Filter your results
- 5
- 3
- 3
- 2
- 2
- 1
- 5
- 3
- 3
- 2
- 1
- 1
- 1
- 1
- 2
- 5
- 4
- 1
- 3
- 3
- 3
- 2
- 2
- 2
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 2
- 2
- 1
- 5
- 3
- 3
- 2
- 2
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 3
- 2
|
|
sorted by
|
|
Antarctic Atmospheric River Climatology and Precipitation ImpactsJournal of Geophysical Research: Atmospheres, 2021, 126 (8), ⟨10.1029/2020jd033788⟩
Journal articles
hal-03277274v1
|
||
|
Choosing the future of AntarcticaNature, 2018, 558 (7709), pp.233 - 241. ⟨10.1038/s41586-018-0173-4⟩
Journal articles
cea-01872832v1
|
||
West Antarctic surface melt triggered by atmospheric riversNature Geoscience, 2019, 12 (11), pp.911-916. ⟨10.1038/s41561-019-0460-1⟩
Journal articles
hal-02402395v1
|
|||
|
Intense atmospheric rivers can weaken ice shelf stability at the Antarctic PeninsulaCommunications Earth & Environment, 2022, 3, pp.90. ⟨10.1038/s43247-022-00422-9⟩
Journal articles
hal-03874419v1
|
||
|
Asynchrony between Antarctic temperature and CO$_2$ associated with obliquity over the past 720,000 yearsNature Communications, 2018, 9, pp.961. ⟨10.1038/s41467-018-03328-3⟩
Journal articles
cea-01875223v1
|