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ABSTRACT

Identifying directed connectivity patterns from nodal measurements
is an important problem in network analysis. Recent works proposed
to leverage the performance and flexibility of strategies operating in
reproducing kernel Hilbert spaces (RKHS) to model nonlinear inter-
actions between network agents. Moreover, several applications re-
quire online and efficient solutions, which motivated the considera-
tion of distributed adaptive learning strategies inspired by algorithms
such as the kernel least mean square (KLMS). Despite showing good
performance, a thorough theoretical understanding of the behavior of
such algorithms is still missing. This makes applying them in prac-
tice challenging, especially because the set-up of adaptive algorithms
involves additional parameters like the step size and a dictionary of
kernel functions. In this paper, we present a convergence analysis of
the graph-topology-inference KLMS algorithm. Monte Carlo simu-
lations demonstrate the accuracy of the theoretical models.

Index Terms— convergence analysis, kernel least mean squares,
topology inference, online processing

1. INTRODUCTION

Graphs have proven to be a fundamental tool in several applications,
such as the analysis of socio-economical interactions [1] or brain ac-
tivity [2]. In this context, information on the network structure is
important and required by traditional graph signal processing algo-
rithms [3]. It however appears that the topology of the graph is usu-
ally unknown beforehand. Recent works have addressed this issue
by estimating the network topology directly from a set of measure-
ments acquired at each node of the graph [4]. Although most topol-
ogy identification algorithms assume linear dependencies between
the nodal signals, nonlinear interactions between measurements at
different nodes can be observed in many real-world applications,
e.g., brain activity [2]. Many big data-oriented applications also
require algorithms which are distributed, scalable, and can operate
online with adaptive capabilities.

Although several solutions have been proposed for nonlinear on-
line topology identification, a theoretical evaluation of the perfor-
mance of such methods remain a challenging but important issue.
These analyses are important both in understanding and designing
the algorithm. In this paper, we present a theoretical model for the
convergence behavior graph-topology-inference KLMS algorithm.

Background and prior work: Many approaches have been pro-
posed for topology identification in the presence of linear interac-
tions. Such works include inverse covariance estimation based on
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the graphical Lasso [5], or the recovery of the topology from spec-
tral templates [6]. More recently, online strategies have been pro-
posed to address this problem, including diffusion-based [7] and dis-
tributed [8] adaptive algorithms, and variable-splitting based meth-
ods for stationary data [9]. However, these works do not consider
nonlinear interactions that may happen.

Several strategies have been proposed to address the topology
inference problem with nonlinear interactions, such as polynomial
structural equation models [10, 11] and their nonlinear counter-
parts [12]. However, these methods require the nonlinear interaction
models to be specified a priori. Kernel-based strategies, on the other
hand, offer an efficient means of representing nonlinear functions
by selecting an appropriate RKHS associated to a positive definite
reproducing kernel [13]. The flexibility, elegance and mathemati-
cal tractability of kernel-based methods made their use widespread
in topology identification. An in-depth overview of kernel-based
topology inference can be found in [4], where several solutions are
discussed. For instance, in [14], reproducing kernels are used to
represent nodal measurements acquired at different time instants.
An auto-regressive framework is employed to model graph connec-
tivity over time, and a variable splitting-based batch algorithm is
proposed to estimate the topology. A multi-kernel is also proposed
in [15], where the graph topology is encoded via partial correlations.
Despite performing well when the nonlinearities in the data are
unknown, these strategies are not adaptive and their computational
cost can be high.

An important aspect of kernel-based machinery is that it allows
one to develop strategies that can address the online and adaptive
topology identification problem in nonlinear settings. In [16], a
batch strategy is modified to operate in an online fashion by consid-
ering a moving window with a fixed amount of samples. A stochastic
gradient-based solution using a multi-kernel model was later pro-
posed in [17] by considering a coherence-based online dictionary
construction [18]. This method provides a competitive performance
for estimating brain connectivity at a very small computational com-
plexity. These models, however, are based on additive nonlinear in-
teractions. Recently, a strategy was proposed to consider more gen-
eral nonlinearities in the data [19] by employing a nonparametric
topology identification framework.

However, to this date no theoretical evaluation of the perfor-
mance of the online topology estimation approaches is available.
This is an important issue since adaptive algorithms require the care-
ful design of, e.g., a dictionary construction strategy [18] and an
optimized step size in order to obtain a satisfactory performance. In
this work, we provide a statistical performance analysis of the graph-
topology-inference KLMS with a Gaussian kernel and a preselected
dictionary. The presented model characterizes the mean and mean-
squared behavior of the algorithm, both in transient and steady-state.
Although previous works have analyzed the behavior of the KLMS



algorithm [20, 21, 22], we consider a distributed setting, with sep-
arate kernels and dictionaries for each node, and a temporal depen-
dence in the input data, which allows the algorithm to have memory
and make use of past data. This last characteristic is important in ap-
plications such as functional brain topology estimation, where there
is a 10–20 ms delay in signal propagation between nodes [23]. More-
over, considering the dictionary as a fixed parameter of the algorithm
allows one to analyze its influence on the performance of the model,
and to adjust it so as to maximize the performance [20]. Simulation
results illustrate the validity of the model. In future works, we will
explore the use of the presented model to devise parameter selection
strategies, providing guaranteed means of inferring the topology of
a graph over time.
Definitions: A graph G consists of a set N of (N + 1) nodes, and
a set E of edges such that (m,n) ∈ E if, and only if node n is
linked to node m. At node level, we collect a real-valued signal
y(i) , [y1(i), . . . , yN+1(i)]>, where yn(i) is the sample of the sig-
nal y(i) at node n and time instant i. The adjacency matrix A [24],
is defined as an (N + 1) × (N + 1) matrix whose entries anm are
zero if (m,n) /∈ E and one otherwise. We also consider ann = 0,
for all n.
Notations: Normal font letters denote scalars, while boldface low-
ercase and uppercase letters stand for column vectors and matrices,
respectively. Uppercase calligraphic letters denote sets, of cardinal-
ity | · |. Finally, E{·} is the expectation operator.

2. PROBLEM FORMULATION

Let us consider measurements y(i) ∈ RN+1 acquired over an
(N + 1)-node graph with adjacency matrix A. We suppose the
measurements y(i) to be acquired sequentially at all time instants
i ≥ 0. Signal yn(i) at each node n = 1, . . . , N of the graph is
non-linearly coupled to the signals at all nodes in its neighborhood,
according to the topology described in A. By considering an addi-
tive nonlinear model, the local measurements at the n-th node can
be represented as:

yn(i) =
∑

m∈N\{n}

fnm(yLm
(i)) + vn(i) , (1)

where yLm
=
[
ym(i), . . . , ym(i − Lm + 1)

]>, functions fnm :

RLm → R represent the interactions between the different nodes in
the network, and vn(i) denotes innovation noise. By relating how
each node m ∈ N \ {n} influences node n, functions fnm encode
the connectivity in A directly as anm = 0 if and only if fnm ≡ 0.
For ease of notation, we assume that n ≡ (N + 1), i.e., we identify
n with the (N + 1)-th node of the graph, which allows us to denote
N\{n} = {1, . . . , N}. Thus, considering the available graph signal
measurements y(i) for 1 ≤ ` ≤ i, the non-parametric local topology
estimation problem at node n can be written as [16, 17]:

min
fn1,...,fnN∈H

1

2i

i∑
`=1

E
{[
yn(i)−

N∑
m=1

fnm(yLm
(i))
]2}

+ Ψ
(
‖fn1‖H, . . . , ‖fnN‖H

)
(2)

where H is a (normed) function space and Ψ : RN → [0,∞[ is a
regularization functional which attempts to promote sparsity in the
underlying adjacency matrix by favoring solutions in which many
functions fnm are identically zero.

Although several approaches can be considered for nonlin-
ear modeling (such as, e.g., polynomial structural equation mod-
els [25]), kernel methods are particularly appealing due to their

elegance and efficiency. We consider H to be an RKHS associ-
ated with a positive reproducing kernel κ(·, ·) [13]. Let us now
assume that fnm ∈ H,m ∈ N \ {n}, and that function Ψ can
be decomposed as Ψ(x1, . . . , xN ) =

∑N
m=1 ψm(xm), where each

ψm : R → [0,∞[ is non-decreasing. Then, since (2) employs a
convex loss function, the conditions of the Representer Theorem
are satisfied [26], which means that the solution to (2) admits a
finite-dimensional representation of the form:

f∗nm(·) =

i∑
p=1

αnmpκm
(
·,yLm

(p)
)
, m = 1, . . . , N , (3)

where αnmp ∈ R are the representation coefficients.
An immediate observation concerning (3) is that the number of

coefficients αnmp becomes prohibitively large as i increases. This
makes solving (2) online unfeasible. A solution to this problem is
the use of kernel dictionaries, which represent fnm as a linear com-
bination of a small number of appropriately selected kernel func-
tions κm(·, ym(ωj)) [18]. Such dictionaries, which we denote by
Dm = {κm(·, ym(ωj)) : ω1, . . . , ω|Dm|}, can be either constructed
online by selecting previous datapoints that satisfy some sparsifica-
tion criterion (in which case ωj ∈ {1, . . . , i− 1}) [18], or can be set
a priori (in this case, we denote the sample indexes of the dictionary
elements as ωj < 0, with a slight abuse of notation) [20].

Considering dictionariesDm, an efficient strategy for the online
estimation of fnm is the KLMS algorithm. The KLMS aims to min-
imize the following cost function at every time instant i using the
stochastic gradient descent method:

Jn(αn) =
1

2
E
{[
yn(i)−α>nk(i)

]2∣∣∣∣ {Dm}m∈N\{n}} . (4)

where αn =
[
α̃>n1, . . . , α̃

>
nN

]>, α̃nm = col{αnmp}|Dm|
p=1 , k(`) =[

k̃
>
1 (i), . . . , k̃

>
N (i)

]>, k̃m(i) = col{κm(yLm
(i),yLm

(ωj))}|Dm|
j=1 .

This leads to the following coefficient update rule:

α̂n(i+1) = α̂n(i) + µk(i)ε(i) , (5)

where ε(i) , yn(i)−k>(i)α̂n(i) represents the instantaneous error
conditioned on the dictionaries {Dm}Nm=1, and µ > 0 denotes a
small step size. The estimated coefficients α̂n(i) can be related to
the adjacency matrixA at instant i by using a threshold τn by setting
anm(i) = 1 if ‖ ̂̃αnm(i)‖2 > τn and anm(i) = 0 otherwise [27].

3. ALGORITHM ANALYSIS

Let us denote the optimal coefficients which minimize cost func-
tion (4) byα∗n = R−1

kk rky , withRkk , E
{
k(i)k>(i)

}
and rky ,

E {yn(i)k(i)}, and the difference between the current available es-
timate and the optimal solution by:

d(i) , α̂n(i) −α∗n . (6)

The remainder of this analysis concerns the use of the Gaussian
kernel, chosen due to its universal approximating capabilities [28].
This kernel is defined as kGn (ya,yb) = exp

(
−‖ya − yb‖2/2σ2

)
,

where σ2 is the kernel bandwidth.
Assumption 1: Dictionaries {Dm} are set beforehand. Inputs y(i)
are assumed independent, zero-mean Gaussian random vectors with
auto-correlation matrixRyy , E

{
y(i)y>(i)

}
.



Assumption 2: Quantity k(i)k>(i) is statistically independent of
the error vector d(i). A justification for the feasibility of the latter
assumption is presented in [29].
Assumption 3: The optimal estimation error ε0(i) , yn(i) −
k>(i)α∗n given by the finite order model is close to the one by the
infinite length model, such that E{ε0(i)} ≈ 0.

Error ε(i) can be expressed in terms of the error vector d(i):

ε(i) = yn(i)− k>(i)d(i) − k>(i)α∗n . (7)

Replacing (7) into (5) leads to the following recursion:

d(i+1) = d(i) − µk(i)k>(i)d(i) + µk(i)ε0(i) . (8)

3.1. Mean error behavior

Before proceeding to the mean behavior analysis, consider the
quadratic form ξ of a Gaussian vector ζ, given by ξ = ζBζ>+b>ζ,
with E {ζ} = 0,Rζζ = E

{
ζζ>

}
. For t ∈ R, the moment-

generating function of the random variable ξ is [30, p. 101]:

Ψξ(t) , E {exp(tξ)} = det {I − 2tBRζζ}−
1
2

× exp

(
t2

2
b>Rζζ (I − 2tBRζζ)

−1 b

)
. (9)

Taking the expectation of relation (8), and employing Assump-
tions 2 and 3, leads to the mean error (ME) behavior:

E
{
d(i+1)

}
= (I − µRkk)E

{
d(i)

}
. (10)

Block matrixRkk contains blocksR(m1,m2)
kk , E

{
km1(i)k>m2

(i)
}

,
∀m1,m2 ∈ N\n. Each entry (u, v), u = 1, . . . , |Dm1 |, v =

1, . . . , |Dm2 | of every blockR(m1,m2)
kk is:[

R
(m1,m2)
kk

]
uv

= exp

(
− 1

2σ2

∥∥∥y(uv)
∥∥∥2) (11)

× E
{

exp

(
− 1

σ2

(
1

2

∥∥∥Gy(ii)
∥∥∥2 − (y(uv)

)>
Gy(ii)

))}
,

where y(uv) =
[
y>Lm1

(ωu), y>Lm2
(ωv)

]>, and y(ii) and G are
given by:

y(ii) =

{[
y>Lm1

(i), y>Lm2
(i)
]>
, m1 6= m2

yLm1
(i) , m1 = m2

, (12)

G =

{
I , m1 6= m2[
I, I

]>
, m1 = m2

. (13)

Making use of (9) with B = 1
2
G>G, b = −G>y(uv) and

t = − 1
σ2 , we obtain:[

R
(m1,m2)
kk

]
uv

= exp

(
1

2σ4

(
y(uv)

)>
GH(m1m2)G>y(uv)

)
× exp

(
− 1

2σ2

∥∥∥y(uv)
∥∥∥2)det

{
I +

1

σ2
G>GR(m1m2)

yy

}− 1
2

,

(14)

where I is of size (Lm1 + Lm2) × (Lm1 + Lm2), H(m1m2) =

R
(m1m2)
yy

(
I + 1

σ2G
>GR

(m1m2)
yy

)−1

, withR(m1m2)
yy a block ma-

trix. Each of its blocks (k, `) ∈ {1, 2}2 contains [Ryy]mkm`
on all

entries of its main diagonal, and zeros elsewhere.
From (10), convergence of the coefficients in the mean is as-

sured if the step size satisfies 0 < µ < 2/λmax(Rkk), where λmax(·)
represents the maximum eigenvalue of its matrix argument.

3.2. Mean square error behavior

Let us denote D(i) , E
{
d(i)d

>
(i)

}
. Using (8) and the previous

assumptions, we obtain the mean square error (MSE) behavior:

D(i+1) = D(i)−µ
(
D(i)Rkk +RkkD(i)

)
+µ2Q+µ2RkkJn,min ,

(15)
with Jn,min being the minimum value of the cost function (4), and:

Jn,min = Jn(α∗n) = E
{
y2n(i)

}
− r>kyR−1

kk rky , (16)

Q = E
{
k(i)k>(i)d(i)v

>
(i)k(i)k>(i)

}
. (17)

These second order moments relate to the MSE via [31]:

Jn,MSE(i) , E
{
ε2(i)

}
= Jn,min + Tr

{
RkkD(i)

}
, (18)

and to the MSD through:

MSD(i) , E
{
‖d(i)‖2

}
= Tr

{
D(i)

}
. (19)

Let us note kD =
∑
m∈N\n

|Dm|, the total number of dictio-
nary entries. We make use of Assumption 2, leading to the writing
of the (u, v)-th entry ofQ as:

[Q]uv =

kD∑
a=1

kD∑
b=1

E
{

[k(i)]u [k(i)]v [k(i)]a [k(i)]b
} [
D(i)

]
ab
.

(20)
We introduce matrixK(u,v), whose (a, b)-th entry is:[

K(u,v)]
ab

= E
{

[k(i)]u [k(i)]v [k(i)]a [k(i)]b
}
. (21)

Now we can write relation (20) as:

[Q(i)]uv = Tr
{
K(u,v)D(i)

}
. (22)

To compute the expectation in (21), we need to find which block of
k(i) (and which element therein) is being indexed by values u, v, a
and b. Let us define functions ς, % : N∗ → N∗, which relate an in-
dex u in block vector k(i) to its corresponding constituent block
ς(u) and entry %(u): [k(i)]u = [k̃Lς(u)

(i)]%(u) (i.e., [k(i)]u is
the %(u)-th entry of the ς(u)-th block). Then, by denoting m1 =
ς(u), m2 = ς(v), m3 = ς(a), m4 = ς(b) and ωp = ω%(u), ωq =
ω%(v), ωr = ω%(a), ωs = ω%(b), we can write the following:[
K(u,v)]

ab
= exp

(
− 1

2σ2

∥∥∥yd
∥∥∥2)

× E
{

exp

(
− 1

σ2

(
1

4

∥∥∥G̃yi
∥∥∥2 − (yd

)>
G̃yi

))}
,

with yd =
[
y>Lm1

(ωp),y
>
Lm2

(ωq),y
>
Lm3

(ωr),y
>
Lm4

(ωs)
]> col-

lecting the dictionary entries and yi = col{yLm
(i)}m∈⋃4

`=1
{m`}

collecting the unique instantaneous measurements (i.e., without the
repeated elements when there is mr = ms for r 6= s), respectively.
Matrix G̃, which depends on m1, . . . ,m4, duplicates any repeated
inputs on its image, such that

G̃yi =
[
y>Lm1

(i),y>Lm2
(i),y>Lm3

(i),y>Lm4
(i)
]>
.

We now use relation (9), with B = 1
4
G̃
>
G̃, b = −G̃

>
yd and

t = − 1
σ2 . Thus, we obtain:

[
K(u,v)]

ab
= det

{
I +

1

2σ2
G̃
>
G̃R(m1→4)

yy

}− 1
2

× exp

(
1

2σ4

(
yd
)>
G̃H(m1→4)G̃

>
yd − 1

2σ2

∥∥∥yd
∥∥∥2) , (23)



(a) Theoretical and experimental entries of α.
Continuous lines are the theoretical curves, while
dashed line are experimental ones.

(b) Experimental, steady-state, and theoretical
MSD curves.

(c) Experimental, steady-state, and theoretical MSE
curves. For reasons of better visibility, a different
initialization α̂n(0) was used.

Fig. 1: Analysis validation in the mean and mean square sense.

where H(m1→4) = R
(m1→4)
yy

(
I +

1

2σ2
G̃
>
G̃R

(m1→4)
yy

)−1

,

identity I is of size
∑4
`=1 Lm` ×

∑4
`=1 Lm` , and R(m1→4)

yy is
a block matrix formed similarly to R(m1m2)

yy : each of its blocks
(k, `) ∈ {1, 2, 3, 4}2 contains [Ryy]mkm`

on all entries of its main
diagonal, and zeros elsewhere.

By stacking the columns of D(i) on top of each other, i.e.,
d̄(i) = vec

{
D(i)

}
and making use of the properties of the vector-

ization operator, recursion (15) can now be computed as:

d̄(i+1) = F 0d̄(i) + µ2Jn,minr̄kk , (24)

where r̄kk = vec {Rkk}, and:

F 0 = I2 − µ(I ⊗Rkk +Rkk ⊗ I) + µ2F 1 . (25)

We remark upon the fact that the identity matrix I2 is of size k2D ×
k2D , while I is if size kD × kD . Also, entries of the matrix F 1 are
[F 1]u+(v−1)kD,a+(b−1)kD

=
[
K(u,v)

]
ab

.
Assuming a small enough step size µ, the algorithm is mean-

square stable as i→∞, and converges towards:

lim
i→∞

d̄(i) = µ2Jn,min (I − F 0)−1 r̄kk = d̄(∞) . (26)

4. EXPERIMENTAL VALIDATION

We consider a simulation scenario with i.i.d. Gaussian data y(i)
generated using a correlation matrixRyy , depicted in (27). We note
that this particular correlation matrix also corresponds to the data
correlation of the linear model y(i) = Ay(i) + v(i), with v(i)
zero-mean Gaussian noise with covariance σ2

vI , where σv = 0.05.
This model, although not inherently nonlinear, allows direct knowl-
edge of the 5-node ground truth matrix A given in (28). Moreover,
it offers exact knowledge of the statistical properties of the input y,
necessary in the analysis. See [17] for the methods’ behavior in non-
linear settings. For the algorithm we selected Lm = 1, for all m, a
step size µ = 5 · 10−2, kernel bandwidths of σ = 1, and each node
stored a dictionary Dm with 3 entries, chosen in a uniform grid on
[−1, 1]. We compare the theoretical model for the ME given by (10)
and for the MSE given by (15) with the empirical performance of the
algorithm, averaged over 100 Monte Carlo runs. Fig.1a shows both
the theoretical and experimental values for a subset of non-zero co-
efficients αnmp, for n = 1. Fig. 1b and 1c show both the theoretical

and experimental MSD and MSE curves, as well as their steady-state
values, computed using relations (26), (19), (18) and (15). It can be
seen that the theoretical model was able to predict the behavior of
the algorithm very accurately, both in the mean and mean-square
sense. Moreover, the resulting theoretical curves serve to show that
an adequate step-size, as well as other parameters, can be selected
in order to attain a desirable application-dependent performance. In
particular, with a small dictionary of only 3 entries for each node,
it was possible to obtain a very small MSE at steady-state, which
means that the estimated f̂nm were able to predict the observations
yn accurately. A similar behavior can also be observed for the MSD.
In the recovery of the network topology A, we obtained an average
error of around 10%, corresponding to only two links estimated in-
correctly. This indicates that the considered algorithm can achieve a
good trade-off between performance and computational complexity.

Ryy = 10−4 ·


8.52 1.70 −2.84 −2.84 1.70
1.70 8.52 1.70 −2.84 −2.84
−2.84 1.70 8.52 1.70 −2.84
−2.84 −2.84 1.70 8.52 1.70
1.70 −2.84 −2.84 1.70 8.52

 (27)

A =


0 1 0 1 1
1 0 1 0 1
1 0 0 1 0
0 1 1 0 1
1 0 1 1 0

 (28)

5. CONCLUSION

Designing online, adaptive network topology identification strate-
gies which account for nonlinear interactions between network
agents is an important topic in network analysis. In this paper, we
presented a statistical convergence analysis of the kernel LMS algo-
rithm applied to graph topology identification. The derived model
characterizes the performance of the algorithm as a function of pa-
rameters such as the kernel bandwidth and the dictionary. In turn,
this allows for precise tuning of such parameters in order to obtain
a desired performance in transient or in steady state. Moreover,
the theoretical model quantifies the typical statistical behavior of the
algorithm both in the presence and in the absence of a link between a
given node pair. Future work can harness this fact in order to design
an automatic thresholding rule by comparing the behavior of the
empirical algorithm coefficients to the one dictated by the model.
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