Filter your results
- 18
- 2
- 2
- 2
- 18
- 2
- 2
- 2
- 1
- 2
- 2
- 8
- 3
- 2
- 12
- 3
- 2
- 1
- 15
- 3
- 13
- 12
- 10
- 10
- 5
- 5
- 4
- 4
- 4
- 3
- 2
- 1
- 1
- 1
- 1
- 1
- 1
- 18
- 2
- 1
- 13
- 12
- 6
- 5
- 4
- 1
- 15
- 3
|
|
sorted by
|
|
Multi-image segmentation: A collaborative approach based on binary partition treesInternational Symposium on Mathematical Morphology (ISMM), 2015, Reykjavik, Iceland. pp.253-264, ⟨10.1007/978-3-319-18720-4_22⟩
Conference papers
hal-01695074v1
|
||
Construction d’arbres binaires de partitions à partir de caractéristiques multiples pour la segmentation d’imagesSAGEO - Atelier collaboration, classification, connaissances et données de l’environnement (C3DE@SAGEO), 2016, Nice, France
Conference papers
hal-01726297v1
|
|||
|
On the Use of Ontology as a priori Knowledge into Constrained ClusteringIEEE International Conference on Data Science and Advanced Analytics (DSAA), Oct 2016, Montreal, Canada
Conference papers
hal-01400122v1
|
||
Segmentation multi-image : approche collaborative basée sur les arbres binaires de partitionsJournée ISS France, 2015, Paris, France
Conference papers
hal-01694957v1
|
|||
|
Génération de contraintes pour le clustering à partir d'une ontologie - Application à la classification d'images satellitesExtraction et Gestion des Connaissances (EGC), Jan 2016, Reims, France
Conference papers
hal-01372021v1
|
||
|
Unsupervised quantification of under- and over-segmentation for object-based remote sensing image analysisIEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8 (5), pp.1936-1945. ⟨10.1109/JSTARS.2015.2424457⟩
Journal articles
hal-01694375v1
|
||
|
Approche hybride à base d'ontologie pour le clustering par contraintesLa conférence internationale francophone AAFD & SFC 2016, May 2016, Marrakech, Maroc
Conference papers
hal-01402428v1
|
||
|
Intrinsic quality analysis of binary partition treesInternational Conference on Pattern Recognition and Artificial Intelligence (ICPRAI), 2018, Montréal, Canada. pp.114-119
Conference papers
hal-01695077v1
|
||
Construction d’arbres binaires de partitions multi-critères pour la segmentation d’images satellitesJournées Big Data Mining and Visualization, 2016, Metz, France
Conference papers
hal-01726315v1
|
|||
|
Construction d’arbres binaires de partitions multi-critères pour la segmentation d’imagesJournées du GdR MADICS, 2016, Paris, France. 2016
Conference poster
hal-01726206v1
|
||
|
Binary partition tree construction from multiple features for image segmentationPattern Recognition, 2018, 84, pp.237-250. ⟨10.1016/j.patcog.2018.07.003⟩
Journal articles
hal-01248042v5
|
||
|
Réflexions sur l'évaluation supervisée de la qualité d'un arbre binaire de partitions d'imageExtraction et Gestion des Connaissances - Atelier Fouille de Données Complexes (FDC@EGC), 2017, Grenoble, France
Conference papers
hal-01694887v1
|
||
|
Multivalued component-tree filteringInternational Conference on Pattern Recognition (ICPR), 2014, Stockholm, Sweden. pp.1008-1013, ⟨10.1109/ICPR.2014.183⟩
Conference papers
hal-01695070v1
|
||
|
Towards Ontology Reasoning for Topological Cluster LabelingInternational Conference on Neural Information Processing, Oct 2016, Kyoto, Japan. pp.156 - 164, ⟨10.1007/978-3-319-46675-0_18⟩
Conference papers
hal-01438892v1
|
||
|
Connected filtering based on multivalued component-treesIEEE Transactions on Image Processing, 2014, 23 (12), pp.5152-5164. ⟨10.1109/TIP.2014.2362053⟩
Journal articles
hal-01694358v1
|
||
|
Evaluating the quality of binary partition trees based on uncertain semantic ground-truth for image segmentationInternational Conference on Image Processing (ICIP), 2017, Beijing, China. pp.3874-3878, ⟨10.1109/ICIP.2017.8297008⟩
Conference papers
hal-01719337v1
|
||
|
Approches hiérarchiques et gestion de l’incertitude pour l’analyse d’images de télédétectionFouille Collaborative Incrémentale de Masses de Données Multisources Multitemporelle : Application en Sciences de l’Environnement, 2016, Strasbourg, France. 2016
Conference poster
hal-01726217v1
|
||
|
A Semantic-Based Approach for Landscape IdentificationBruno Pinaud; Fabrice Guillet; Fabien Gandon; Christine Largeron. Advances in Knowledge Discovery and Management, 834, Springer, pp.119-136, 2019, Studies in Computational Intelligence, 978-3-030-18129-1. ⟨10.1007/978-3-030-18129-1_6⟩
Book sections
hal-02164143v1
|