Article Dans Une Revue Combinatorial Theory Année : 2023

INTERVALS IN THE GREEDY TAMARI POSETS

Résumé

We consider a greedy version of the m-Tamari order defined on m-Dyck paths, recently introduced by Dermenjian. Inspired by intriguing connections between intervals in the ordinary 1-Tamari order and planar triangulations, and more generally by the existence of simple formulas counting intervals in the ordinary m-Tamari orders, we investigate the number of intervals in the greedy order on m-Dyck paths of fixed size. We find again a simple formula, which also counts certain planar maps (of prescribed size) called (m + 1)-constellations. For instance, when m = 1 the number of intervals in the greedy order on 1-Dyck paths of length 2n is proved to be 3•2 ^(n−1)/( (n+1)(n+2)) binomial( 2n,n) , which is also the number of bipartite maps with n edges. Our approach is recursive, and uses a "catalytic" parameter, namely the length of the final descent of the upper path of the interval. The resulting bivariate generating function is algebraic for all m. We show that the same approach can be used to count intervals in the ordinary m-Tamari lattices as well. We thus recover the earlier result of the first author, Fusy and Préville-Ratelle, who were using a different catalytic parameter.
Fichier principal
Vignette du fichier
glouton.pdf (305.85 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence
Copyright (Tous droits réservés)

Dates et versions

hal-04056126 , version 1 (03-04-2023)

Licence

Copyright (Tous droits réservés)

Identifiants

Citer

Mireille Bousquet-Mélou, Frédéric Chapoton. INTERVALS IN THE GREEDY TAMARI POSETS. Combinatorial Theory, 2023, 4 (1), ⟨10.5070/C64163842⟩. ⟨hal-04056126⟩
31 Consultations
31 Téléchargements

Altmetric

Partager

More