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Introduction: 

Aging is associated with progressive functional degeneration of different tissues and a 

dramatically increased risk of many diseases. Moreover, it has been increasingly recognized 

that aging itself might be the underlying driving force for developing these diseases1,2. The 

last 30 years of extensive research, both in model organisms and humans, enlists nine 

tentative hallmarks of aging reflecting potential drivers of aging process2. Importantly, these 

studies highlight that the rate of aging is susceptive to modification3. Therefore, how to curb 

aging processes to improve the human healthspan is one of the most exciting challenges for 

biomedical research in the coming years.  

Cellular senescence is one of the hallmarks of aging2, a form of stress response to 

various stimuli that leads to a permanent cell-cycle arrest. It is well established cells with 

markers of senescence accumulate in tissues of aged mammals, including rodents4,5, 

primates6,7, and humans8-12. Furthermore, recent studies demonstrated that senescence 

negatively impacts healthy aging13-15. Noteworthy, removing senescent cells ameliorate a 

wide range of aging-associated disease conditions, including atherosclerosis16, osteoarthritis17, 

liver steatosis18, type 2 diabetes19, improve regeneration capacity of multiple tissues19,20, and 

extend both health and life span in mice14,15. Therefore, recent studies have placed cellular 

senescence in the central stage of regeneration and aging21,22
. 

  

Cellular reprogramming is the process of reverting terminal differentiated cells to the 

pluripotent state, which has tremendous potentials for regenerative medicine and aging 

research23,24. Besides generating in vitro models to study aging and age-associated diseases, 

reprogramming has gained considerable attention recently for its rejuvenation potential25,26. In 

particular, reprogramming the cells from aged donner to pluripotency could erase several 

aging hallmarks in vitro27-31. Importantly, some rejuvenation effects preserve after re-

differentiation28,29,31. Intriguingly, partial reprogramming, induced by short term OSKM 

expression, has been shown to enhance tissue regeneration in older mice and extend the life 

span of the progeroid mice32. Although the underlying mechanism remains largely unknown, 

the tremendous potentials merit further investigation.  

 

© 2020 published by Elsevier. This manuscript is made available under the CC BY NC user license
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Interestingly, recent studies revealed that senescence has both cell-autonomous and 

non-cell autonomous effects in reprogramming33-35. At the same time, partial reprogramming 

could reduce certain senescent associated features on the cellular level32,36, suggesting that 

two processes are intimately connected. Both senescence and reprogramming have been 

extensively reviewed respectively elsewhere21,37-40. Here, we summarize the current 

understanding of the interplay between senescence and reprogramming, with a particular 

focus on their potential implication in aging and regeneration. Examining the crosstalk 

between cellular senescence and reprogramming will further the mechanistic understanding of 

both processes and devise novel anti-aging and rejuvenation strategies exploiting the potential 

synergistic effect25.  

Cellular senescence: the common cell fate within various contexts 

Cellular senescence is a stable cell cycle arrest that occurs in diploid cells at the end of 

their replicative life span. In 1961, Hayflick and Moorhead demonstrated that human primary 

fibroblasts in culture could divide a limited number of times before irreversible cell cycle 

withdrawal41. This process is known as the “Hayflick limit” or replicative senescence, which 

is caused by progressive shortening of telomeres upon each cell division. Besides, there is a 

wide range of stimuli that could induce senescence prematurely, including DNA damage, 

oncogenic stress, oxidative stress, protein misfolding, and genomic/epigenomic alterations, 

which eventually activate the p53/p21 and p16Ink4a/pRB pathways to establish and reinforce 

the persistent growth arrest37,42. Moreover, there are many biological processes, such as tissue 

repair/regeneration43-46, and embryonic development47,48  rely on senescence.  

Senescent cells are characterized collectively by several non-exclusive markers42. 

Permanent cell cycle arrest is an essential feature of senescence. Senescent cells do not 

resume proliferation in response to mitogenic signals, which is different from quiescence, a 

state of reversible cell cycle arrest. At the same time, senescent cells frequently exhibit a 

persistent DNA damage response (DDR) and induction of antiapoptotic genes, which separate 

them from post-mitotic differentiated cells. The accumulation of mitochondria and lysosomal 

in the senescent cells allow the detection of the β−galactosidase activity in sub-optimal pH 

(senescence-associated β−galactosidase, SAβGal)11. Although senescent cells do not 

proliferate, they remain metabolically active and robustly express a senescence-associated 

secretory phenotype (SASP)49: secretion of many inflammatory cytokines, growth factors, and 

extracellular matrix metalloproteinases (MMPs). Therefore, up-regulation of the cyclin-

dependent kinase inhibitors (CKIs), lack of proliferation, resistance to apoptosis, activation of 

DDR, SAβGal, and SASP factors are commonly used markers of senescence. Noteworthy, 

SASP factors play a crucial role in mediating senescence non-cell autonomous functions by 

attracting immune cells and altering tissue microenvironment37. However, the temporospatial 

regulation of SASP is highly heterogeneous in a cell type and stress-dependent manner50.  

 

Work over the last decade expanded the involvement of cellular senescence to 

various biological and pathological processes, including embryonic development47,48, tissue 

repair /regeneration43,44,46, tumorigenesis38,51, and aging14,15,38. Of note, senescence can be 
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either beneficial or detrimental for the organism depending on the cellular context. In the 

first scenario, transient and programmed senescence is initiated in the severely damaged or 

unwanted cells. Permanent withdrawal from proliferation is crucial for preventing the 

propagation of premalignant cells in the context of tumorigenesis. Then arrested cells 

secrete a mix of SASP factors, including cytokines, chemokines, growth factors, and 

metalloproteases. Besides communicating and recruiting the immune system44, SASP could 

trigger the proliferation and differentiation of undamaged cells43, promote ECM 

deposition52, optimize tissue remodeling43,52, and induce cellular plasticity and stemness of 

the neighboring cells46. Eventually, removal of the senescent cells is essential to eliminate 

SASP and construct/reconstruct the tissue.  

 

In contrast, senescent cells accumulate in tissues during physiological aging38 and in 

age-associated pathologies53,54. There are several non-mutually exclusive possibilities of 

why senescent cells accumulate with age. Firstly, the senescent cell production rate might 

be increased owing to more aged cells containing a higher level of damage. Secondly, 

SASP mediated paracrine senescence55 could further accelerate this process. Thirdly, the 

aging immune system may be less efficient in removing senescent cells. Alternatively, 

senescent cells may evolve in a way to directly impair the immune surveillance in the aged 

tissues. Noteworthy, a recent study used both experimental and mathematical models to 

address this question. The authors used datasets from previous longitudinal studies to 

identify the most suitable model describing the dynamics of the senescent cells, which was 

further validated by senescence induction in mice of different ages. The model suggests that 

the turnover rate of senescent cells decreases with age due to increased production and 

reduced removal56. Surprisingly, senescent cells actively inhibit their removal. Although 

the mechanisms by which senescent cells use to disrupt their removal is unknown, this 

study proposed a provocative scheme with exciting implications in senolytic approaches.  

 

Recent studies provided vital clues on how senescence promotes age-related tissue 

dysfunction in both cell-autonomous and non-cell autonomous manner. First of all, a 

permanent cell cycle arrest directly impairs tissue regeneration. Senescent adult stem cells 

(ASCs), such as hematopoietic stem cells and muscle stem cells, fail to re-enter the cell 

cycle and resume proliferation after exiting from the quiescence57,58. Moreover, a persistent 

proliferative arrest could disrupt the cell turnover resulting in permanent cell loss in tissues 

that do not have ASCs. Besides, senescent cells can lose many cellular functions. Senescent 

vascular cells reduced endothelial tight junction and lessen barrier integrity in vitro, which 

might contribute to the age-related blood-brain barrier disruption59. Senescent chondrocytes 

fail to secrete various ECM factors that are important for articular cartilage maintenance38,60, 

while senescent β cells lose the cell identity and cannot produce insulin19.  

 

Although it remains to be demonstrated in vivo, SASP could promote a 

dysfunctional stem cell niche58 and induce paracrine senescence in the neighboring cells to 

exacerbate the diminished stem cell functionality. Moreover, SASP factors could induce 

tissue degradation17,61, interfere with differentiation process61, and stimulate tissue 

fibrosis62. Finally, SASP may contribute to the proinflammatory microenvironment in many 
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age-related pathologies17,53,54,63. Work over the last decade demonstrated that selective 

elimination of senescent cells, either genetically or by senolytic drugs, ameliorates various 

age-related pathologies in mice5,16,17,53,54,63, and significantly extends both the health and 

life span14,15,58,64.  

 

Why does the acute and chronic senescence have the opposite impact on tissue 

regeneration? There are two potential explanations. Cell autonomously, young ASCs are 

spared from acute senescence, due to either higher resistance to damage or protective stem 

cell niche. Therefore, their regenerative functions are preserved. On the contrary, senescence 

most likely occurs to all the cell types during aging. The irreversible cell cycle arrest prevents 

the activation of ASCs, which are indispensable for tissue regeneration. Non-cell 

autonomously, the SASP components might be different between acute and chronic 

senescence. The SASP is possibly more proinflammatory with age, which might further 

inhibit the functions of ASCs and impair regeneration.  

 

In summary, there are many questions remain to be elucidated, including how 

senescence is induced during embryonic development and tissue repair, why senescent cells 

accumulate in various disease conditions, and why senescence elimination ameliorates 

organism aging. In vivo senescence program is highly heterogeneous, containing different cell 

types and SASP composition, which might have a significant impact on senescence 

phenotype and functions. Therefore, further investigation of in vivo senescence in different 

contexts will determine the shared and distinct features among various types of senescence, 

which might allow specifically target the detrimental effects of senescence. 

 

Cellular reprogramming: plasticity beyond stem cells  

 

Cell identity is established in the course of lineage differentiation during development, 

maintained by epigenetic memories and defined by a broad range of molecular and functional 

properties, which is generally stable for the terminally differentiated cells65. Previously, it was 

thought that differentiation is an irreversible process. In the 1950s, Briggs and King began to 

test the developmental potential of differentiated cells in frogs. They transferred the nucleus 

from one cell to an enucleated cell (oocytes, in this case), a method known as nuclear transfer. 

Later, using the same methodology but a different frog species, Xenopus laevis, Gurdon 

successfully cloned sexually mature frogs using donor nuclei from cells at various 

developmental stages66 and fully differentiated intestinal cells67. Gurdon’s seminal work 

provided the first evidence that certain factors in the oocyte cytoplasm can erase the cellular 

identity encoded in the nucleus of a somatic cell, strongly supported the principle of nuclear 

equivalence and laid the foundation for the future development of reprogramming cell identity.  

 

Almost 50 years after Gurdon’s experiments, Yamanaka demonstrated that a small set 

of transcription factors, Sox2, Klf4, Oct4 and c-Myc (OSKM) are sufficient to convert 

somatic cells into the pluripotent state, known as induced pluripotent stem cells (iPSCs)23. 

Currently, there are several routes to reprogram cell identity. For example, cells can be firstly 

reverted to the pluripotent state, followed by differentiation to desired identities. Alternatively, 
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one cell type can be directly converted to another cell identity by expressing specific 

factors68,69. The method, also known as lineage reprogramming, bypasses embryonic states 

altogether and eliminates the tumorigenic risk of undifferentiated pluripotent cells, an 

important safety issue for therapeutic applications68. Noteworthy, cell identity can also be 

manipulated in vivo via forced expression of the same transcription factors combination as 

their in vitro counterparts39. Several reprogrammable mouse models are engineered to express 

Yamanaka factors (OSKM) upon doxycycline treatment to induce reprogramming in vivo, 

which are evaluated by the Nanog expression (a pluripotency marker) and teratoma 

formation32,70,71. Importantly, these studies indicate the tissue microenvironment can support 

full reprogramming, which raised the possibility to modulate cell fate in situ to promote tissue 

regeneration. Nowadays, direct lineage reprogramming of undamaged cells into the desired 

cell type using defined factors in situ is an emerging alternative to improve self-repair and 

tissue regeneration72,73. 

 

The ground-breaking advances in cellular reprogramming led to a paradigm shift in the 

biomedical research, with exciting implications for advances in disease modeling and 

regenerative medicine40,74. Studies from the last decade have identified many combinations of 

factors to facilitate cell fate conversion, including transcription factors, small molecules, and 

microRNAs, which firmly demonstrated the remarkable plasticity of the differentiated cells 

both in vitro and in vivo75. Thanks to the advance in single cell biology, cellular 

reprogramming has become a tractable system to study the mechanisms of cell fate 

conversion40. The next challenge in the field is to understand how cellular plasticity is 

regulated in vivo, which will provide essential insights for improving tissue regeneration in a 

controlled manner.  

 

Partial reprogramming: an emerging rejuvenation strategy 

 

Cellular reprogramming offers many exciting opportunities for aging research. 

Generation of iPSCs from Hutchinson-Gilford progeria syndrome (HGPS) and Werner 

syndrome (WS) patients provided powerful in vitro models to unravel the molecular 

mechanisms of premature and physiological aging and to facilitate the drug development for 

these devastating rare diseases76,77,78. Besides, many age-related pathologies that are 

associated with losing functional cells could benefit from iPSCs-based regenerative therapies. 

Moreover, reprogramming aged cells may gain pivotal insight into epigenetic rejuvenation79. 

Lastly, in vivo lineage-reprogramming based tissue repair in situ would be particularly 

important in the aged organism with diminished regenerative capacity.  

 

Recent research highlighted that reprogramming could be a rejuvenation process27,25. 

Previously, iPSCs derived from aged donors revert several age-associated features, including 

elongated telomere length due to the reactivation of telomerase during reprogramming80, 

improved mitochondrial quality and function, and reset of heterochromatin marks and genes 

expression signatures28,29,81. Importantly, fibroblasts and neurons differentiated from old 

donors iPSCs preserved the youthful state, including the transcriptomic profile and 

proliferative capacity (in the case of fibroblasts) 28,29,81. Interestingly, neurons generated from 
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old donor fibroblasts via transdifferentiation (bypassing the pluripotency stage) retained the 

age-associated signature of the donor cells31. Therefore, rejuvenation might occur specifically 

during reprogramming to pluripotency process, where extensive proliferation is required82.  

The impact of partial reprogramming on tissue regeneration and rejuvenation has been 

explored recently in both mice and human cells. Ocampo et al., showed short-term OSKM 

expression in the fibroblasts derived from progeria mouse model (LmnaG608G) reduced the 

markers of DNA damage, features of senescence, and nuclear envelop defects. Moreover, 

OSKM expression reverted the levels of two age-associated heterochromatin marks, H3 

(H3K9me3) and H4K20me383. These effects suggest that short-term OSKM expression could 

transiently ameliorate several premature aging features both on the molecular and cellular 

level. On the organism level, partial reprogramming could improve progeria mice’s health 

span and life span without tumorigenesis, and enhance tissue regeneration of pancreas and 

skeletal muscle in reprogrammable mice32.  

 

Next, Sarkar et al. induced transient reprogramming using a six-factor cocktail (Lin28 

and NANOG, together with OSKM) in human fibroblasts and endothelial cells derived from 

donors of different ages. Horvath’s epigenetic clocks base on DNA methylation levels, which 

can closely predict the biological age in a broad range of tissues and cell types84. By applying 

to Horvath’s epigenetic clocks, the authors showed that transient reprogramming could reduce 

the DNA methylation age of the cells shortly after the treatment. Moreover, treated cells 

exhibited a more youthful transcriptomic profile together with improved functional 

parameters. However, the sample size is quite small. It would be interesting to test more 

samples and for a longer time after the treatment to determine whether the changes would 

persist. Strikingly, transient reprogramming could restore the regenerative capacity of aged 

human muscle stem cells when transplanted in mice85. Two recent studies showed that short-

term OSKM expression could reduce scar formation86 and muscle fibrosis87 in young mice. 

Furthermore, a preprint reported OSK expression could promote axon regeneration of retinal 

ganglion cells to ameliorate the vision impairment in a glaucoma mouse model and naturally 

aged mice88.  

 

Interestingly, transient expression of reprogramming factors could reduce several 

biomarkers of senescence in vitro, including the expression of senescence-related genes, such 

as p16, p21, and various SASP factors32,36; and SAβGal positive cells. However, 

reprogramming factors could induce robust senescence response33, which might due to much 

higher expression of OSKM. It would be informative to compare the OSKM expression 

quantitatively between full reprogramming and partial reprogramming. Besides, the impact of 

partial reprogramming on senescence remains to be tested in vivo. Nonetheless, these 

observations suggest that senescence suppression might be one of the mechanisms mediating 

the effects of partial reprogramming.  

 

Therefore, partial reprogramming can be defined broadly as short term OSKM 

expression, which could revert various age-associated features on the molecular and cellular 

level, and induce functional improvement without promoting cancer development. 

Mechanistically, partial reprogramming could induce epigenetic rejuvenation, such as histone 
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modifications32 and DNA methylations85,88. Although it has been proposed that epigenetic 

rejuvenation could occur faster than erasing the somatic identity85,89, it is currently unknown 

how to control this stochastic process to uncouple rejuvenation from dedifferentiation. 

Determining the key epigenetic changes that drive the rejuvenation effect while maintaining 

the somatic cell identity remains an important future direction, which could also help to 

identify means, other than OSKM-mediated in vivo reprogramming, to promote tissue 

regeneration via epigenetic changes. Besides, it is currently unknown which cell types are 

amenable for partial reprogramming to mediate its beneficial effects on the organismal level. 

Partial reprogramming has been shown to increase numbers and improve the function of 

muscle stem cells32,85, a cell type intrinsically susceptible to in vivo reprogramming35. 

Therefore, partial reprogramming might directly enhance the cellular plasticity of ASCs. 

Noteworthy, partial reprogramming might facilitate the removal of senescent cells32,85. 

However, the impact of partial reprogramming on senescence remains to be tested in vivo.  

 

Cell-autonomous and non-cell autonomous effects of senescence in cellular 

reprogramming 

 

The involvement of senescence on reprogramming was first assessed in vitro. The 

Ink4/Arf locus encodes three potent tumor suppressors, namely p16(Ink4a), p19(Arf), and 

p15(Ink4b), which are crucial senescence mediators. Genetic inhibition of the Ink4/Arf locus 

enhances both reprogramming kinetic and efficiency. Interestingly, reprogramming culture 

condition significantly induces the expression of the Ink4/Arf locus. While silencing the locus 

via epigenetic remodeling is necessary for the successful reprogramming90. Concordantly, 

knockdown of p53 and p21CIP1 could also enhance reprogramming efficiency91-94.  

 

These studies raised the question of whether senescence is critical for reprogramming 

(Table 1). Overexpression of OSKM in human primary fibroblasts triggers a stress response 

with characteristics of senescence, including up-regulation of p53, p16INK4a, and p21CIP1, 

increased SAβGal staining, impaired proliferation, and forming senescence-associated 

heterochromatin foci (SAHF)33. Mechanistically, overexpression of OSKM triggers 

replicative stress and DNA damage to induce senescence, known as the reprogramming-

induced senescence (RIS)33. Besides, several pathways have been identified to affect 

reprogramming efficiency via modulating RIS, including histone demethylase JMJD333,95 , 

the BMP-SMAD-ID pathway96, and the mechanistic target of rapamycin (mTOR)97,98. 

 

Although the molecular mechanisms of in vitro reprogramming have been extensively 

characterized40, little was known about reprogramming in vivo. Recently, two relevant 

publications revealed the paracrine effect of senescence in promoting reprogramming in 

vivo34,35. Mosteiro and colleagues found, similar to in vitro reprogramming, expression of 

OSKM induces widespread senescence response in multiple tissues. Interestingly, Nanog+ 

cells appear in close proximity to senescent cells, and there is a positive correlation between 

reprogrammed cells and senescence induction. To further understand the role of senescence 

on in vivo reprogramming, the authors examined the effect of genetic ablation of Ink4a/Arf or 

p53 on in vivo reprogramming. Surprisingly, the deletion of the Ink4a/Arf locus, but not p53, 
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largely abolished in vivo reprogramming accompanied by the diminished senescence response. 

Importantly, modulating senescence levels by various small molecules can affect 

reprogramming efficiency accordingly, demonstrating a causative link. Mechanistically, 

authors find SASP, in particular IL-6, promotes in vivo reprogramming in a non-cell 

autonomous manner. Moreover, tissue damage-associated senescence triggered by bleomycin 

treatment is sufficient to induce in vivo reprogramming in the lung. Finally, accumulation of 

senescence during accelerated or physiological aging could enhance in vivo reprogramming34.  

 

Interestingly, some organs, such as the pancreas and liver, are far more permissive for 

in vivo reprogramming than others. To identify potential tissue-specific barriers of in vivo 

reprogramming, Chiche and colleagues focused on skeletal muscle a tissue refractory to in 

vivo reprogramming. Using the same reprogrammable mouse model, they showed that both 

acute and chronic injury enables reprogramming in the skeletal muscle, which triggers cell 

proliferation and transient senescence response in the same time45. In sharp contrast to the 

tissues permissive for in vivo reprogramming, OSKM expression alone failed to induce 

senescence response in the resting skeletal muscle, which might partially account for the lack 

of reprogramming. Next, authors showed elevated senescence level, either by local irradiation 

or aging, could enhance reprogramming efficiency. While specific elimination of senescent 

cells, either by genetic ablation of p16 positive cells or senolytic drug ABT263, could reduce 

reprogramming efficiency proportionately. Consistently, IL-6 is an important mediator for 

this process. Moreover, they demonstrate that Pax7+ muscle stem cells are a cell of origin of 

in vivo reprogramming using the lineage tracing system, which is critical for future 

applications of in vivo reprogramming that require to target specific cell types35.  

 

The seemingly contradictory effects of senescence on reprogramming could be 

reconciled by the cell-autonomous and non-cell autonomous effects of senescence (Figure 1). 

Intrinsically, senescence is a barrier for reprogramming via the upregulation of the Ink4/Arf 

locus, activation of the p53 signal pathway, and prevention of proliferation. However, 

extrinsically, it could promote the plasticity of neighboring non-senescent cells via SASP 

factors. Importantly, tissue injury could enhance in vivo lineage reprogramming efficiency in 

the liver and pancreas39. Therefore, it would be interesting to examine whether injury-induced 

senescence could promote cellular plasticity in the lineage reprogramming setting. Therefore, 

further investigation of SASP produced by RIS might identify novel factors that could 

promote cellular plasticity, which is relevant to all reprogramming-based tissue repair 

strategies and physiological regeneration. 

 

Future perspectives: Exploring the synergistic effect of senescence elimination 

and reprogramming on rejuvenation  

 

Although it remains to be further explored, both senescence elimination and 

reprogramming may use distinct mechanisms to rejuvenate overlapping targets. For example, 

reprogramming might directly revert aged ASCs to a more youthful state via epigenetic 

reprogramming. Eliminating senescent cells, including ASCs and other cell types within the 
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stem cell niche, could reduce inflammatory factors in the microenvironment and indirectly 

improve the functionality of ASCs and tissue regeneration.  

 

Therefore, a key question is whether we could combine senescence eradication and 

partial reprogramming for more effective rejuvenation with less potential detrimental effect. 

For example, reprogramming might increase the proliferation capacity of cells containing 

mutations to promote tumorigenic risk. Excessive elimination of senescent cells might 

interfere with their beneficial role during tissue repair. However, as discussed above, the 

relationship between senescence and reprogramming is complicated. The opposing effects of 

reprogramming factors on senescence response (between full reprogramming and partial 

reprogramming) might be due to their induction level and the duration. For future studies, it is 

crucial to determine the impact of partial reprogramming on the accumulation of senescent 

cells in the tissue, the difference between reprogramming induced and physiologically 

accumulated senescence, and the possibility of combining both strategies in a timely order.  

 

Both senolytic and reprogramming based rejuvenation are still in their infancy. Further 

elucidation of the modes of action for both strategies and the interplay between them will 

provide crucial information for understanding human aging and aging-associated diseases.  
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FIGURE LEGENDS 

Figure 1.  Cell autonomous and non-autonomous effects of senescence in cellular 

reprogramming 

 

Summary of recent findings describing the roles of senescence during cellular 

reprogramming. Reprogramming factors (OSKM) induced senescence is an important cell 

intrinsic barrier for reprogramming. While SASP could promote cellular plasticity and 

reprogramming in the neighboring non-senescent cells.  
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Figure 1:Cell-autonomous and non-cell autonomous effect of senescence on reprogramming



Table 1: Summary of studies on the impact of senescence on reprogramming in vitro

Species Gene/pathway involved Impact on RIS Effect on reprogramming Mode of action Re. 

Human P53, p16, JMJD3 Mediating RIS Inhibition Cell-autonomous 33

Mouse & Human JMJD3 Induction Inhibition Cell-autonomous 33, 95

Human BMP-SMAD-ID Suppression Promotion Cell-autonomous 96

Mouse mTOR Suppression Inhibition Cell-autonomous 97

Human mTOR Suppression Dual effects Cell-autonomous & Non-cell autonomous 98




