
HAL Id: hal-03494932
https://hal.science/hal-03494932

Submitted on 20 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Approximate Computing for DNN
Olivier Sentieys

To cite this version:
Olivier Sentieys. Approximate Computing for DNN: Improving performance and energy efficiency of
deep-learning hardware accelerators with controlled arithmetic approximations. CSW 2021 - HiPEAC
Computing Systems Week, Oct 2021, Lyon, France. �hal-03494932�

https://hal.science/hal-03494932
https://hal.archives-ouvertes.fr

Approximate Deep Learning
Accelerators
Improving performance and energy efficiency of deep-learning
hardware accelerators with controlled arithmetic approximations

Olivier Sentieys
Univ. Rennes, Inria

2

Energy Cost in a Processor/SoC

28nm
CMOS

16 nJ
DRAM
Rd/Wr

• 64-bit FPU: 20pJ/op
• 32-bit addition: 0.05pJ
• 16-bit multiply: 0.25pJ

• Wire energy
– 240fJ/bit/mm per ⇵
– 32 bits: 40pJ/word/mm
– 8 bits: 10pJ/word/mm

50 pJ (8 kB SRAM)

• Memory/Register-File
– Depends on word-length

[Adapted from Dally, IPDPS’11]

Energy strongly depends on data representation and size

3

Complexity Issues of Deep NNs
• Deep (Convolutional) Neural Networks

ResNet-50
training batch=4

Poplar® graphs have many
more vertices than
TensorFlow graphs – typically
millions, to load-balance a
machine executing tens of
thousands of codelets in
parallel.

The TensorFlow IPU backend
uses the Poplar® libraries to
break TensorFlow compute
functions and large tensors
into fragments.

ResNet-50
training batch=4

Poplar® graphs have many
more vertices than
TensorFlow graphs – typically
millions, to load-balance a
machine executing tens of
thousands of codelets in
parallel.

The TensorFlow IPU backend
uses the Poplar® libraries to
break TensorFlow compute
functions and large tensors
into fragments.

4

Approximate Computing

• Many applications are error resilient
– media processing, data mining, machine

learning, web search, etc.
• AxC performs approximations to reduce energy

and increase execution speed while keeping
accuracy in acceptable limits
– Relaxing the need for fully precise operations
– Number representations

and word-length

• Design-time/run-time
• Different levels

Application quality degradation

Co
st

X

X

X
X

X

5

Resilience of ANN?

• Our biological neurons are tolerant to computing
errors and noisy inputs

• Quantization of parameters and computations
provides benefits in throughput, energy, storage

Aoccdrnig to a rscheearch at Cmabrigde
Uinervtisy, it deosn’t mttaer in waht oredr the
ltteers in a wrod are, the olny iprmoatnt tihng
is taht the frist and lsat ltteer be at the rghit
pclae. And we spnet hlaf our lfie larennig
how to splel wrods. Amzanig, no!

[O. Temam, ISCA10]

6

Even Worse for Training…

• Carbon footprint of DNN training

• Many more operations than inference
• More pressure on memory access
• Much more difficult to accelerate

Analyzing the carbon footprint of current natural-language
processing models shows an alarming trend: training one
huge model for machine translation emits the same
amount of CO2 as five cars in their lifetimes (fuel included)

Need for a Significant Reduction of the Carbon
Footprint of Neural Network Training Hardware

[Strubell et al., ACL 2019]

7

This rest of this talk is about

• Approximations in DNNs

• Reducing the numerical precision of
arithmetic operations is a general way to
increase performance and energy
efficiency in computing
– How does this apply to DNN?
– Can we design low-precision accelerators for

inference and training?

8

Number Representations

• Floating-Point (FlP)

s: sign, m: mantissa, e: exponent

– Easy to use
– High dynamic range
– IEEE 754

• Fixed-Point (FxP)

p: integer, K=2-n: fixed scale factor

– Integer arithmetic
– Efficient operators
• Speed, power, cost

– Hard to use...

8

x = p⇥K

2-n2-121 202m-1

Integer part: m bits Fractional part: n bits

S bm-1bm-2 b1 b0 b-1 b-2 b-n+2b-n+1 b-n

Exponent: E bits Mantissa: M bits

S eE-1 eE-2 e1 e0 1 mM-1 m1 m0

Format e m bias

Single Precision 8 23 127

Double Precision 11 52 1023

9

Number Representations

• Energy, delay, and area vary a lot between
numeric formats and word-length

Addition Multiplication

8-bit integer 0.03pJ / 36µm2 0.2pJ / 282µm2

32-bit float 0.9pJ / 4184µm2 3.7pJ / 7700µm2

Computer arithmetic
I at the core of computing we find number representations (integer

and real) + basic arithmetic operations (e.g. +, ◊, ÷, Ô
)

I energy consumption varies a lot between numeric formats

Task: optimize number format and values for target application accuracy

5/13

10

Floating-Point Arithmetic

• Floating-point
hardware is doing the
job for you!

• FlP operators are
therefore more
complex

[J.-M. Muller et al., Handbook of Floating-point arithmetic, Springer, 2009]

292 Chapter 9. Hardware Implementation of Floating-Point Arithmetic

�

LZA correction

LZA

shift

p + 1

p + 1

p + 1

p + 1

2p + 2

p p

p + 1

p

p + 1

x y

z

exp. difference / swap

rounding,normalization
and exception handling

mxex +/–c/f ex � ey

close path c/f

ex

ez

my

shift

|mx � my|

my

1-bit shift

ex

ez

mx

far path

sticky

prenorm (2-bit shift)
s

s
0

s
0 = 0

g r

mz

mz

Figure 9.13: A dual-path floating-point adder with LZA.

Fixed-point addition
equivalent

FlP Adder

11

What can be customized?

• Of course precision
– Exponent (E) and Mantissa (M) bit-width
– e and m both impact accuracy

• Play with exponent bias
• Sub-normal numbers or not?
• 0, ∞, NaN?
• Rounding modes
– to nearest, truncation, to 0/∞

• Inexact integer operators

12

LP-Floating-Point Multiplication

• Example: 7 bits, (2,5)

• 5-bit adder and 3 gates!

Sx 1 0/1ex 1.mx = {1.0; 1.5}

X Sy 1ey 1.my = {1.0; 1.5}0/1

ez = ex + ey + (mx AND my)
1.mz = {1.0; 1.5; 2.25}

1

1.mz = {1.0; 1.5; 1.5 or 1.0}

mz = mx OR/XOR mySz

sz = sx NXOR sy

13

FxP vs. FlP: Adders

• FxPN
– N-bit Fixed-Point

• FlTN(E)
– N-bit Float
– Exponent E bits

• FxP adders are
always smaller,
faster, less
energy

28nm FDSOI technology, Catapult (HLS), Design Compiler, PrimeTime

14

FxP vs. FlP: Multipliers

• FxPN
– Fixed-Point
– N bits

• FlTN(E)
– Floating-Point
– N bits
– Exponent E bits

• FlP multipliers
are smaller,
faster, but
consume more
energy
28nm FDSOI technology, Catapult (HLS), Design Compiler, PrimeTime

15

Custom Floating-Point

• Difference in cost/energy
between float/fixed is smaller
for low-precision operators

• Slower increase of errors for
floating-point
– e.g., 8-bit float is still effective

for K-means clustering

Floating-Point: ct_float8
5-bit exponent
3-bit mantissa

Reference: double

Approximate K-Means Clustering

[SiPS’17]

16

Custom Floating-Point

• ct_float: a Custom Floating-Point
C++ Library
– Synthesizable (with HLS) library
– Templated C++ class

ct_float<e,m,r>
• Exponent width 𝑒 (int)
• Mantissa width 𝑚 (int)
• Rounding method 𝑟
• Bias 𝑏

• Many possible design points
– latency constraints, rounding modes, etc.

ct_float<8,12,CT_RD> x,y,z;
x = 1.5565e-2;
z = x + y;

https://gitlab.inria.fr/sentieys/ctfloat

17

Approximate DNNs

• Float
– half-precision
– Bfloat16

• Fixed-point
– INT8

• Block floating-
point

• BNN/TNN

18

Approximate DNNs: Low-Precision

• Not only Weights, but also Activations,
Per-Layer Quantization, etc.

4-bit activations and
10-bit weights keeps
accuracy near (98.4%)
32-bit float reference

Resnet-18, CIFAR100

19

What is still difficult: learning

• Learning: gradient descent and backpropagation

𝑦!

• This is very expensive to compute, even in HW
• Approximating and accelerating learning is much

more difficult

15 Approximations in Deep Learning 5

of training a neural network is to find/learn a set of parameters that minimizes the
average loss over a large training set.

To train a network, its weights (wi j) are usually updated using a form of Stochastic
Gradient Descent (SGD) iterative optimization process. This means that weight is
updated by a scaled version of the partial derivative of the loss function `with respect
to the weight. In the most basic form, at iteration t, the weight update formula is
given by:

wt
i j = wt�1

i j � ↵
@`

@wt�1
i j

, (15.1)

where ↵ is called the learning rate2. The partial derivatives of ` can be computed
e�ciently through a process called backpropagation [132]. It is e�ectively an ap-
plication of the chain rule from calculus, and it works by passing values backward
through the network to compute how ` is a�ected by each weight. At each layer, the
procedure is twofold and is exemplified in Figure 15.2. To backpropagate through
a layer: (a) compute the gradient of the loss with respect to the weights, @`/@wi j ,
from the layer inputs (i.e., the forward activations xi) and the gradients of the loss
relative to the layer outputs, @`/@y j ; and (b) compute the gradient of the loss relative
to the layer inputs, @`/@xi , from the layer weights, wi j , and the gradients of the loss
relative to the layer outputs, @`/@y j .

Computing the gradients of the loss function ` over the entire dataset is generally
much too complicated in practice, which is why the loss is usually taken only on a
(small) subset, called a mini batch, of the training data. The use of batches allows
taking advantage of single instruction multiple data (SIMD)-like parallelism on
modern GPUs while keeping the complexity of gradient computation manageable.
A complete iteration of the training process is called an epoch and requires passing
through all of the mini-batches, applying (15.1) for each one of the corresponding
average losses `. Training is carried out for several epochs until convergence to an
appropriate solution is reached.

Both inference and training amount in most part to the same type of computations
(i.e., matrix/vector additions and multiplications). There are important di�erences,
however. For one, as the previous paragraph suggests, training is much more ex-
pensive, since apart from passing through the entire training data multiple times, it
also requires that intermediate outputs and partial derivatives be stored when per-
forming backpropagation. Secondly, due to the gradient update rule, the precision
requirements for training are generally higher than for inference, thus also a�ecting
performance. The e�ect is that the inference quantization techniques that will be
discussed in this chapter are not usually directly applicable to training as well.

2 The deep learning optimization literature describes many ways how to perform the parameter
updates and how to choose the learning rate.

20

Mixed-Precision Training

[NVIDIA, Mixed precision training, 2018]

21

Low-Precision Training of DNNs

– Explore mixed numerical precision hardware
– Low-precision floating-point, variable-

precision variants, building the accelerator

VGG16 training with Cifar-10

22

Accuracy and Hw Aware Exploration

Accuracy and Hw Aware Exploration

• Optimization process
– Determine the number format and word-length

for each data
– Constrained by quality degradation

Quality
DegradationSpeed

Power
Area

C(•) �(•)

min (C(w, t)) s.t.

�(w, t)  �obj

max (�(w, t)) s.t.

C(w, t)  Cmax

24

Conclusions

• Most applications tolerate imprecision
• Playing with precision is an effective way to

save energy consumption
– Number representations, low-precision
– Not only computation, but also memory and

transfers
– Run-time accuracy adaptation would increase

energy efficiency even further

• Low-Precision Training and Inference

25

Open Issues

• Exploring number representations and word-
length is a difficult problem for large applications
– Mainly limited by simulation time to evaluate

accuracy
– Automatizing the choice between (or combining) float

and fixed is a challenge
• Towards an automatic optimizing compiler framework

– Domain-specific knowledge is a key
• Evaluating cost is also an important (and less

studied) issue
– e.g., #weights alone is not a good metric
– e.g., unstructured pruning reduces performance
– Hardware-aware pruning/quantization requires a

good cot model

