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Abstract—This letter proposes a general regularization frame-
work for inference over multitask networks. The optimization
approach relies on minimizing a global cost consisting of the
aggregate sum of individual costs regularized by a term that
allows to incorporate global information about the graph struc-
ture and the individual parameter vectors into the solution of
the inference problem. An adaptive strategy, which responds to
streaming data and employs stochastic approximations in place of
actual gradient vectors, is devised and studied. Methods allowing
the distributed implementation of the regularization step are also
discussed. The work shows how to blend real-time adaptation
with graph filtering and a generalized regularization framework
to result in a graph diffusion strategy for distributed learning
over multitask networks.

Index Terms—Multitask graphs, spectral based regularization,
gradient noise, distributed implementation.

I. INTRODUCTION

Learning over networks allows a collection of intercon-
nected agents to perform parameter estimation tasks from
streaming data by relying on local computations and commu-
nications with immediate neighbors [1]–[8]. In recent years,
there has also been interest in learning algorithms that operate
over multitask networks, where agents need to estimate and
track multiple objectives simultaneously [9]–[18]. Although
agents may generally have distinct though related tasks to
perform, they may still be able to capitalize on inductive
transfer between them to improve their estimation accuracy.
Regularization is one of the most fundamental techniques that
allows to incorporate prior information about how tasks are
related to each other into the formulation and solution of the
inference problem [15]–[20].

This work introduces a family of regularization operators
for multitask learning over networks. We consider multitask
estimation problems where each agent in the network seeks to
minimize an individual cost expressed as the expectation of
some loss function while enforcing graph constraints, which
may include consensus [1], [2] and smoothness [16], [18] as
special cases. We formulate the problem as the minimization
of the aggregate sum of individual costs regularized by a
term that allows to incorporate information about the structure
of the tasks in the graph spectral domain into the solution
of the inference problem. An adaptive strategy is devised
that responds to streaming data and employs stochastic ap-
proximations in place of actual gradient vectors, which are
generally unavailable. We establish, under conditions on the
step-size learning parameter µ, that the strategy converges in

The work of A. H. Sayed was supported in part by NSF grant CCF-
1524250. R. Nassif, S. Vlaski, and A. H. Sayed are with Institute of Elec-
trical Engineering, EPFL, Switzerland (e-mail: {roula.nassif, stefan.vlaski,
ali.sayed}@epfl.ch). C. Richard is with Université de Nice Sophia-Antipolis,
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the mean-square-error sense within O(µ) from the solution
of the regularized problem. While most existing multitask
strategies assume network proximity constraints and formulate
convex optimization problems with appropriate co-regularizers
between neighboring agents [11]–[18], the current regular-
ization framework is concerned with the spectral properties
of the graph signal to be estimated. This distinctive feature
favors solutions that cannot be directly implemented in a
distributed manner. Based on the concept of graph filters [21]–
[25], methods allowing the distributed implementation of the
regularization step are also provided. In this way, the main
novelty in this work is to show how to blend three concepts:
real-time adaptation, graph filtering, and generalized regular-
ization, in order to obtain an effective graph diffusion strategy
for distributed learning over multitask networks.

II. PROBLEM FORMULATION

Consider a connected network of N nodes. Let wk ∈ RM
denote some parameter vector at node k and let W =
col{w1, . . . , wN} denote the collection of parameter vectors
from across the network. We associate with each agent k a
risk function Jk(wk) : RM → R assumed to be strongly
convex. In most learning and adaptation problems, the risk
function is expressed as the expectation of a loss function
Qk(·) and is written as Jk(wk) = EQk(wk;xk), where xk
denotes the random data. The expectation is computed over
the distribution of the data (note that, in our notation, we use
boldface letters for random quantities and normal letters for
deterministic quantities). We denote the unique minimizer of
Jk(wk) by wok. In many situations, there is available some
information about Wo = col{wo1, . . . , woN}, such as knowing
that Wo is smooth with respect to the underlying graph [18].
One way to exploit this information is to employ regularization
to favor solutions with the desired properties. We consider in
this work multitask learning problems of the form:

Woη = arg min
W

Jglob(W) =

N∑
k=1

Jk(wk) +
η

2
W>RW, (1)

where R ∈ RMN×MN is a positive semi-definite regulariza-
tion matrix. The tuning parameter η ≥ 0 controls the tradeoff
between the two components of the objective function. In
practice, and as we shall see in the sequel, the selection of
the regularizer R must account for prior information on the
structure of Wo in the graph spectral domain [26]–[30].
A. Theoretical motivation for the optimization framework

For motivational purposes, we provide in the following a
probabilistic interpretation for problem (1). Let us consider
for example MSE networks [1] where each agent k, at every
instant i, has access to a measurement dk(i) and a regression
vector uk,i, assumed to be related via the linear model:
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dk(i) = u>k,iw
o
k + vk(i), k = 1, . . . , N, (2)

for some unknown M × 1 vector wok with vk(i) denoting a
measurement noise. For these networks, the risk functions take
the form of mean-square-errors (MSE):

Jk(wk) =
1

2
E|dk(i)− u>k,iwk|2, k = 1, . . . , N. (3)

The processes {dk(i),uk,i,vk(i)} are assumed to represent
zero-mean jointly wide-sense stationary random processes
satisfying: i) Euk,iu>`,j = Ru,kδk,`δi,j where Ru,k > 0 and
the Kronecker delta δm,n = 1 if m = n and zero otherwise;
ii) Evk(i)v`(j) = σ2

v,kδk,`δi,j ; iii) the regression and noise
processes {u`,j ,vk(i)} are independent of each other.

Lemma 1. If the network vector is degenerate Gaussian
multivariate distributed W ∼ N (0,R†) and if the noise
process is Gaussian vk(i) ∼ N (0, σ2

v,k) independent over
space and time and identically distributed, then problem (1)
is a MAP estimator for W conditioned on {dk(i),uk,i}.

Proof. The proof is similar to Lemma 1 in [18] with the matrix
L in [18] replaced by the matrix R. When σ2

v,k = σ2
v ∀k, the

optimal choice of η is σ2
v .

B. Regularization via the Graph Laplacian
Let us assume that the graph is endowed with a symmetric

weighted adjacency N×N block matrix A. If there is an edge
connecting nodes k and `, then the (k, `)-th M ×M positive
semi-definite block [A]k` = Ak` = A`k reflects the relation
between k and `; otherwise, Ak` = 01. By analogy to the
scalar setting [18], we introduce the graph Laplacian, which is
a differential operator defined as L = D−A, where the degree
matrix D is an N ×N block diagonal matrix with k-th block
entry Dkk =

∑N
`=1Ak`. Let Nk denote the set of neighbors

of k, i.e., the set of nodes connected to agent k by an edge.
Since W>LW = 1

2

∑N
k=1

∑
`∈Nk

‖wk − w`‖2Ak`
≥ 0 ∀W, the

matrix L is symmetric positive semi-definite and possesses a
complete set of orthonormal eigenvectors. We denote them by
{v1, . . . , vMN}. For convenience, we order the set of real, non-
negative eigenvalues of L as 0 = λ1 ≤ λ2 ≤ . . . ≤ λMN =
λmax. Thus, the Laplacian can be decomposed as L = VΛV>
with Λ = diag{λ1, . . . , λMN} and V = [v1, . . . , vMN ].

A class of regularization functionals on graphs, which is
built upon the notion of graph smoothness, can be defined
as [27]:

S(W) = 〈W, r(L)W〉 = W>r(L)W, (4)

where r(·) is some well-defined non-negative function on the
spectrum σ(L) = {λ1, . . . , λMN} and r(L) is the correspond-
ing matrix function defined as [31]:

r(L) = Vr(Λ)V> =

MN∑
m=1

r(λm)vmv
>
m. (5)

Construction (4) uses the Laplacian as a means to design
regularization operators. Requiring positive semi-definite R

1Note that, it is common in the literature to associate non-negative scalars
ak` with links [15]–[18]. In this work, we propose to associate non-negative
block matrices instead, denoted by Ak`, since matrices are able to capture
more thoroughly relationships between the components of the tasks (or
vectors) at the agents. The scalar case can be recovered from the current
framework by replacing Ak` by ak`IM .

TABLE I
EXAMPLES OF SPECTRAL GRAPH FUNCTIONS r(λ)

Kernel name Spectral function r(λ)

Laplacian with p ≥ 1 [22], [27] λp

Diffusion process [26], [27] eσ
2λ/2

p-step random walk (p ≥ 1, a > λmax) [27] 1/(a− λ)p

|B|-bandlimited [29], [32] r(λm) =
{

0, if λm ∈ B
β, otherwise

in (1) imposes the constraint r(λ) ≥ 0 for all λ ∈ σ(L).
Replacing (5) into (4), we obtain:

S(W) = W>r(Λ)W =

MN∑
m=1

r(λm)|wm|2, (6)

where W = V>W = col{wm}MN
m=1, and wm = v>mW. The

regularization S(W) in (6) promotes a particular structure in
the graph spectral domain. It strongly penalizes |wm|2 for
which the corresponding r(λm) is large. Thus, one prefers
r(λm) to be large for those |wm|2 that are small and vice versa.
The function r(λ) is commonly chosen to be monotonically
increasing in λ [27]. Table I lists some examples of typical
choices for r(λ) [27].

III. ADAPTIVE SOLUTION
A. Adaptive solution

Our objective is to devise and study a strategy that solves
problem (1) where each agent k is interested in estimating the
k-th subvector wok,η of Woη = col{wo1,η, . . . , woN,η}. We are
particularly interested in solving the problem in the stochastic
setting when the distribution of the data xk in Jk(wk) =
EQk(wk;xk) is generally unknown. As such, approximate
gradient vectors need to be employed. A common construction
in stochastic approximation theory is to employ the following
approximation at iteration i [1]:

∇̂wk
Jk(wk) = ∇wk

Qk(wk;xk,i), (7)

where xk,i represents the data observed at iteration i. The
difference between the true gradient and its approximation is
called the gradient noise denoted by:

sk,i(w) = ∇wk
Jk(w)− ∇̂wk

Jk(w). (8)

In order to estimate Woη , we may start by employing a
stochastic gradient descent update of the form:

Wi = Wi−1−µ col
{
∇̂wk

Jk(wk,i−1)
}N
k=1
−µηRWi−1, (9)

where µ > 0 is a small step-size parameter and Wi =
col{w1,i, . . . ,wN,i} is the estimate of Woη at time instant i.
By introducing an auxiliary variables ψk,i at each agent k,
strategy (9) can be implemented in an incremental manner:{

ψk,i= wk,i−1 − µ∇̂wk
Jk(wk,i−1), k = 1, . . . , N,

Wi = ψi − µηRψi,
(10)

where ψi = col{ψ1,i, . . . ,ψN,i} and where we replaced
RWi−1 by Rψi since we expect ψi to be an improved
estimate compared to Wi−1. Let Rk` denote the (k, `)-th block
ofR. In order to computewk,i, agent k needs to evaluate from
the second step in (10) the following expression:

wk,i = ψk,i − µη
N∑
`=1

Rk`ψ`,i. (11)
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This calculation requires exchange of information between
agent k and every agent ` (for which Rk` 6= 0), and some of
these agents may not be in the direct neighborhood of k. Thus,
although the first step in (10) can be performed locally at agent
k, the second step may require non-local communications and
is still non-distributed. In Section IV, we shall explain how
strategy (10) can be implemented in a distributed manner.

B. Performance analysis
Since the iterates wk,i generated by (10) are random, we

shall measure performance by examining the average squared
distance between wk,i and wok,η , limi→∞ E‖wok,η − wk,i‖2.
We analyze (10) under the following assumptions on the risks
{Jk(·)} and on the gradient noise processes {sk,i(·)} defined
in (8). As explained in [1], these conditions are satisfied by
many objective functions of interest in learning and adaptation
such as quadratic and logistic risks. Besides, regularization is
a common technique to ensure strong convexity.

Assumption 1. The individual costs Jk(wk) are assumed to
be twice differentiable and strongly convex such that:

0 < λk,minIM ≤ ∇2
wk
Jk(wk) ≤ λk,maxIM , (12)

where λk,min > 0 for k = 1, . . . , N .

Assumption 2. The gradient noise process defined in (8)
satisfies for any w ∈ F i−1 and for all k, ` = 1, . . . , N :

E[sk,i(w)|F i−1] = 0, (13)

E[‖sk,i(w)‖2|F i−1] ≤ β2
k‖w‖2 + σ2

s,k, (14)

for some β2
k ≥ 0, σ2

s,k ≥ 0, and where F i−1 denotes the
filtration generated by the random processes {w`,j} for all
` = 1, . . . , N and j ≤ i− 1.

Theorem 1. Under Assumptions 1 and 2, strategy (10) con-
verges for sufficiently small step-sizes satisfying:

0 < µ < min

{
2

ηλmax(R)
, min
1≤k≤N

µk

}
, (15)

where

µk , min

{
2λk,min

λ2
k,min + 3β2

k

,
2λk,max

λ2
k,max + 3β2

k

}
. (16)

Specifically, it holds that for small µ

lim sup
i→∞

E‖Woη −Wi‖2 = O(µ). (17)

Proof. The argument is a simplification of the proofs presented
in [33].

The first bound in (15) ensures stability of IMN −µηR and
the second bound ensures mean-square-error stability of each
agent. Theorem 1 states that the expected squared distance
between wk,i and wok,η is on the order of µ at steady-state.
This implies that when µ is chosen to be sufficiently small,
the expected error can be made arbitrarily small.
C. Illustrative example

To illustrate the benefit of our multitask learning framework,
we consider an MSE network of N = 50 nodes and M = 5,
generated randomly with the link matrix shown in Fig. 1 (left).
We set Ak` = ak`IM with ak` = 1

max{|Nk|,|N`|} if ` ∈ Nk and
0 otherwise. We generate Wo according to Wo = Ve−τΛV>Wo
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Fig. 1. Illustrative example. (Left) Link matrix. (Right) Graph spectral content
of Wo with wom = v>mWo.
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Fig. 2. Network performance relative to Wo. (Left) Performance of al-
gorithm (10) as a function of the regularization strength η = γηo with
ηo ∈ [0, 100] for five different choices of regularizer R. (Right) Performance
of Algorithms 1 and 2 (solid curves). Dashed curves correspond to the
centralized implementation (10).

with τ = 6 and Wo a randomly generated vector from the
Gaussian distribution N (0.1 × 1MN , IMN ). Figure 1 (right)
illustrates the spectral content of Wo given by V>Wo. It can
be observed that the signal is mainly localized in [0, 0.8]. We
assume that Ru,k = σ2

u,kIM . The variances σ2
u,k and σ2

v,k

are generated from the uniform distributions U(1, 1.5) and
U(0.15, 0.25), respectively. In Fig. 2 (left), we characterize
the influence of the regularization on the performance of
algorithm (10) relative to Wo. We set µ = 5 × 10−3. We
run (10) for 5 different choices of regularizer R: Laplacian
(p = 1, R = L) [18], Laplacian (p = 4, R = L4), diffusion
process (σ2 = 12, R = e6L), p-step random walk (p = 7,
a = 1.8, R = (aIMN −L)−p), and bandlimited (B = [0, λc],
λc = 0.8, β = 1.3). In each case, we report the steady-
state MSDo = limi→∞

1
NE‖Wo − Wi‖2 for η = γηo with

ηo ∈ [0, 100] and γ given in Fig. 2 (left). For each η, the
results are averaged over 20 Monte-Carlo runs and over 500
samples after convergence. The results show that although
the signal Wo is generated by smoothing a signal Wo by a
diffusion kernel, settingR = L, which is a common choice for
promoting smoothness [18], is not optimal in our setting and
considering higher powers of Laplacian (such as L4) allows us
to obtain better performance compared to the non-cooperative
setting (η = 0). This is due to the fact that, by increasing p
in r(λ) = λp, we penalize less wm for which λm < 1 and
we penalize more those for which λm > 1. The bandlimited
regularizer provides the best performance. As we shall see in
Section IV, due to the discontinuity at λc, this improvement
may not be observed in a distributed implementation.

IV. DISTRIBUTED IMPLEMENTATION

A. Regularization via Graph Laplacian polynomials
When the regularizer R can be written as a P -th degree

polynomial of the Laplacian L, i.e., R =
∑P
p=0 βpLp, for

some scalar constants {βp}, or equivalently, when r(λ) in (5)
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can be written as r(λ) =
∑P
p=0 βpλ

p, algorithm (10) can
be implemented in a decentralized fashion since the second
step in (10) can be implemented in P communication steps
according to:{

ψpi = βP−pψi + Lψp−1
i , p = 1, . . . , P

Wi = ψi − µηψ
P
i

(18)

with ψ0
i = βPψi. The P steps above involve product of ψp−1

i

by L and this product can be computed at each node by just
exchanging information with neighbors. Particularly, the k-
th subvector of Lψp−1

i can be computed locally at agent k
according to [Lψp−1

i ]k =
∑
`∈Nk

Lk`ψ
p−1
`,i where Lk` is the

(k, `)-th block of L. Thus, replacing (18) into (10), we arrive
at the graph diffusion strategy I.

Algorithm 1: Graph diffusion strategy I

When r(λ) =
∑P
p=0 βpλ

p, run at each agent k:
ψk,i = wk,i−1 − µ∇̂wk

Jk(wk,i−1),

ψ0
k,i = βPψk,i,

ψpk,i = βP−pψk,i +
∑
`∈Nk

Lk`ψ
p−1
`,i , p = 1, . . . , P,

wk,i = ψk,i − µηψ
P
k,i.

B. More general regularization form
For more general regularization forms, one would like to

benefit from the sparsity of L (i.e., the graph). As long as
we can approximate R by some low order polynomial in
L, say R ≈

∑P
p=0 βpLp, significant communication savings

can be made and distributed implementations are possible.
Problems of this type have already been considered in graph
filters design [21]–[23]. A graph filter is an operator that
acts upon a graph signal W by amplifying or attenuating
its graph spectral content V>W = col{wm}MN

m=1 as: ΦW =
VΦ(Λ)V>W =

∑MN
m=1 Φ(λm)wmvm. The spectral function

Φ(λ) controls how much Φ amplifies the spectrum. When
R = r(L) in (5), Rψi in (10) reduces to:

Rψi = r(L)ψi =
MN∑
m=1

r(λm)ψm,ivm, (19)

where ψm,i = v>mψi. By identification, we observe that r(L)
is a graph filter that acts upon ψi.

Different methods for computing r(L)ψi in a distributed
setting exist in the literature. In the following, we shall
briefly describe the Chebyshev polynomial approximation
method [22] which allows to approximate r(L)ψi by r̃(L)ψi,
where r̃(·) is a polynomial approximation of r(·) computed
by truncating a shifted Chebyshev series expansion of r(·) on
[0, λmax]. Doing so circumvents the need to compute the full
set of eigenvalues and eigenvectors of L. Accessible overview
of other existing methods can be found in [22, Section V].

We approximate r(·) by the first P + 1 terms of its
Chebyshev polynomial expansion according to [22], [34]:

r(λ) ≈ r̃(λ) =
1

2
θ0 +

P∑
p=1

θpTp

(
λ− α
α

)
, (20)

for λ ∈ [0, λmax], where α = λmax

2 , θp are the Chebyshev
coefficients given by θp = 2

π

∫ π
0

cos(px)r(α(cos(x) + 1))dx,

and {Tp(·)}Pp=0 are the polynomials that can be computed
recursively according to Tp(x) = 2xTp−1(x) − Tp−2(x), for
p ≥ 2, with T0(x) = 1 and T1(x) = x. Thus, the second step
in (10) can be approximated by:

Wi ≈ ψi − µη

(
1

2
θ0ψi +

P∑
p=1

θpψ
p
i

)
, (21)

where ψpi = Tp
(

1
α (L − αIMN )

)
ψi. The vectors ψpi can be

computed recursively according to:

ψpi =
2

α
(L − αIMN )ψp−1

i −ψp−2
i , if p ≥ 2, (22)

with ψ0
i = ψi and ψ1

i = 1
α (L − αIMN )ψi. Replacing (21),

and (22) into (10), we arrive at the graph diffusion strategy II.

Algorithm 2: Graph diffusion strategy II
When r(λ) is some non-negative function, evaluate the

coefficients α and θp, and run at each agent k:

ψk,i = wk,i−1 − µ∇̂wk
Jk(wk,i−1),

ψ0
k,i = ψk,i,

ψ1
k,i = 1

α

∑
`∈Nk

Lk`ψ`,i −ψk,i,

ψpk,i = 2
α

∑
`∈Nk

Lk`ψ
p−1
`,i − 2ψp−1

k,i −ψ
p−2
k,i , p = 2, . . . , P,

wk,i= ψk,i − µη
(

1
2θ0ψk,i +

∑P
p=1 θpψ

p
k,i

)
.

This method allows the nodes in the network to perform the
second step in (10) locally in P communication steps. Each
node requires knowledge of {θp} that may be computed locally
from knowledge of r(·), and α = λmax

2 . Note that, instead of
using the exact value of λmax, an upper bound λmax can be
used, and in this case α is replaced by α = λmax

2 . When r(·)
is continuous, the Chebyshev approximation r̃(·) converges to
r(·) rapidly as P increases [22], [34].
C. Simulation results

We consider the same setting as in Section III-C. When
R = Lp, we run Algorithm 1. For the three other choices
of R, we run Algorithm 2 with λmax = 1.5, P = 8 in
the diffusion case, P = 22 in the random walk case, and
P = 30 in the bandlimited case. Figure 2 (right) reports
the network MSD learning curves 1

NE‖Wo −Wi‖2. In each
case, the value of η that gives the lower MSD (from the
left plot in Fig. 2) is used. As it can be observed, when
r(·) is continuous, the distributed implementation performs
well compared to the centralized one. For the bandlimited
case where r(·) is discontinuous on [0, λmax], a performance
degradation compared to the centralized implementation is
observed for finite P . We note that, for λ < λc, we use
r(λ) = 0.07 instead of r(λ) = 0 in the distributed case in
order to ensure a positive semi-definite approximation r̃(L),
and thus reducing the effect of ripples resulting from the
Chebyshev approximation.

V. CONCLUSION

In this work, we proposed and studied an adaptive strategy
that allows a multitask network to minimize a global cost con-
sisting of the aggregate sum of individual costs regularized by
a general regularization term enforcing a specific structure in
the graph spectral domain. Approximation methods allowing
the distributed implementation were also provided.
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