Asymptotic analysis for covariance parameter estimation of Gaussian processes with functional inputs - ANR - Agence nationale de la recherche
Pré-Publication, Document De Travail Année : 2024

Asymptotic analysis for covariance parameter estimation of Gaussian processes with functional inputs

Résumé

We consider covariance parameter estimation for Gaussian processes with functional inputs. From an increasing-domain asymptotics perspective, we prove the asymptotic consistency and normality of the maximum likelihood estimator. We extend these theoretical guarantees to encompass scenarios accounting for approximation errors in the inputs, which allows robustness of practical implementations relying on conventional sampling methods or projections onto a functional basis. Loosely speaking, both consistency and normality hold when the approximation error becomes negligible, a condition that is often achieved as the number of samples or basis functions becomes large. These later asymptotic properties are illustrated through analytical examples, including one that covers the case of non-randomly perturbed grids, as well as several numerical illustrations.
Fichier principal
Vignette du fichier
asympAnalGPfunInputs_EJS2024ArXiv.pdf (911.88 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04559892 , version 1 (25-04-2024)
hal-04559892 , version 2 (03-05-2024)

Identifiants

Citer

Lucas Reding, Andrés F. López-Lopera, François Bachoc. Asymptotic analysis for covariance parameter estimation of Gaussian processes with functional inputs. 2024. ⟨hal-04559892v2⟩
112 Consultations
74 Téléchargements

Altmetric

Partager

More