N

HAL

open science

Approximate Computing for DNN

Olivier Sentieys

» To cite this version:

Olivier Sentieys. Approximate Computing for DNN: Improving performance and energy efficiency of
deep-learning hardware accelerators with controlled arithmetic approximations. CSW 2021 - HIPEAC
Computing Systems Week, Oct 2021, Lyon, France. hal-03494932

HAL Id: hal-03494932
https://hal.science/hal-03494932
Submitted on 20 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-03494932
https://hal.archives-ouvertes.fr

Approximate Deep Learning
Accelerators

Improving performance and energy efficiency of deep-learning
hardware accelerators with controlled arithmetic approximations

Olivier Sentieys

Univ. Rennes, Inria

. (&:1RISA

RENNES 1

rennes

Energy Cost in a Processor/SoC

64-bit FPU: 20pJ/op
32-bit addition: 0.05pJ
16-bit multiply: 0.25pJ

Wire energy é
— 240f)/bit/mm per T

— 32 bits: 40pJ/word/mm

— 8 bits: 10pJ/word/mm

[Adapted from Dally, IPDPS’11]

Memory/Register-File
— Depends on word-length

‘ 50 pJ (8 kB SRAM)

2\ DRAM
B oy

28nm

0 CMOS

Energy strongly depends on data representation and size

2

Complexity Issues of Deep NNs

Deep (Convolutional) Neural Networks

POOL POOL POOL
RELU RELU RELU RELU RELU RELU
CONV | CcoNnv CONV | CONV \ CONV | CONV FC FC NASNel-ASS
Input ‘ Output
| SE-ResNeXt-101(32x4d)
Inception-ResNet-v2
80 s (Inception-va SENet-154
SE-Heshwe 50(3‘2’(46) Xception IPathNet- IPathNet-131
SE-ResNet- @ esNet-152 eXt-101(64x4d)
SE-ResNet 60 ncgghon-3 g ’se:%(fz’. -
mmNet_mi. nseNet-161 S ResNel-152
® Oreshet-so PCaffe-ResNet-101 VGG-19 BN
75] DualPathNet-68 DenseNet-169 VGG—16__BN
DenseNet-121
\'? ® NASNet-A-Mobile
[=)
= BN-Incaption (@ ResNet-34 VGG-13 BN
[9)
g ® MobileNet-v2 VGG-11_BN
§ b b VGG-19
- esiet-
“'_1 0 .M b‘.N VGG-16
obileNet-v1
(o)
'_
P ShuffleNet
.GOOQLeNel
/)/
7 VL4
88/ /]
1M 5M 10M 50M 75M 100M 150M
SqueezeNet-v1.1
‘e SqueezeNet-v1.0
: ‘AIexNet
: “*g:"(.
"‘ 55 T T T T
iy ™ - 0 5 10 15 20 25
® » ‘ ResNet-50 "
POp lar gra ph training batch=4 Operations [G-FLOPs]

Approximate Computing

e Many applications are error resilient &
— media processing, data mining, machine
learning, web search, etc. e
* AxC performs approximations to reduce energy
and increase execution speed while keeping
accuracy in acceptable limits
— Relaxing the need for fully precise operations

— Number representations
and word-length

* Design-time/run-time

e Different levels

>
Application quality degradation 4

Resilience of ANN?

Aoccdrnig to a rscheearch at Cmabrigde
Uinervtisy, it deosn’t mttaer in waht oredr the

Itteers in a wrod are, the olny iprmoatnt tihng
iIs taht the frist and Isat Itteer be at the rghit

pclae. And we spnet hlaf our Ifie larennig

how to splel wrods. Amzanig, no!
[O. Temam, ISCA10]

* Our biological neurons are tolerant to computing
errors and noisy inputs

* Quantization of parameters and computations
provides benefits in throughput, energy, storage

Even Worse for Training...

e Carbon footprint of DNN training

Analyzing the carbon footprint of current natural-language
processing models shows an alarming trend: training one
huge model for machine translation emits the same
amount of CO2 as five cars in their lifetimes (fuel included)
[Strubell et al., ACL 2019]
* Many more operations than inference

* More pressure on memory aCcess

e Much more difficult to accelerate

Need for a Significant Reduction of the Carbon
Footprint of Neural Network Training Hardware

This rest of this talk is about

* Approximations in DNNs

* Reducing the numerical precision of
arithmetic operations is a general way to
increase performance and energy
efficiency in computing
— How does this apply to DNN?

— Can we design low-precision accelerators for
inference and training?

Number Representations

Floating-Point (FIP) * Fixed-Point (FxP)

r=(—1)% x m x 267127 P

s: sign, m: manltissa, e: exponent p: integer, K=2": fixed scale factor
s le..le., el e, 1 Mol | me — Integer arithmetic

Exponent: Ebits | Mantissa: M bits — Efficient operators

— Easy to use * Speed, power, cost

— High dynamic range — Hard to use..

— |EEE 754 +Zb o
mnnm s: sign, m: magmtudel,_n.nfractlonal

2m—1 21 20 !2—1 2-n

Single Precision
Double Precision 11 52 1023 i b1 | bo | ba | b s

Integer part: m bits Fractional part: n bits

Number Representations

* Energy, delay, and area vary a lot between
numeric formats and word-length

yE—

8-bit integer 0.03pJ /36um2 0.2pJ / 282um?
32-bit float 0.9p) / 4184um?2 3.7pJ / 7700um>
Relative energy cost Relative area cost

Operation: Energy (pJ) Area (um?)

8b Add 0.03 36

16b Add 0.05 67

32b Add 0.1

16b FB Add 04

32b FB Add 0.9

8b Mult 0.2

32b Mult 3.1

16b FB Mult 1.1

32b FB Mult 3.7

32b SRAM Read (8KB) 5)

32b DRAM Read 640

1 10 100 1000 10000 1 10 100 1000

Energy numbers are from Mark Horowitz *Computing’s Energy problem (and what we can do about it)*. ISSCC 2014
Area numbers are from synthesized result using Design compiler under TSMC 45nm tech node. FP units used DesignWare Library.

Floating-Point Arithmetic

., FIP Adder

* Floating-point i
nardware is doing the o dteerce iy]
job for you! =]
g |1-bit shift m, i
I ane % +2
LZA |mg — my| p F b
il — 4/~ sticky
* FIP operators are R e
|_T_| A | prenorm (2-bit shift) |
therefore more S I G
complex
c/f
e R P e T rounding,normalization
g and-exception handling
Fixed-point addition A
equivalent ¢

[J.-M. Muller et al., Handbook of Floating-point arithmetic, Springer, 2009] 10

What can be customized?

* Of course precision
— Exponent (E) and Mantissa (M) bit-width
— e and m both impact accuracy

e Play with exponent bias

e Sub-normal humbers or not?

e 0, oo, NaN?

* Rounding modes
— 10 nearest, truncation, to O/OO

* |Inexact integer operators

11

LP-Floating-Point Multiplication

 Example: 7 bits, (2,5)

ey 1l0/2f 1.m, ={1.0; 1.5}

1104 1.m,={1.0;1.5}

1.m, = {1.0; 1.5; 2.25}
s;=s,NXORs, €:=éx+e,+(mxANDmy) 1.m, = {1.0; 1.5; 1.5 or 1.0}

1 m, =m, OR/XOR m,

S,

* 5-bit adder and 3 gates!

FxP vs. FIP: Adders

5 1 | 1 1 |
° FXPN 4 | - IIZXPN — 'TITN(4) |:'II FITn(6) |:|I FITn(8)| _: I
— N-bit Fixed-Point &3
=2
Q
* FIT\(E) T
3 0
— N-bit Float 1%
- 3.5
— Exponent E bits ~30f
3 2.5
© 2.0
T 1.5
e ExPaddersiare | =01
always smaller, ~ °”
faster, less 8 10
&5 8
energy 5 6
b 4
T 2
0

28nm FDSOI technology, Catapult (HLS), Design Compiler, PrimeTime 13

FxP vs. FIP: Multipliers

20 | | | | I
e FxP BN <Py, B FTy(4) [FITy(6) 3 FITn(8) |
N gl.s—“——l ——————— S FaEaEs s = = - - — =
— Fixed-Point ‘31.0 l l : I '
— N bits * 05
0.0
* FIT\(E) 1%
— Floating-Point 5, il
% 0.8
— N bits T 0.6
: T 0.4
— Exponent E bits %
0.0
12
* FIP multipliers %13
are smaller, S 6
w4
faster, but S 2
0

consume more

energy
28nm FDSOI technology, Catapult (HLS), Design Compiler, PrimeTime 14

CUStOm Floatl ng_ POi nt Approximate K-Means Clustering

» Difference in cost/energy ol e
between float/fixed is smaller |
for low-precision operators | =

- 0.6

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

Reference: double

 Slower increase of errors for
floating-point ol

— e.g., 8-bit float is still effective

for K-means clustering
[SiPS’17]

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

Floating-Point: ct_floatg
5-bit exponent
3-bit mantissa 15

Custom Floating-Point

* ct float:a Custom Floating-Point

C++ Libra ry https://gitlab.inria.fr/sentieys/ctfloat

— Synthesizable (with HLS) library
— Templated C++ class

ct float<em,r>

* Exponent width e (int)

t float<8,12,CT RD> X,y,2Z;
1.5565e-2;

C
X
z X + vy,

* Mantissa width m (int)
* Rounding method r
* Bias b

* Many possible design points

— latency constraints, rounding modes, etc. -

Approximate DNNs

Structure
Refinement

Knowledge
Distillation

Data-Oriented
Refinement

Pruning

Compact
Architecture

Quantization

Neural
Architecture
Search

Weight
Sharing

Operator
Refinement

Dedicated
Operators

Approximate

Operators

Structured
Matrices

Float

— half-precision
— Bfloat16
Fixed-point

— INT8

Block floating-
point

BNN/TNN

17

Approximate DNNs: Low-Precision

* Not only Weights, but also Activations,
Per-Layer Quantization, etc.

Accuracy with (weight mantissa size , weight exponent size) in the legend

Accuracy

4-bit activations and
_ 10-bit weights keeps
accuracy near (98.4%)
32-bit float reference

100 1
80 A
o Resnet-18, CIFAR100
—— (2,4)
—— (1,3)
40 A (3.3)
—o— (1,5)
(1,8)
20 4 —o— (3,8)
—— (23,5)
+ - t - —— (23,8)
L) 1) 22 L3 44 (58 (238

Activation quantization (mantissa, exponent)

18

What is still difficult: learning

* Learning: gradient descent and backpropagation

* This is very expensive to compute, even in HW

* Approximating and accelerating learning is much

more difficult
19

Mixed-Precision Training

2. Make an FP16 copy and forward/backward propagate in FP16

float2half —— Weights &» F16

st st dlln FWD ——» Activations

F16 :
H F16 . <«— Weights
A —_) . .
ctivation Grad <—— BWD-Activ BRIy bRt e

F16
Weight Grad F16 . . €— Activations
BWD-Weight 4& Activation Grad

1. Keep weights in FP32

Master-Weights (F32) e Weight Update A2 g Updated Master-Weights

3. Do weight update in FP32

[NVIDIA, Mixed precision training, 2018] 20

Low-Precision Training of DNNs

distribution-1st Epoch distnbution-final Epoch
400 1
3000 1 :
1200
2500 4
1000 1
2000 1
é § 200
1500 1
2 600 1
1000 4
200 1
500 1 200 1
0 : . 2 . ' — : v ¢ u;.d.o FEW, . H !"i" eC B '1'
-40 -35 =30 -25 -20 =15 -10 -5 -40 ~-35 -3 -25 ~20 ~15 ~10 -5
Base.2 logarnthm of absolute values Base-2 loganthm of absolute values

VGG16 training with Cifar-10

— s — g R S el Mmary HighFrecson

21

Accuracy and Hw Aware Exploration

Approximate Operators Library
(AOL)
and
Accuracy Analytical Model
Databases (AAMD)
and
Performance Models (PM): Area,
Power, Execution Time, etc..

%r] L= R A

Training &

AOL

Test
Databases

Data i
M Conditioning

Training

Cotla | Back-end
— i
Generator |

Accuracy Aware
Optimizer C++
(AAO)

Optimized
Code

HLS Open-Cl

AXCNN HW Accelerator
22

Accuracy and Hw Aware Exploration

* Optimization process

— Determine the number format and word-length
for each data

— Constrained by quality degradation

min (C(w,t)) s.t.
Qm G Aw.t) <

'/ Spee Degradatlon
* P maxiAlw it Bt

ce A -

Conclusions

* Most applications tolerate imprecision

* Playing with precision is an effective way to
save energy consumption
— Number representations, low-precision

— Not only computation, but also memory and
transfers

— Run-time accuracy adaptation would increase
energy efficiency even further

* Low-Precision Training and Inference

24

Open Issues

e Exploring number representations and word-
length is a difficult problem for large applications

— Mainly limited by simulation time to evaluate
accuracy

— Automatizing the choice between (or combining) float
and fixed is a challenge
e Towards an automatic optimizing compiler framework

— Domain-specific knowledge is a key
e Evaluating cost is also an important (and less
studied) issue
— e.g., #weights alone is not a good metric
— e.g., unstructured pruning reduces performance

— Hardware-aware pruning/quantization requires a
good cot model

25

