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Abstract
Complex cellular functions are usually encoded by a set of genes in one or a few orga-
nized genetic loci in microbial genomes. Macromolecular System Finder (MacSyFinder)
is a program that uses these properties to model and then annotate cellular functions in
microbial genomes. This is done by integrating the identification of each individual gene
at the level of the molecular system.We hereby present a major release of MacSyFinder
(version 2) coded in Python 3. The codewas improved and rationalized to facilitate future
maintainability. Several new features were added to allowmore flexible modelling of the
systems. We introduce a more intuitive and comprehensive search engine to identify all
the best candidate systems and sub-optimal ones that respect the models’ constraints.
We also introduce the novelmacsydata companion tool that enables the easy installation
and broad distribution of the models developed for MacSyFinder (macsy-models) from
GitHub repositories. Finally, we have updated and improved MacSyFinder popular mod-
els: TXSScan to identify protein secretion systems, TFFscan to identify type IV filaments,
CONJscan to identify conjugative systems, and CasFinder to identify CRISPR associated
proteins. MacSyFinder and the updatedmodels are available at: https://github.com/gem-
pasteur/macsyfinder and https://github.com/macsy-models.
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Introduction 

Microbial machineries and pathways (hereafter called “systems”) can be very complex and involve 
many proteins. In the genomes of Bacteria and Archaea, the proteins constituting these systems are often 
encoded in a highly organized way, involving one or a few operons with functionally related genes. For 
example, loci encoding the peptides of a protein complex or the enzymes of a metabolic pathway have 
specific genetic organizations that tend to be remarkably conserved (Dandekar et al., 1998; Teichmann & 
Babu, 2002). Neighbouring operons in genomes are also often functionally related (Huynen et al., 2000). 
This means that gene co-localization can be used to infer gene functions and improve homology inference, 
e.g., when sequence similarity is low. Co-localization also facilitates the distinction between functionally 
diverging homologs (Abby & Rocha, 2012). The hypothesis is that the member of the gene family that co-
localizes with the rest of the system’s genes is the one involved in the functioning of this system. In addition, 
many cellular processes require the involvement of a coherent ensemble of proteins. In such cases, the 
genetic potential for a function can only be identified when the repertoire of genes is analyzed at the 
system-level. For example, a minimum set of proteins (and thus of encoding genes) is necessary for the 
functioning of a protein secretion system. 

In 2014, we published the “Macromolecular System Finder” (MacSyFinder v1) program for the 
functional annotation of cellular machineries and metabolic pathways in microbial genomes (Abby et al., 
2014). It makes a system-level annotation that takes advantage of the typical functional organization of 
microbial genomes (gene co-localization) and the requirement of a core set of proteins to perform the 
function (quorum). Such concepts have already been successfully applied in other annotation tools, such 
as KEGG mapper (quorum) (Kanehisa & Sato, 2019), Antismash (quorum and co-localization) (Blin et al., 
2021) or Pathways Tool (Karp et al., 2020) for accurate annotations of enzymes participating in metabolic 
pathways. Yet these tools were created to make specific metabolic annotations, and were not designed for 
the user to develop their own annotation tools for any type of macromolecular system. MacSyFinder 
consists of a generic modelling framework and a search engine to screen genomes for candidate systems. 
The modelling framework enables the user to define models for the systems of interest, including the 
corresponding genes’ identity, category, and genetic organization. MacSyFinder v1 has three categories of 
genes: mandatory, accessory, and forbidden. Parameters of gene co-localization describe the genomic 
architecture of the system at the level of each gene or of the entire system. Each gene corresponds to one 
HMM (hidden Markov model) protein profile to enable sequence similarity search with HMMER (Eddy, 
2011), and different genes (thus protein profiles) can be defined as exchangeable if they have the same 
role in the system. The search engine screens a database of genomes for potential systems using HMM 
profile searches and the clustering of co-localized hits along the genome that match the systems’ model.  

MacSyFinder has been used with success to annotate a variety of microbial machineries and pathways, 
including protein secretion systems (Abby et al., 2016), CRISPR-Cas systems (Abby et al., 2014; Couvin et 
al., 2018) and other prokaryotic defence systems (Tesson et al., 2022), capsular loci (Rendueles et al., 2017), 
DNA conjugation systems (Cury et al., 2020), the butyrate production pathway (Sharp & Foster, 2022), 
methanogenic and methylotrophic metabolisms (Adam et al., 2019; Chibani et al., 2022), cell division 
machineries (Pende et al., 2021) and outer membrane protein clusters  (Taib et al., 2020). It has enabled 
wide-scale genomic analyses of biologically relevant systems and was integrated into the popular 
MicroScope genome annotation pipeline and in the reference CRISPRCasFinder program (Couvin et al., 
2018; Vallenet et al., 2020).  

In spite of its successful applications, MacSyFinder v1 has several limitations. In terms of software 
engineering, it is coded in the now obsolete Python v2.7, lacks tools to improve its future development and 
maintenance, and some parts of the program are not efficient. In terms of modelling, it cannot use gene-
specific criteria to filter the HMMER hits when annotating the genes of a system. Furthermore, it lacks a 
way to annotate genes of interest that are neutral concerning the systems’ assessment. More importantly, 
the greedy search engine is not optimal and has complex, sometimes counter-intuitive behaviours.  

We hereby present a major release of MacSyFinder, MacSyFinder version 2 (v2) coded in Python 3 (>= 
3.7). In addition, we have updated and improved the most popular MacSyFinder models to the new version 
to make them readily usable. 
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Material and methods 

Input & Output files 
MacSyFinder v2, like v1, takes as input files the models of the systems to search and a multi-protein 

FASTA file (Figure 1). The user defines the search mode that corresponds to the nature of the input FASTA 
file. When all the proteins encoded by a replicon are ordered in the file following the genes’ order, one can 
use the most powerful search mode – “ordered_replicon” – to include both the analysis of the genetic 
content (quorum) and of the genetic organization. Otherwise, the search mode “unordered” is used, and 
only the genetic content is assessed.  

Of note, recommendations on how to use MacSyFinder on incomplete or fragmented genomes are 
included in the “How To” section of the User guide. In a nutshell and depending on the level of assembly 
and completeness of the genome, we recommend to run MacSyFinder with the “ordered_replicon” mode, 
which can be complemented by the results of an “unordered” run. Results using the “ordered replicon” 
option on draft genomes have to be considered with care.  

A third option is to use the “gembase” mode. This requires that multiple ordered genomes are provided 
in a single FASTA file using headers with a pre-determined naming convention (see documentation). The 
program Panacota (Perrin & Rocha, 2021) can provide such a database. A Nextflow workflow 
“parallel_macsyfinder” is provided at the MacSyFinder GitHub repository to enable the analysis of multiple 
genomes in parallel based on a “gembase” file  (see the User guide 
https://macsyfinder.readthedocs.io/en/latest/user_guide/big_data.html). 

The significant modifications in terms of input and output in v2 concern the organization of the input 
systems’ models (“macsy-model” packages, see below) and the output files. The latter were adapted to 
reflect the new MacSyFinder search engine results. In addition, various easy-to-parse text tabulated files 
are now proposed as output, including the raw and filtered results of the proteins’ similarity search with 
HMMER, the gene-wise description of the possible systems, the systems constituting the best solutions, 
and the gene-wise description of rejected candidates. For more details, one can consult MacSyFinder’s 
comprehensive documentation, including the User Guide, the Modeller Guide, and the Developer Guide, 
created with Sphinx and available at: https://macsyfinder.readthedocs.io/. Two datasets showing 
command line examples and expected input and output files are provided on the Figshare platform: 
https://doi.org/10.6084/m9.figshare.21581280 (Abby, 2022a) and 
https://doi.org/10.6084/m9.figshare.21716426.v1 (Abby, 2022b). 

Formalizing macsy-model packages   
MacSyFinder v1 required two directories containing one or several systems’ models (“definitions” 

folder) and the corresponding HMM profiles (“profiles” folder). These files were passed to the command 
line as mandatory parameters and were distributed as standalone archives. Unfortunately, these had the 
inconvenience of being poorly versionable or traceable. To improve the reproducibility of analyses with 
MacSyFinder v2, we increased the traceability of the models and facilitated their retrieval and installation 
by formalizing a package structure that we call “macsy-model” package (see Fig. S1 (Abby, 2023)).  

A macsy-model package must have two directories: “definitions” and “profiles”. The “definitions” 
directory contains all model definitions written in the MacSyFinder-specific XML grammar (one file per 
model definition). This directory can include several sub-directories and levels (Fig. S1 (Abby, 2023)). The 
“profiles” directory contains all HMM protein profiles included in the definitions. In addition, a new file, 
“metadata.yml”, was introduced to store necessary metadata such as the package name, version, 
description, citation, distribution license, and the contacts of its author(s)/maintainer(s). 

Some facultative but recommended files can be added: LICENSE/copying, Contributing, README.md, 
and model_conf.xml. The README.md file should explain how to use the models and can be displayed 
using the command macsydata help (see below). The file model_conf.xml allows the modeller to set 
package-specific configurations such as score configuration options (see paragraph on scoring) or criteria 
to filter the hits when searching the genes’ proteins (profile coverage threshold, usage of GA scores with 
HMMER, etc.). The user can easily supersede these recommended values using the command line and 
configuration files.  
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Grammar update for the modelling framework 
The models of MacSyFinder are written using a dedicated XML grammar with a hierarchy that fits the 

hierarchical nature of the biological systems to model: systems’ models are made of gene components (Fig. 
3, Supplementary Table 1 (Abby, 2023)). The two main objects in the hierarchy of a system’s model are 
thus the “model” (replacing the “system” keyword in v1) at the top level and the “gene” at the lower level. 
In addition, a feature “vers” was added at the model level to indicate the version of the grammar: 
“vers=2.0” matches MacSyFinder v2.  

We simplified the XML grammar to ensure better readability and easier maintenance of the models 
(Fig. 3, Supplementary Table 1 (Abby, 2023)). Relative to the first version, some keywords were removed 
or merged into novel ones. This is the case of the keywords “homologs” and “analogs” that were replaced 
by the new keyword “exchangeables” to indicate that some genes can be “exchanged” by others (i.e., fill 
the same role in systems). The gene attribute “exchangeable” was thus removed as not needed anymore. 
The “system_ref” keyword was also removed. 

When designing a system’s model or investigating the distribution of genes within genomic occurrences 
of a system, one may want to annotate genes that are not important to the identification/discrimination 
of the system but provide information on accessory functions. To achieve this, we introduced a new type 
of gene called “neutral”. It adds to the pre-existing types - mandatory, accessory, and forbidden - with the 
key difference that it is not used to score the systems or to assess their quorum (minimal number of genes 
required in a system). Neutral genes are identified using HMM protein profiles and placed into clusters like 
the other genes. Hence, even if they do not contribute to the scoring of systems, they can “connect” or 
“extend” clusters of mandatory and accessory genes.  

Details, examples, and a tutorial concerning the XML grammar v2 are available in MacSyFinder’s 
documentation, which now includes a novel section called the “Modeller Guide” to explain how to build 
novel models of systems. This is also the focus of our recent book chapter that covers all aspects of the 
modelling process (Abby et al., 2023). We hereby provide some of the most popular models translated with 
improvements for MacSyFinder v2 (Table 1). They are readily usable and installable through the macsydata 
program (see Results section).  

Enabling gene-wise filtering by setting up GA scores 
The HMMER search for the systems’ genes can now use the “GA” (Gathering) bit scores of the 

corresponding HMM protein profiles. This score can be defined for each HMM profile to set a score 
threshold for the inclusion of the hit in the HMMER search results. The GA score is usually used as a minimal 
score limit for protein family inclusion (e.g. by PFAM). Using the GA score allows employing gene-wise 
criteria for protein hit filtering instead of having the same criteria for all genes (as in v1 of MacSyFinder). If 
a GA score is present in the HMM profile file, the system calls HMMER using the option “—cut_ga”, which 
supersedes the i-evalue (for “independent e-value”, a stringent type of e-value as computed by HMMER) 
and profile coverage default values otherwise used in the absence of GA scores. It is possible to deactivate 
the GA scores using the new option “—no-cut-ga” (False by default). The rules for the filtering of the protein 
hits can be specified (by decreasing order of priority): in the command line, in the model configuration file 
of the system (“model_conf.xml”), or using the HMM protein profile GA scores (or the “i-evalue” and 
“profile coverage” if GA scores not provided).  

Many of the HMM protein profiles used in MacSyFinder models already include GA thresholds because 
they were retrieved from PFAM or TIGRFam, which systematically use them (Sonnhammer et al., 1997; 
Haft et al., 2003). Yet, some other profiles lacked GA thresholds. To remediate this limitation, we modified 
these profiles to include threshold GA scores. We did this for CasFinder, TXSScan, CONJScan, and TFFscan 
profiles (see Table 1). To this end, we annotated with the corresponding models the completely assembled 
genomes of 21105 bacterial and archaeal strains retrieved from the non-redundant NCBI RefSeq database 
(as of March, 2021, see Dataset S1). We analysed the distribution of the scores for the hits for the different 
genes found in the detected systems, and attributed as GA score the minimal score observed to the 
corresponding profile.  

In total, 1000 HMM profiles from the four packages are available with GA scores. They now offer the 
possibility for gene-wise filtering with HMMER, ensuring optimal usage of the 104 macsy-models hereby 
updated for MacSyFinder v2. 
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Sharing and handling macsy-models with the macsydata command and the “MacSy Models” 
organization 

The novel tool “macsydata” was created to make macsy-model packages easily traceable, versionable, 
shareable, and automatically installable. It was designed to be as light as possible for the modellers and 
was inspired by the packaging workflows found in some Linux distributions such as Gentoo 
(https://www.gentoo.org). In addition, the macsydata API was inspired by pip, which is familiar to most 
Python users. macsydata implements common sub-commands such as search, install, upgrade, uninstall, 
and help (see Table 2). We also implemented some specific useful sub-commands for MacSyFinder, such 
as cite to display how to cite the macsy-model package, definition to show a set of models’ definitions in 
XML format, or init to initialize a template for a new macsy-model package.  

The “MacSy Models” Github organization was designed to serve as an umbrella organization to host 
any macsy-model package. It allows the modeller to efficiently distribute its packages to all MacSyFinder 
v2 users. Firstly, one must create a git repository and develop a macsy-model package e.g., following the 
Modeller guide or the recommendations in (Abby et al., 2023). Secondly, the quality of the package 
(package structure, model definitions syntax, the coherence between definitions and profiles) can be 
checked using the macsydata check command on the directory containing the entire file architecture of a 
macsy-model package (Fig. S1 (Abby, 2023)). Finally, when everything is up to standards, the modeller has 
just to tag the repository and push it under the Github organization “MacSy Models”. This action allows 
the model package to be visible from the macsydata search tool and thus findable and accessible for 
remote installation to all MacSyFinder users. macsydata uses the Github Rest API to search and download 
the packages. Of note, macsydata can also install macsy-model packages from a tarball archive, given it 
respects the above-described file architecture. 

The macsyprofile companion tool 
The novel tool “macsyprofile” of the MacSyFinder suite allows filtering and extracting HMMER hits with 

settings different from those used during the run. This allows retrieving relevant hits not initially included 
in predicted systems, e.g., to understand why they were “missed”. This could be particularly useful to assist 
the design of the profiles and the systems’ models or to search for atypical versions of the systems (see 
details in the online documentation).  

Comparison of MacSyFinder v1 and v2 
MacSyFinder version 1.0.5 and MacSyfinder v2.0.0 were run on the dataset of complete bacterial and 

archaeal genomes described above (RefSeq March 2021) to detect the TXSS and related systems. The 
models of TXSScan v1.1.1 were used with MacSyFinder v2 while the models published in (Denise et al., 
2019) for the TFF-SF and (Abby et al., 2016) for the other secretion systems were used with MacSyFinder 
v1. The total number of systems detected in the dataset were compared between the two MacSyFinder 
versions for each type of system. The same was done to compare the median system wholeness 
(proportion of the model-listed genes detected) for each system.  

Testing the performance of MacsyFinder v2 
We evaluated the performance of MacSyfinder by measuring the running time and the RAM used. We 

measured the overall time of the run and the time spent in several parts of the software: the genes 
identification by HMMER (hmmsearch) and the resolution of the best solution. To assess the used RAM, 
we prefixed the macsyfinder command line by the “/usr/bin/time -v” utility and extracted the “Maximum 
resident set size” value. We ran the analysis on a sub-set of the above-described complete genomes 
dataset, consisting of one genome per bacterial species. This corresponded to 6092 genomes (6455 
chromosomes, see Dataset S1). To analyze the behavior of the resolution of the best solution, we ran 
macsyfinder with these genomes as input and using the “ordered_replicon” mode with three macsy-model 
sets: TXSScan/bacteria, CasFinder and CONJscan/chromosome. We also compared the novel algorithm 
based on graphs’ usage (using NetworkX) to an implementation based on a Mixed-Integer Linear Solver 
(https://www.python-mip.com/) (Supplementary Figures 4 & 5 (Abby, 2023)). To assess the time spent in 
each part of the program, we ran macsyfinder with the TXSScan/bacteria models in “gembase” mode on 
datasets gathering increasing numbers of genomes (1, 10, 20, 50, 100, 200, 500) selected from the 6092 
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genomes set. All tests were performed on the following setup: Python version 3.11, linux kernel version 5-
15.80, AMD Ryzen 7 3700X 8-Core Processor (16 threads) for CPU, and 64GB DDR4 for RAM. 

Code implementation, dependencies, and availability 
The code was ported to Python 3 (>=3.7). Many unit and functional tests were implemented to reach a 

coverage of the code of 97%. In terms of dependencies, the program requires the HMMER suite (>=3.1b2) 
for the search of proteins. It also uses several well-established and stable Python libraries to facilitate 
models’ packaging (pyyaml, packaging), deal with output files (colorlog, https://pandas.pydata.org/), and 
search for the best solution (https://networkx.org/, see below).  

The code and macsy-model packages are available on Github under the GPL v3 license: 
https://github.com/gem-pasteur/macsyfinder and https://github.com/macsy-models. In addition, a pypi 
package, a conda package and a Docker container were created to enable the easy deployment of the 
MacSyFinder suite. 

The MacSyFinder v2 search engine 

An overview of the new search engine is provided in Figure 1. The first steps of MacSyFinder v2 search 
engine remain mostly unchanged relative to v1. First, it uses HMMER to search for occurrences of the non-
redundant genes listed in the models in the input genome(s) using the corresponding HMM protein 
profiles. The best hits are assigned to the corresponding genes and are filtered by profile coverage (>50% 
by default) and i-evalue (<0.001 by default) when no GA score is available for the profiles.  

System-wise creation of candidate systems 
In version 2, the systems are searched one by one: the identified proteins have their hits filtered by 

type of system, and clusters of the corresponding genes are built from genes respecting the co-localization 
criteria (“inter-gene-max-space” parameter) (Fig. 1). Candidate systems are built using the clusters of genes 
and the genes authorized to be outside of clusters (“loner” genes). For “single-locus” systems, 
combinations of individual clusters with loner genes not yet represented in the cluster are examined as 
candidate systems. For systems allowed to be encoded by multiple loci, all possible combinations of 
identified clusters and loner genes (not found in clusters) are assessed as candidate systems. The eligible 
systems are the candidate systems that respect the systems’ model in terms of the minimal quorum criteria 
for all genes and the mandatory ones. The other systems are rejected for now and kept aside. In the case 
where “multi-system” genes are part of the systems’ model, the list of the corresponding genes will be 
collected from the eligible systems and combinatorically added to the set of rejected candidates to be 
assessed for the formation of new eligible systems.  
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Figure 1 - Overview of the major steps of MacSyFinder v2. (1) The user gives as input the genome(s) 
to analyse under the form of a multi-protein FASTA file (order respecting that of the genes on genome 
if possible) and a macsy-model package with the systems to detect. Then the search engine establishes 
the non-redundant list of corresponding genes. (2) The genes are then searched with HMMER 
(hmmsearch using GA scores when available) using the corresponding HMM protein profiles. In the 
absence of GA score, the proteins with the best hits are filtered by i-evalue and profile coverage (if no 
GA score was available). (3) A system-by-system search is then performed. The hits corresponding to 
a first system are selected (“g1” as hit for gene 1), and clusters of genes are formed by gathering the 
hits respecting the maximal inter-gene-max-space (3.1). Genes allowed to be “out-of-clusters” are 
also collected (loners and multi-systems). Then the possible combinations of clusters and “out-of-
clusters” genes are computed, and the program tests if they respect the quorum for the system (3.2). 
Finally, all candidate systems are scored (3.3). Step (3) is re-iterated for each system to be detected. 
Once all systems have been examined, the best solution is searched using a graph-based approach. 
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Step (4) A graph connecting all compatible candidate systems (i.e., systems with no shared genes) is 
built, each node having the score of the corresponding system. The best solution is defined as the set 
of compatible systems obtaining the highest cumulative score. This corresponds to the clique of 
maximal score. Diverse output files are provided to the user, including one with the composition of 
(one of) the best solution, a file with all equivalent best solutions (if several reach the highest score), 
and one with all eligible candidate systems whether they are part of the best solution or not. Drawings 
of systems at Step (1) are derived from (Denise et al., 2019).  

Introducing a scoring scheme for candidate systems 
Candidate systems that respect the quorum and co-localization conditions imposed by a system’s 

model are designated as eligible systems and are assigned a score (Fig. 2A). The core of the system score is 
the sum of three terms: the sum of the scores of the n Clusters, the sum of the scores of the o out-of-
cluster genes (loner or multi-system, see below), plus a penalty Psystem for the redundancy within the 
system.  

𝑆𝑆𝑦𝑠𝑡𝑒𝑚 = ∑ 𝑆𝐶𝑙𝑢𝑠𝑡𝑒𝑟 𝑖

𝑛

𝑖=0

+ ∑ 𝑆𝑜𝑢𝑡−𝑜𝑓−𝑐𝑙𝑢𝑠𝑡 𝑖

𝑜

𝑖=0

+ 𝑃𝑆𝑦𝑠𝑡𝑒𝑚 

Multiple occurrences of a gene within the same cluster are counted as a single occurrence of the gene. 
The score of each cluster is a function of the number of mandatory (m) and accessory genes (a), and of the 
number of exchangeable mandatory (xm) and exchangeable accessory (xa) genes it contains. These values 
are weighted to give more importance to mandatory genes: wmandatory = 1, waccessory = 0.5, and 
wneutral = 0 (Fig. 2A). Moreover, to give more value to the originally listed gene than to the listed 
“exchangeables”, a factor fexchang = 0.8 is applied to the scores when an exchangeable gene fulfils the 
function. The score SCluster is then given by: 

𝑆𝐶𝑙𝑢𝑠𝑡𝑒𝑟 = 𝑚 ×  𝑤𝑚𝑎𝑛𝑑𝑎𝑡𝑜𝑟𝑦 + 𝑓𝑒𝑥𝑐ℎ𝑎𝑛𝑔. 𝑥𝑚 × 𝑤𝑚𝑎𝑛𝑑𝑎𝑡𝑜𝑟𝑦 + 𝑎 × 𝑤𝑎𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑦 + 𝑓𝑒𝑥𝑐ℎ𝑎𝑛𝑔. 𝑥𝑎  

×  𝑤𝑎𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑦 

The score of the genes found outside of a system’s cluster is computed like the score of the genes found 
in clusters “sc” (see above), except that a factor fout-of-clust = 0.7 is applied. Here, sc can represent any of the 
gene-specific parts of the SCluster sum presented above, depending on the mandatory, accessory, and/or 
exchangeable status of the out-of-cluster gene:  

𝑆𝑜𝑢𝑡−𝑜𝑓−𝑐𝑙𝑢𝑠𝑡 =  𝑓𝑜𝑢𝑡−𝑜𝑓−𝑐𝑙𝑢𝑠𝑡. 𝑠𝑐 

A gene is deemed redundant only if found in more than one cluster. The penalty part of a score thus 
penalizes candidate systems with r redundant mandatory or accessory genes, where r thus corresponds to 
the number of clusters with the gene minus one. We define PSystem (predundant = -1.5 by default):  

𝑃𝑆𝑦𝑠𝑡𝑒𝑚 = ∑ 𝑝𝑟𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑡

𝑟

𝑖=0

 

The default values of the different score parts are indicative and allow MacSyFinder to give priority to 
mandatory over accessory components, and to favour the main listed genes over the ones listed as 
“exchangeables”. Here the relative order of the values are more important than the absolute ones, and the 
users can fully parameterize the weights, factors, and penalties. The modeller of a system can also ship, 
with a macsy-model package, its recommended values for the weights of the scoring system using the 
optional “model_conf.xml” file. 

Combinatorial exploration of solutions 
Once all models are searched and their occurrences are assigned scores (see above), the program 

performs a combinatorial examination of the possible sets of compatible systems is performed (Fig. 1 and 
2B). Two systems are deemed compatible if they are made of distinct gene sets. Thus, unless specified 
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using the “multi_system” or “multi_model” features, a gene cannot be involved in several systems. A 
MacSyFinder search solution is defined as a set of compatible systems. The search for the best solution 
corresponds to the well-known weighted maximum clique search problem (Brandes & Erlebach, 2005). The 
program builds a graph where each node represents a system with its associated score (as a weight), and 
where only compatible systems are connected with an edge. The goal is to identify a set of systems that 
are all compatible with each other, meaning that they are all inter-connected in a sub-graph. A sub-graph 
where all nodes are inter-connected is the definition of a “clique”. The best solution is thus the clique 
harboring the highest cumulated systems’ score, the score of a solution being the sum of the systems’ 
scores composing it. The “find_cliques” function proposed in the NetworkX Python library is used to find 
the set of maximal cliques that correspond to the best possible solutions in terms of cumulated nodes’ 
weights of the cliques (Hagberg et al., 2008). This may result in several solutions with the maximal score, 
in which case they are all provided to the user (file “all_best_solutions.tsv”). The best solution, or one 
among the best, is given in the dedicated output file “best_solution.tsv”.  

Results & Discussion 

Grammar changes and macsy-model file architecture enable better, simpler, and more intuitive systems’ 
modelling and sharing  

Version 1 of MacSyFinder lacked a dedicated file architecture to share MacSyFinder’s systems’ models. 
We now define a structured file architecture for the novel “macsy-model packages” (see Materials and 
Methods and Fig. S1 (Abby, 2023)). In particular, there now may be several levels of sub-directories for the 
“definitions” folder. This enables running macsyfinder with only a pre-defined subset of models and 
establishing a hierarchy of models in a biologically relevant manner. The introduction of this file 
architecture thus satisfies two main objectives: it allows the file architecture of the macsy-model packages 
to reflect the biological specificities of the systems while enabling automated handling of the macsy-model 
packages for easier distribution and installation via the macsydata tool. Several popular MacSyFinder 
models from v1 were ported to MacSyFinder v2 grammar and file architecture. They are now available at 
the “MacSy Models” Github organization for automated installation with MacSyFinder v2 using the 
macsydata tool (discussed in detail below, see also Materials and Methods, Table 1 and Table 2). The 
creation of the “MacSy Models” organization enables the macsy-model packages to be versioned for better 
reproducibility. This organization also constitutes the first step towards unifying a MacSyFinder modeller 
community.  

To illustrate the interest of the novel file architecture, we created a new version of “TXSScan” (v1.1.1) 
that gathers the models for the type IV filament super-family (“TFF-SF”) and for the protein secretion 
systems (former “TXSScan”, v1.0.1) (Abby et al., 2016; Denise et al., 2019). These models were also ported 
to the grammar of MacSyFinder v2. The systems in “TXSScan v1.1” represent a coherent set of bacterial 
appendages dedicated to motility and secretion that are evolutionarily related (see  (Denise et al., 2020) 
for a review). We organized the models into sub-directories with respect to relevant biological criteria (Fig. 
S1 (Abby, 2023)). The models’ sub-directories were split by domains of life (Archaea versus Bacteria) and 
then by membrane type (monoderm Bacteria versus diderm Bacteria). This new architecture enables the 
search for all models at once, or only the domain-specific ones or those specific to a given bacterial 
membrane type. This allows more targeted and less costly searches for biological systems. Of note, the 
XML grammar simplifications introduced in v2 enabled the production of much more compact, readable, 
and simple models (Fig. 3). For example, the definition of the type III secretion system (T3SS) now consists 
of 20 lines for 15 listed genes, whereas the v1 version counted 52 lines. v2 versions of the popular TXSScan 
and TFF-SF models are also available as originally published (v1.0.0 versions of TXSScan and TFFscan 
respectively, Table 1) (Abby et al., 2016; Denise et al., 2019). Yet the new search engine has a different 
behaviour than v1; it will produce different results in some cases (detailed in sections below). 
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Figure 2 - Scoring scheme and combinatorial search of MacSyFinder v2 search engine. A. The scoring 
scheme is summarized, and then illustrated by an example for a hypothetical Model1. “H1” stands for 
a hit for gene 1 “G1” in the genome. B. Step (1). The graph of candidate systems is drawn by connecting 
all compatible systems, i.e. those with non-overlapping hits (unless authorized by the multi-model or 
multi-system feature). Step (2). The clique of maximal cumulated score (best solution) is searched, 
with the score being defined as the sum of the systems’ scores that are part of the clique. The results 
are stored in the files “best_solution.tsv” and “all_best_solutions.tsv”, and all candidate systems are 
stored in “all_systems.tsv”.  

A new system modelling and search engine for a more relevant exploration of possible systems 

A systematic comparison of MacSyFinder v1 versus v2 
We used TXSScan to systematically compare the results of MacSyFinder version 2 with those of version 

1 (Fig. 4 and Table S2). We ran both versions on the same set of genomes, and computed the total number 
of detected systems, and the average system completeness (proportion of the listed system’s genes 
detected in a system).  

As anticipated, the results of both versions were very similar for single-loci systems, yet more systems 
were detected with v2 (8% increase). A fundamental improvement of the novel version is that the systems 
are searched one by one: the identified genes are filtered by type of system and assembled in clusters if 
relevant (Fig. 1). The new search engine can thus resolve much better the most complex cases.  
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Table 1. Overview of MacSyFinder v2 macsy-model packages available at the “MacSy models” 
organization https://github.com/macsy-models 

Model 
repository  

Version 
tag 

Original references  
Systems detected No 

models  
No 
profiles  

Remark  

CasFinder 3.1.0 
(Abby et al., 2014; 
Couvin et al., 2018) 

CRISPR-Cas systems 
(Cas clusters detection, 
annotation, and 
classification) 

44 535 

This new version: 
- provides the possibility to detect 
more subtypes than the previous ones 
- greatly improves the detection of 
tandem systems 
- improves the detection of decayed 
and atypical systems 
- can now be ran at once for the three 
levels of classification 
- GA scores added to HMM profiles 

CONJscan  2.0.1 (Cury et al., 2017) 

Conjugative, 
mobilizable and 
decayed conjugative 
systems 

34 124 

This new version: 
- allows the detection of decayed 
conjugative systems 
- provides models adapted to the 
detection in chromosomes or plasmids 
- contains tailored thresholds for each 
type of MPF 
- GA scores added to HMM profiles 

TFFscan 1.0.0 (Denise et al., 2019) 
Systems members of 
the type IV filament 
super-family 

7 169 
As in the original paper, but with GA 
scores added to HMM profiles 

TXSScan 1.0.1 (Abby et al., 2016) 
Protein secretion 
systems and related 
appendages 

22 205 
As in the original paper, but with GA 
scores added to HMM profiles 

TXSScan 1.1.1 
(Abby et al., 2016; 
Denise et al., 2019) 

Protein secretion 
systems and related 
appendages, including 
members of the type IV 
filament super-family 

26 341 

Merger of TFF-SF v1.0 and TXSScan 
v1.0: 
- TFF-SF models from Denise et al. 
replace older model versions from 
TXSScan version 1.0 (Abby et al. ) for 
the T2SS, Tad and T4aP systems. 
Models added: ComM, T4bP and 
Archaeal_T4P.  
- Hierarchy of models by domain of 
life, and then by membrane type to 
allow to search only the relevant 
models.  

 
Table 2. The macsydata companion tool to handle macsy-model packages 

macsydata command Description Examples 

available Lists all macsy-model packages available at 
the default or specified organization 

macsydata available 

list Lists installed packages macsydata list 

init Initializes a new macsy-model package with 
a template of the appropriate file 
architecture  

macsydata init 

check Allows to check the sanity and consistency 
of a macsy-model package before diffusion 

macsydata check 

install / uninstall Automatically retrieves and installs 
(uninstall) the designated package 

macsydata install TFF-SF 

cite Displays the citation information stored in 
the metadata.yml file of the package 

macsydata cite TFF-SF 

definition Displays the definition(s) (XML file) of the 
specified model(s). It can be a directory 
containing several models to display.   

macsydata definition TXSS T1SS 
macsydata definition TXSS/archaeal 
macsydata definition –models-dir my-models System1 

search Searches for the models based on their 
names, or based on string searches in the 
models’ description 

macsydata search TXSS 
macsydata search -s Secretion 

macsydata <subcommand>  
--help 

Lists the help message for the specified sub-
command 

macsydata search—help 
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Figure 3 - Description of the hierarchical grammar used in MacSyFinder models and example of the 
T2SS model. A. The “model” is the root element of the XML document according to the grammar. It 
represents the system to model and contains at least one element “gene”. The “gene” element 
describes the genes constituting a system. It may contain one element “exchangeables”. The dashed 
line between “gene” and “exchangeables” illustrate the fact that a gene does not necessary contain 
an “exchangeables” element. The “exchangeables” element contains a set of genes (one at least) that 
can replace functionally the parent “gene” in the system quorum. The one-to-many relationships 
between the different elements is represented by lines connecting the boxes, with the cardinality of 
the relationship appearing next to the element. The diverse possible features of each element are 
represented in the corresponding boxes. B. XML grammar of the T2SS from TXSScan v1.1.1 (and 
TFFscan v1.0.1) (Abby et al., 2016; Denise et al., 2019). C. A schematic representation of the T2SS 
machinery spanning the membranes of a diderm bacterium is displayed on the left. The genetic model 
corresponding to the T2SS model in panel B is illustrated in the central part, with gene boxes filled 
with the colour of the corresponding proteins on the T2SS schema. The quorum and co-localization 
rules to fulfil the T2SS model are described on the right. Genes’ names were abbreviated in the genetic 
model compared to the names in the XML model. The C panel was derived from (Denise et al., 2019). 

It also prevents the spurious elimination of relevant candidate systems, e.g., when a gene from another 
system is within a cluster of the candidate system, which is the cause for false negatives in v1 (e.g. for T6SSi 
in Fig. 4).  

The novel search engine explores the space of possible solutions combinatorically (Fig. 1). This results 
in noticeable improvements for the detection of multi-loci systems. Hence, MacSyFinder v2 annotated 
around 20% more multi-loci systems than v1 (Fig. 4B, Table S2, example in last sub-section). 

In addition to a higher number of systems annotated with version 2 (10% more), the annotated systems 
displayed a similar or higher level of completeness (“wholeness” in Fig. 4C). Overall, these results validate 
the relevance of the new search algorithm and of the explicit scoring system that we chose to favour 
complete and concise systems. These advantages are illustrated by examples in following sub-sections.  
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Figure 4 - Comparison of MacSyFinder v1 and v2 using TXSScan. MacSyFinder v1 (red) and v2 (green) 
were used on the same set of complete prokaryotic genomes with the models from TXSScan. Different 
statistics were used to compare their performance for systems’ detection: (A) the number of systems 
detected as “single-locus” and (B) “multi-loci”, and (C) a boxplot showing the distribution of the 
wholeness of detected systems. The wholeness of a detected system is the number of detected genes 
divided by the number of genes listed as part of the system in the system’s model definition (forbidden 
and neutral genes excluded).  

Assessing the performance of MacSyFinder v2 
The novel combinatorial examination of sets of genes and clusters to identify candidate systems (see 

Materials and Methods) can deal with more complex cases, e.g. the occurrence of multiple scattered 
systems (see last sub-section for an example). However, the combinatorial exploration may be 
computationally costly, especially when there are many occurrences of clusters and genes. This cost is 
partly relieved by filtering the protein hits using the GA scores (or other criteria), because this effectively 
removes many false positives and leaves fewer genes and clusters to consider. Yet when testing the new 
search engine, we were sometimes confronted to cases of genomes with dozens of hits for “out-of-cluster” 
genes (loner or multi_system genes). The analysis of all combinations of such genes can be extremely 
costly. To make these cases manageable, MacSyFinder v2 uses a heuristic that considers several 
occurrences of the same “out-of-cluster” gene as a single one representative gene in order to form 
otherwise equivalent combinations (in quorum and score) for potential systems (Fig. S2 (Abby, 2023)). This 
“representative” is selected as the one with the best matching protein (best HMMER score). The other 
“out-of-cluster” genes detected are kept and listed separately in dedicated files (best_solution_loners.tsv 
and best_solution_multisystems.tsv). This makes the combinatorial exploration of solutions manageable 
in most if not all the cases. If this is not the case, we advise the users to revise their system’s modelling 
strategy and/or HMM profiles specificity (e.g., increase the GA score thresholds). Finally, even if there is a 
graph-based search for the best solution (see Materials and Methods and Fig. 2B), MacSyFinder also 
provides output files with valid systems that are not part of the best solution that may be of interest to the 
user in some situations (system variants discovery, detection of degraded systems, etc.). 

We used the Python profiler (cProfile) to assess MacSyFinder performances and find where the 
program is more expensive in terms of running time. As anticipated, we found two bottlenecks: the search 
of genes by HMMER and the resolution of the best solution from combinations of candidate systems. The 
latter is based on a graph-based search of the maximal clique with NetworkX. This algorithm is known to 
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be exponential. We measured the time spent when running MacSyFinder (with CONJScan, CasFinder and 
TXSScan, see Materials and Methods) on 6092 bacterial genomes and discarded the genomes where no 
systems had been found. We analysed 2455, 2241 and 5321 bacterial chromosomes respectively for 
CONJScan, CasFinder and TXSScan. We could confirm that the computational time grows exponentially 
with the number of solutions (Fig. S3 (Abby, 2023)), or the number of systems’ candidates (Fig. 5A, Fig. S4 
(Abby, 2023)), and for all three macsy-models used. However, running times to find the best solution were 
usually small: less than 1 second for all runs with CasFinder and CONJScan models, and for 98% of the runs 
with TXSScan (Fig. 5B). In some cases, the number of candidates increased tremendously and MacSyFinder 
could not find a solution within 3 hours. This corresponded to 9 genomes of 6092 with TXSScan. This 
coincided with the most complicated models (with hundreds of profiles, and multi-loci systems with loners, 
multi_sytems and multi_model genes). In addition, the 9 genomes were large, encoding between 4053 and 
12492 genes. For this reason, we introduced a “—timeout” option (not set by default) to stop the search 
after a user-defined amount of time. It can be suitable for users who have a collection of genomes to 
analyse and do not want to be delayed by one, while other users may be interested in obtaining a result 
even if this means longer run times. 

The second bottleneck in MacSyFinder is the search of genes with HMMER (hmmsearch) that consists 
in the most computationally intensive part of a MacSyFinder run (Fig. 5C). The timing of this step grows 
with the number of genomes in the dataset (“gembase” search mode). To tackle this problem, the user can 
benefit from available multi-core CPU to search several genes in parallel with the “—worker” option. Using 
this option, the time spent in the genes search stage decreases significantly, even with a dataset containing 
a single genome. This technique is very efficient for macsy-models containing numerous genes, such as 
TXSScan (340 genes) (Fig. 5C).  

In addition to the multi-core implementation for the genes search, we designed and made available a 
parallel version of MacSyFinder that consists in a workflow based on NextFlow (https://www.nextflow.io/) 
recommended for the analysis of datasets containing many genomes and easily deployed on a computer 
cluster.  

The memory footprint of MacSyFinder v2 for the analysis of one genome is around 100 MB of RAM 
(with the heavy TXSScan macsy-model), and remains very contained (<500 MB) even when analysing 
hundreds of genomes (“gembase” mode). This relatively low memory footprint is mainly due to the 
NetworkX’s maximal clique search algorithm, which is implemented as a generator that never stores all 
cliques in the memory at once (Fig. 5D & Fig. S5 (Abby, 2023)). Overall, the time and RAM used by 
MacSyFinder makes it easily useable on a laptop even when analysing hundreds of genomes.  

We illustrate and discuss in further detail the advantage of the new version of MacSyFinder for the 
search of molecular systems in the following sections. For this, we applied it to three types of systems: the 
CRISPR-Cas system (CasFinder package), the conjugative systems (CONJscan package), and the type IV 
filament super-family (TFFscan and TXSScan packages). 

Application of MacSyFinder v2 to the identification of Cas systems (CasFinder) 
CRISPR-Cas systems are adaptive immune systems that protect Bacteria and Archaea from invasive 

agents (phages, plasmids, etc.) (Hampton et al., 2020). A typical CRISPR-Cas system consists of a CRISPR 
array and adjacent cluster of cas (CRISPR associated) genes that form one or more operons of 1 to 13 genes 
(Fig. 6A) (Makarova et al., 2020). As CRISPR arrays do not code for proteins, this part of the system is not 
identified by MacSyFinder. The cas genes clusters are very diverse and are currently classified into two 
classes, six types (I-VI) and more than 30 subtypes based on their composition in cas genes (Makarova et 
al., 2020). We have previously developed a package of models called CasFinder dedicated to the detection 
of CRISPR-Cas systems using MacSyFinder v1 (Abby et al., 2014; Couvin et al., 2018). We hereby propose 
an updated and improved version of CasFinder that benefits from the new features of MacSyFinder v2.  

The graph-based approach improves tandem systems detection 
CRISPR-Cas systems can be subdivided into three distinct, though partially overlapping, functional 

modules. Some of these, e.g., the adaptation module mainly composed of Cas1, Cas2, and Cas4 proteins, 
may be very similar between subtypes or even types, making the detection of tandem systems particularly 
challenging. With the v2 new search engine, all systems are searched one by one. The best possible 
combination of systems is retrieved using a graph-based approach, which significantly improves the 
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identification of tandem systems. This improvement is even more important when the number of tandem 
systems exceeds two, as MacSyFinder v1 could not handle these rare complex situations at the subtype 
level (Fig. 6B). 
 

 

Figure 5 - Performance testing of MacSyFinder v2. A. The time spent by MacSyfinder in the resolution 
of the best solution grows exponentially with the number of solutions (Fig. S3 (Abby, 2023)) and with 
the number of candidate systems. B. Although the algorithm runs in exponential time, the broad 
majority of the runs complete the best solution resolution within 1 second. C. The mean time spent 
by MacSyFinder searching genes with hmmsearch (HMMER) is large compared to the other parts of 
the program, and grows with the number of genomes in the dataset (“gembase” mode). However this 
time can be significantly reduced when using multiple workers. D. The mean maximum resident 
memory used by MacSyFinder v2 is typically 100MB to analyse one genome and this grows with the 
size of the dataset to analyse, while being still manageable on a laptop, with less than 500 MB used 
for 500 genomes analysed. For the 1, 10, 20, 50, 100, 200 and 500 genomes datasets (panels C and 
D), respectively 1500, 150, 75, 30, 15, 7 and 3 non-redundant replicate datasets were sampled and 

analysed. Bars in C and D panels report the mean standard error. 

The “multi_model” gene feature enables tandem, overlapping systems detection 
Most CRISPR-Cas systems have an adaptation module when they are alone. But, when they are in 

tandem, it is not uncommon to find that only one module is present for both systems (Bernheim et al., 
2019). This complicates its detection, especially when it is located between tandem systems. In v1, the 
adaptation module was assigned to one of the two systems at the risk of missing the second one if the 
latter turned out to be too small (i.e., with a minimum number of required genes lower than the defined 
threshold). In v2, thanks to the new “multi_model” gene feature, it is possible to allow a gene to be present 
in different models. Thus, by defining the proteins involved in the adaptation module as “multi_model”, 
they are assigned to the two overlapping systems (Fig. 6C).  

The new search engine and scoring system allow searching for different levels of classification 
simultaneously 

Some Cas subtypes are extremely similar in terms of gene content and require very precise decision 
rules to distinguish them. However, the more precise these rules are, the higher the risk is of missing 
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systems. To overcome this difficulty, we have previously defined different sets of models providing 
detection at three levels of classification, from the most permissive to the most specific one: (1) a general 
model (called CAS_cluster) allowing the identification of any cluster of cas genes, (2) a set of models for 
detection at the type level, (3) and finally a set of models for detection at the subtype level. MacSyFinder 
v1 analyzed the models one by one in a pre-defined order and selected the first model whose rules were 
satisfied. Using all three sets of models simultaneously meant that not all possibilities were explored. 
Thanks to the new v2 search engine and scoring system, all models can now be analyzed at once. Therefore, 
it is possible for the same cluster to be detected at several classification levels (Fig. 6A). The choice of the 
best solution presented to the user among these different assignments is based on the score of each 
candidate, then on their wholeness (proportion of genes found over the number of listed ones, or over 
“max_nb_genes” if defined in the model). Here, the subtype level models have been defined with a 
“max_nb_genes” parameter lower than for the models higher in the classification. Thus, for a given system 
that will obtain the same score from several classification levels, the most specific one will obtain the higher 
system’s wholeness, ensuring the most specific annotation is proposed as the best solution. We thus 
favoured annotation at the subtype level as being by far the most informative. Still, when the subtype-level 
search fails, the program allows the detection of atypical or decayed clusters via the models at the other 
levels (type-level or general case). 

Application of MacSyFinder v2 to TFFscan and CONJscan   

The new search engine and scoring system allow the retrieval of various occurrences of Type IV pili encoded 
at multiple loci. 

The type IV filaments super-family (TFF-SF) is a family of homologous machineries involved in bacterial 
and archaeal motility (e. g., the type IVa pilus “T4aP” and archaeal flagellum), toxin secretion (e.g., type II 
secretion systems, T2SS) or exogenous DNA acquisition (e. g., competence apparatus, Com) (Pelicic, 2008). 
Some members of the TFF-SF have their genes scattered across the genome (e.g., T4aP and some T2SS), 
and some genomes may harbour several scattered occurrences of the same system (Denise et al., 2019). 
In this case, it is not trivial to identify and discriminate the occurrences of the different systems. The search 
engine of MacSyFinder v1 collected occurrences of the same system as one large system containing 
multiple copies of several genes. The new v2 search engine examines and then scores all possible 
combinations of gene clusters and (authorized) out-of-cluster genes eligible as systems. The scoring of 
these candidate systems penalizes the presence of the same gene in several gene clusters. This approach 
favours solutions presenting complete yet concise systems. For example, it allows the separation of two 
different multi-loci T4aP found in the same genome (Fig. 6D-E). 

The new scoring scheme allows to distinguish putatively decayed conjugative elements from the others. 
Integrative conjugative elements and conjugative plasmids are very abundant mobile genetic elements 

that can transfer themselves from one bacterium to another. To do so, they encode a conjugative system 
that includes a relaxase (MOB) and a mating pair formation (MPF) machinery responsible for pilus 
biogenesis and mating junctions (de la Cruz et al., 2010). The known relaxases are currently searched using 
11 HMM profiles, and the MPFs are classified into eight different types (FA, FATA, B, C, F, G, I, and T). 
Together, they make for eight models of T4SS (Guglielmini et al., 2013). MPFs include numerous genes, 
between eight to several dozens. However, the conserved set of genes seen as mandatory is much smaller 
(relaxase, VirB4, coupling protein), and the other conserved genes oscillate between seven and 27. From 
wet-lab experiments to pandemic studies or phylogenetic analyses, discriminating between complete 
transferrable elements and incomplete, potentially immobile conjugative elements, is crucial. We have 
recently shown that decayed conjugative elements are not rare (Coluzzi et al., 2022). Hence, it would be 
important to have an easy way to identify complete and incomplete systems. To tackle this problem, we 
developed macsy-models taking advantage of the new scoring scheme implemented in v2. 
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Figure 6 - Application of MacSyFinder v2 to CasFinder (v3.1.0) and TFFscan (v1.0.0). (A) CRISPR-Cas 
system has two parts: a CRISPR array and a cluster of cas genes. The new MacSyFinder search engine 
simultaneously annotates Cas clusters at 3 levels of classification from the most accurate (i.e. the 
subtype level) to the most permissive. When possible, it favours as the best solution the annotation 
at the subtype level but allows to recover atypical or decayed systems with the 2 other levels of 
classification. (B) The combinatorial approach for the search of the best solution improves the 
detection of tandem systems. All models are tested and challenged, then the best combination of 
systems is determined. Here, it reveals the presence of 3 systems of different subtype in tandem (one 
color per subtype). (C) The new search engine avoids overlap between different candidate systems to 
determine the best solution(s), unless specified in the model with the multi_system or multi_model 
features. As illustrated, the adaptation module (cas1, cas2 and cas4) has been defined as 
“multi_model” (indicated by a star*) in some subtype models and can thus be assigned to 2 systems 
in tandem, which improves their identification. Without this feature newly implemented in v2, one of 
the two systems would be lost. (D) Several members of the Type IV filament super-family (TFF-SF) 
could be found in the genome of Variovorax sp. WDL1. The new search engine enables the annotation 
of two distinct T4aP in the same genome. Here we can observe that the two detected T4aP are 
gathering clusters of different and complementary gene composition, underlying their coherence. The 
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two strokes between each gene cluster signifies that the clusters are not close to each other on the 
chromosome. (E) The location of the T4aP gene clusters is displayed along the circular chromosome. 
A polygon connects the different parts of a same system with colors matching that of the systems in 
panel D. In all panels, genes are represented by arrows, their length indicates the gene length, and 
their direction indicates the gene orientation. 

All systems can be tested and challenged at once in the new version. The selection of the 
best solution among different candidate systems is based on the score of each candidate. 
Using this new feature, we created models designed to compete with each other (Fig. 7). For 
each conjugative system, one model was designed to detect complete systems, while the 
other was designed to detect both complete and incomplete systems. Used independently, 
the complete model would only detect complete systems, and the incomplete model would 
indiscriminately detect complete and incomplete systems. However, when used together in 
competition, the scoring system attributes actual complete systems to the complete model 
while incomplete systems are only detected by the “incomplete” model (Fig. 7). 

 

Figure 7 - Application of MacSyFinder v2 to distinguish complete and incomplete conjugative systems 
on bacterial plasmids with CONJscan v2.0.1. A. Representation of a complete conjugative system (top) 
and a decayed conjugative system (bottom). Arrows represent the predicted genes of the plasmids 
and their orientation. Mandatory and accessory genes of the systems are represented in fuchsia and 
cyan respectively. B. Description of the score for the complete MPFF (T4SS_TypeF) model and 
“decayed” MPFF model (dCONJ_typeF) when computed by the scoring scheme of MacSyFinder v2 
(detailed in Fig. 2A). CONJScan plasmids’ models were used all at once with the “all” option. 
C. Difference between the complete and decayed models for the MPFF. Both models list the same 
genes, but the required quorum of mandatory genes and total genes required are different. The model 
designed to detect complete systems (T4SS_typeF) requires 3 mandatory genes and 6 genes 
minimum, while the “decayed” model (dCONJ_typeF) was designed to require only 1 mandatory gene 
and the other mandatory genes were set as “accessory” and exchangeable between each other. Thus, 
we ensure that if the quorum is reached for a complete system, the score of the “complete” model is 
always higher than the score of the “decayed” model. 

Conclusion 

MacSyFinder leverages the power of comparative genomics for accurate system-level annotation of 
microbial genomes. MacSyFinder version 2 enables more relevant and comprehensive system modelling 
and search capacities. The variety of the applications illustrated here and elsewhere demonstrates the 
potential of MacSyFinder to annotate many other cellular functions, including biosynthetic gene clusters, 
metabolic and signalling pathways. The macsydata tool and “MacSy Models” Github organization allow 
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systems’ modellers to easily share their macsy-model packages. We hope this will increase the visibility of 
their contribution and enhance the development of novel models for other molecular systems.  
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