., & Schreiber, T. A. (2004). The University of South Florida 

free association, rhyme, and word fragment norms. Behavior Research Methods, 

Instruments, and Computers. Psychonomic Society Inc. 

https://doi.org/10.3758/BF03195588 

Nelson, D. L., McEvoy, C. L., & Dennis, S. (2000). What is free association and what does it 

measure? Memory & Cognition, 28, 887–899. 

New, B., Brysbaert, M., Veronis, J., & Pallier, C. (2007). The use of film subtitles to estimate 

word frequencies. Applied Psycholinguistics, 28(4), 661–677. 

https://doi.org/10.1017/S014271640707035X 

New, B., Ferrand, L., Pallier, C., & Brysbaert, M. (2006). Reexamining the word length effect 

in visual word recognition: New evidence from the English Lexicon Project. 

Psychonomic Bulletin and Review, 13(1), 45–52. https://doi.org/10.3758/BF03193811 

New, B., Pallier, C., Brysbaert, M., & Ferrand, L. (2004). Lexique 2: A new French lexical 

database. Behavior Research Methods, Instruments, and Computers. Psychonomic 

Society Inc. https://doi.org/10.3758/BF03195598 

New, B., Pallier, C., Ferrand, L., & Matos, R. (2001). A lexical database for contemporary 

french on internet : LEXIQUE. Annee Psychologique, 101(3), 447–462. 

https://doi.org/10.3406/psy.2001.1341 

Newman, M. E. J. (2006). Modularity and community structure in networks. Proceedings of 

the National Academy of Sciences of the United States of America, 103(23), 8577–8582. 

https://doi.org/10.1073/pnas.0601602103 

Nishiyama, R. (2013). Dissociative contributions of semantic and lexical-phonological 

information to immediate recognition. Journal of Experimental Psychology: Learning 

Memory and Cognition, 39(2), 642–648. https://doi.org/10.1037/a0029160 

Nosofsky, R. M. (2012). The generalized context model: an exemplar model of classification. 

Formal Approaches in Categorization, 18–39. 

https://doi.org/10.1017/cbo9780511921322.002 

Oliveira, J., Perea, M. V., Ladera, V., & Gamito, P. (2013). The roles of word concreteness 

and cognitive load on interhemispheric processes of recognition. Laterality, 18(2), 203–

215. https://doi.org/10.1080/1357650X.2011.649758 

Ostarek, M., & Huettig, F. (2019). Six Challenges for Embodiment Research. Current 

Directions in Psychological Science, 28(6), 593–599. 

https://doi.org/10.1177/0963721419866441 

Paivio, A., Yuille, J. C., & Madigan, S. A. (1968). Concreteness, imagery, and 

meaningfulness values for 925 nouns. Journal of Experimental Psychology, 76, 1–25. 

https://doi.org/10.1037/h0025327 



234 
 

Paradis, C., Willners, C., & Jones, S. (2009). Good and bad opposites: Using textual and 

experimental techniques to measure antonym canonicity. The Mental Lexicon, 4(3), 380–

429. https://doi.org/10.1075/ml.4.3.04par 

Pastor-Satorras, R., & Vespignani, A. (2001). Epidemic spreading in scale-free networks. 

Physical Review Letters, 86(14), 3200–3203. 

https://doi.org/10.1103/PhysRevLett.86.3200 

Pecher, D. (2018). Curb Your Embodiment. Topics in Cognitive Science, 10(3), 501–517. 

https://doi.org/10.1111/tops.12311 

Peng, G. S., Tan, S. Y., Wu, J., & Holme, P. (2016). Trade-offs between robustness and 

small-world effect in complex networks. Scientific Reports, 6, 1–10. 

https://doi.org/10.1038/srep37317 

Perea, M., & Rosa, E. (2002). The effects of associative and semantic priming in the lexical 

decision task. Psychological Research, 66(3), 180–194. https://doi.org/10.1007/s00426-

002-0086-5 

Plaut, D. C., & Booth, J. R. (2000). Individual and developmental differences in semantic 

priming: Empirical and computational support for a single-mechanism account of lexical 

processing. Psychological Review, 107(4), 786–823. https://doi.org/10.1037/0033-

295X.107.4.786 

Plaut, D. C., & Erlbaum Associates, L. (1995). Semantic and Associative Priming in a 

Distributed Attractor Network. 

Prior, A., & Bentin, S. (2008). Word associations are formed incidentally during sentential 

semantic integration. Acta Psychologica, 127(1), 57–71. 

Pulvermüller, F. (2005). Brain mechanisms linking language and action. Nature Reviews 

Neuroscience. Nature Publishing Group. https://doi.org/10.1038/nrn1706 

Pulvermüller, F. (2018). Neural reuse of action perception circuits for language, concepts and 

communication. Progress in Neurobiology. Elsevier Ltd. 

https://doi.org/10.1016/j.pneurobio.2017.07.001 

Pulvermüller, F. (2013, September). How neurons make meaning: Brain mechanisms for 

embodied and abstract-symbolic semantics. Trends in Cognitive Sciences. 

https://doi.org/10.1016/j.tics.2013.06.004 

Pulvermüller, F., Shtyrov, Y., & Ilmoniemi, R. (2005). Brain signatures of meaning access in 

action word recognition. Journal of Cognitive Neuroscience, 17(6), 884–892. 

https://doi.org/10.1162/0898929054021111 

Pylyshyn, Z. W. (1980). Cognitive representation and the process-architecture 

distinction:Cognitive representation and the process-architecture distinction. Behavioral 

and Brain Sciences. Cambridge University Press. 

https://doi.org/10.1017/S0140525X00002302 

Recchia, G., & Jones, M. N. (2012). The semantic richness of abstract concepts. Frontiers in 

Human Neuroscience, 6. https://doi.org/10.3389/fnhum.2012.00315 

Richardson, J. T. E. (1975). Concreteness and Imageability. Quarterly Journal of 

Experimental Psychology, 27(2), 235–249. https://doi.org/10.1080/14640747508400483 

Roelofs, A. (1997). The WEAVER model of word-form encoding in speech production. 

Cognition, 64(3), 249–284. https://doi.org/10.1016/S0010-0277(97)00027-9 

Rogers, T. T., & Mcclelland, J. L. (2004). Semantic Cognition: A Parallel Distributed 

Processing Approach. 

Rouder, J. N., & Morey, R. D. (2011). A Bayes factor meta-analysis of Bem’s ESP claim. 

Psychonomic Bulletin and Review, 18(4), 682–689. https://doi.org/10.3758/s13423-011-

0088-7 



235 
 

Salavaty, A., Ramialison, M., & Currie, P. D. (2020). Integrated Value of Influence: An 

Integrative Method for the Identification of the Most Influential Nodes within Networks. 

Patterns, 1(5), 100052. https://doi.org/10.1016/j.patter.2020.100052 

Sánchez-Casas, R., Ferré, P., García-Albea, J. E., & Guasch, M. (2006). The nature of 

semantic priming: Effects of the degree of semantic similarity between primes and 

targets in Spanish. European Journal of Cognitive Psychology, 18(2), 161–184. 

https://doi.org/10.1080/09541440500183830 

Schepman, A., & Rodway, P. (2019). Shared Meaning in Representational and Abstract 

Visual Art: An Empirical Study. Psychology of Aesthetics, Creativity, and the Arts. 

https://doi.org/10.1037/aca0000279 

Schloss, B., & Li, P. (2016). Disentangling narrow and coarse semantic networks in the brain: 

The role of computational models of word meaning. Behavior Research Methods, 49(5), 

1582–1596. https://doi.org/10.3758/s13428-016-0807-0 

Schwanenflugel, P. J., Harnishfeger, K. K., & Stowe, R. W. (1988). Context availability and 

lexical decisions for abstract and concrete words. Journal of Memory and Language, 

27(5), 499–520. https://doi.org/10.1016/0749-596X(88)90022-8 

Schwanenflugel, P. J., Harnishfeger, K. K., & Stowe, R. W. (1988). Context availability and 

lexical decisions for abstract and concrete words. Journal of Memory and Language, 

27(5), 499–520. https://doi.org/10.1016/0749-596X(88)90022-8 

Shallice, T., & Cooper, R. P. (2013). Is there a semantic system for abstract words? Frontiers 

in Human Neuroscience, 7, 175. https://doi.org/10.3389/fnhum.2013.00175 

Siew, C. S. Q., Wulff, D. U., Beckage, N. M., & Kenett, Y. N. (2019). Cognitive Network 

Science: A Review of Research on Cognition through the Lens of Network 

Representations, Processes, and Dynamics. Complexity, 2019, 2108423. 

https://doi.org/10.1155/2019/2108423 

Sigman, M., & Cecchi, G. A. (2002). Global organization of the Wordnet lexicon. 

Proceedings of the National Academy of Sciences, 99(3), 1742–1747. 

https://doi.org/10.1073/PNAS.022341799 

Smith, E. E., Shoben, E. J., & Rips, L. J. (1974). Structure and process in semantic memory: 

A featural model for semantic decisions. Psychological Review, 81(3), 214–241. 

https://doi.org/10.1037/h0036351 

Sperber, A. D., Devellis, R. F., & Boehlecke, B. (1994). Cross-Cultural Translation. Journal 

of Cross-Cultural Psychology, 25(4), 501–524. 

https://doi.org/10.1177/0022022194254006 

Stanfield, R. A., & Zwaan, R. A. (2001). The effect of implied orientation derived from verbal 

context on picture recognition. Psychological Science, 12(2), 153–156. 

https://doi.org/10.1111/1467-9280.00326 

Stella, M., Beckage, N. M., Brede, M., & De Domenico, M. (2018). Multiplex model of 

mental lexicon reveals explosive learning in humans. Scientific Reports 2018 8:1, 8(1), 

1–11. https://doi.org/10.1038/s41598-018-20730-5 

Taconnat, L., Raz, N., Toczé, C., Bouazzaoui, B., Sauzéon, H., Fay, S., & Isingrini, M. 

(2009). Ageing and organisation strategies in free recall: The role of cognitive flexibility. 

European Journal of Cognitive Psychology, 21, 347–365. 

https://doi.org/10.1080/09541440802296413 

Thompson-Schill, S. L., Kurtz, K. J., & Gabrieli, J. D. E. (1998). Effects of semantic and 

associative relatedness on automatic priming. Journal of Memory and Language, 38(4), 

440–458. 

van Noort, V., Snel, B., & Huynen, M. A. (2004). The yeast coexpression network has a 

small-world, scale-free architecture and can be explained by a simple model. EMBO 

Reports, 5(3), 280–284. https://doi.org/10.1038/sj.embor.7400090 



236 
 

Vanpaemel, W. (2010). Prior sensitivity in theory testing: An apologia for the Bayes factor. 

Journal of Mathematical Psychology, 54(6), 491–498. 

https://doi.org/10.1016/j.jmp.2010.07.003 

Veremyev, A., Semenov, A., Pasiliao, E. L., & Boginski, V. (2019). Graph-based exploration 

and clustering analysis of semantic spaces. Applied Network Science, 4(1). 

https://doi.org/10.1007/s41109-019-0228-y 

Verhagen, J., & Wagenmakers, E.-J. (2014). Bayesian Tests to Quantify the Result of a 

Replication Attempt. https://doi.org/10.1037/a0036731 

Vigliocco, G., Meteyard, L., Andrews, M., & Kousta, S. (2009). Toward a theory of semantic 

representation. Language and Cognition, 1(2), 219–247. 

https://doi.org/10.1515/langcog.2009.011 

Vigliocco, G., & Vinson, D. P. (2012). Semantic representation. In The Oxford Handbook of 

Psycholinguistics. Oxford University Press. 

https://doi.org/10.1093/oxfordhb/9780198568971.013.0012 

Vigliocco, G., Vinson, D. P., Lewis, W., & Garrett, M. F. (2004). Representing the meanings 

of object and action words: The featural and unitary semantic space hypothesis. 

Cognitive Psychology, 48(4), 422–488. https://doi.org/10.1016/j.cogpsych.2003.09.001 

Vigliocco, G., Vinson, D., Andrews, M., & Del Campo, E. (2013). The Representation of 

Abstract Words: What Matters? Reply to Paivio’s (2013) Comment on Kousta et al. 

(2011). Association, 142(1), 288–291. https://doi.org/10.1037/a0028749 

Villani, C., Lugli, L., Liuzza, M. T., & Borghi, A. M. (2019). Varieties of abstract concepts 

and their multiple dimensions. Language and Cognition, 11(3), 403–430. 

https://doi.org/10.1017/langcog.2019.23 

Vinson, D. P., & Vigliocco, G. (2008). Semantic feature production norms for a large set of 

objects and events. Behavior Research Methods, 40(1), 183–190. 

https://doi.org/10.3758/BRM.40.1.183 

Vivas, J., Vivas, L., Comesaña, A., Coni, A. G., & Vorano, A. (2017). Spanish semantic 

feature production norms for 400 concrete concepts. Behavior Research Methods, 49(3), 

1095–1106. https://doi.org/10.3758/s13428-016-0777-2 

Wang, H., & Song, M. (n.d.). Ckmeans.1d.dp: Optimal k-means Clustering in One Dimension 

by Dynamic Programming. 

Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. Nature 

1998 393:6684, 393, 440–442. https://doi.org/10.1038/30918 

West, J. T., & Mulligan, N. W. (2019). Prospective Metamemory, Like Retrospective 

Metamemory, Exhibits Underconfidence With Practice. Journal of Experimental 

Psychology: Learning Memory and Cognition, 45. https://doi.org/10.1037/xlm0000708 

Wiemer-Hastings, K., & Xu, X. (2005). Content differences for abstract and concrete 

concepts. Cognitive Science, 29(5), 719–736. 

https://doi.org/10.1207/s15516709cog0000_33 

Wilson-Mendenhall, C. D., Simmons, W. K., Martin, A., & Barsalou, L. W. (2013). 

Contextual processing of abstract concepts reveals neural representations of nonlinguistic 

semantic content. Journal of Cognitive Neuroscience, 25(6), 920–935. 

https://doi.org/10.1162/jocn_a_00361 

Wu, L. ling, & Barsalou, L. W. (2009). Perceptual simulation in conceptual combination: 

Evidence from property generation. Acta Psychologica, 132(2), 173–189. 

https://doi.org/10.1016/j.actpsy.2009.02.002 

Yap, M. J., & Balota, D. A. (2009). Visual word recognition of multisyllabic words. Journal 

of Memory and Language, 60(4), 502–529. https://doi.org/10.1016/j.jml.2009.02.001 



237 
 

Yarkoni, T., Balota, D., & Yap, M. (2008). Moving beyond Coltheart’s N: A new measure of 

orthographic similarity. Psychonomic Bulletin and Review, 15(5), 971–979. 

https://doi.org/10.3758/PBR.15.5.971 

Yee Kwong, O. (2013). Exploring the Chinese Mental Lexicon with Word Association Norms. 

aclweb.org. Retrieved from https://www.aclweb.org/anthology/Y13-1013.pdf 

Zwaan, R. A. (2004). The Immersed Experiencer: Toward An Embodied Theory Of Language 

Comprehension. Psychology of Learning and Motivation - Advances in Research and 

Theory, 44, 35–62. https://doi.org/10.1016/S0079-7421(03)44002-4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


