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Non-parametric Community Change-points Detection
in Streaming Graph Signals

A. Ferrari, C. Richard
Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, France

Abstract—Detecting changes in network-structured time series
data is of utmost importance in critical applications as diverse as
detecting denial of service attacks against online service providers
or monitoring energy and water supplies. The aim of this paper
is to address this challenge when anomalies activate unknown
groups of nodes in a network. We devise an online change-point
detection algorithm that fully benefits from the recent advances in
graph signal processing to exploit the characteristics of the data
that lie on irregular supports. Built upon the kernel machinery, it
performs density ratio estimation in an online way. The algorithm
is scalable in the sense that it is spatially distributed over the
nodes to monitor large-scale dynamic networks. The detection
and localization performances of the algorithm are illustrated
with simulated data.

Index Terms—Graph signal processing, streaming graph sig-
nals, non-parametric change-point detection, graph filtering.

I. INTRODUCTION

The problem of change-point detection is defined as finding
a switching time instant from which the statistical properties
of a signal change, namely, the observations are drawn from a
distribution up to the point before it, and are drawn from an-
other distribution after this point. Detecting anomalous events
in network-structured time series data has become relevant in
a variety of applications. Examples can be found in network
security such as detection of denial of service attacks or cyber-
intrusions in computer networks. Examples can also be found
in medical monitoring, such as automatic detection of epileptic
seizures in electroencephalogram signals, or detection of men-
tal workload or drowsiness in brain computer interfaces. This
problem is of great interest in a wide range of disciplines, such
as physics, biology, and social sciences, where graphs provide
a powerful machinery for effectively capturing correlations
among inter-dependent time series data.

The anomalies in network-structured time series data often
tend to activate communities of nodes in the graphs. The prob-
lem then consists of deciding, based on noisy measurements
at each node of a graph, whether the underlying unknown
graph signal is in a nominal state over the whole graph, or
if there exist one or more clusters of nodes with anomalous
activation. Over the last years, graph signal processing (GSP)
has emerged as a new research field aiming at extending the
well-developed tools for processing time-domain signals to
signals defined over the nodes of a graph while exploiting
the underlying connectivity information. Beyond its use for
sampling [1], filtering [2] or modeling [3] signals on graphs,
to cite a few key research directions, GSP was recently used
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for change-points detection over graph signals [4], [5]. These
works address critical issues raised in [6], [7]. Indeed, if the
generalized likelihood ratio (GLR) test is a natural solution
for detecting anomalous clusters of activity in graphs, it has
high computational complexity because it requires scanning all
well-connected clusters of nodes and testing them individually.
In [4], the authors first address this issue by incorporating, into
the detection problem, the properties of the graph topology
through its spectrum. They analyze the test statistics, which is
based on spectral patterns of the combinatorial Laplacian, and
show how it is indeed related to the problem of finding graph
cuts. Following the same line of reasoning, they derive another
detector in [5], called Graph Fourier Scan Statistic (GFSS).
Based on a relaxation of its initial form in [5], it consists of a
low-pass filter built upon the graph Fourier transform. Because
of its particular form, the performance of this detector can
be precisely characterized. None of these works address the
online non-parametric detection problem from streaming graph
signals, nor do they implement the detectors in a distributed
manner.

The aim of this paper is to propose a flexible strategy built
upon the (reproducing) kernel machinery to perform density
ratio estimation in an online and distributed manner across
nodes, while using GSP framework to enhance the contrast
produced by possible anomalous activities over unknown
groups of nodes and then make their detection easier.

II. PROBLEM FORMULATION

We consider an undirected graph G = {V,E,W } with p
vertices V = {1, . . . , p}, m edges (i, j) ∈ E ⊂ V × V ,
endowed with a p × p weighted adjacency matrix W where
W i,j =W j,i ≥ 0 is the connection strength of (i, j) ∈ E.

We denote by yt(i) the pi-dimensional signal sample
observed at time instant t and vertex i. We shall assume
that the observations yt(i) are independent w.r.t. t and i. In
this paper, we consider that a change in the distribution of
yt =

(
yt(1) . . .yt(p)

)
may occur in an unknown cluster C∗

at an unknown time instant tr, that is,

t < tr : yt ∼
p∏

i=1

fi
(
yt(i)

)
, t ≥ tr : yt ∼

p∏
i=1

f+i
(
yt(i)

)
,

where ∀i ∈ C∗ : f+i = f∗i , and ∀i 6∈ C∗ : f+i = fi.

(1)

The objective is to derive an online algorithm to process the
streaming data yt in order to detect a change-point as defined
in (1), where C∗, tr and all fi and f∗i are unknown.



A solution to this problem was recently proposed in [8] for
scalar measurements (pi = 1) and model yt(i) = mt(i) +
et(i) where et(i) is a scalar i.i.d zero-mean Gaussian noise.
The changes under consideration occur on the mean vector
mt as:

t < tr : mt =m, t ≥ tr : mt =m+ δ, (2)

where δ is a non-zero vector only on C∗ which does not vary
within this cluster. Built upon GSP to extract information about
the clusters, the core detection functionality implemented at
each node in [8] is ensured by the adaptive strategy proposed
in [9]. Two linear models are learned simultaneously using two
learning rates, on the one hand to estimate the baseline trend,
and on the other hand to adapt to abrupt changes. The resulting
test statistics, which consists of the distance between these two
models, only applies to specific scenarios such as (2).

Here we address problem (1) with a flexible non-parametric
strategy in the case where a) the measurements at each node
are multivariate and b) all distributions fi and f∗i are unknown.

III. GFSS APPROACH TO CLUSTERED DETECTION

We first recall the principles of GFSS detection introduced
in [5], with a focus on the filtering process to perform spectral
clustering. Next, we introduce the likelihood ratio used to
address problem (1). None of these ingredients address the
online detection problem from streaming graph signals, nor
do they implement the detectors in a distributed manner.

A. GFSS spectral clustering

Work [5] focuses on a static graph signal consisting of a
scalar measurement at each node as in (2) with m = 0. Let L
be the graph Laplacian of G and let us define by {ui}i=1,...,p

the set of orthonormal eigenvectors of L with {µi}i=1,...,p the
corresponding eigenvalues. Given y, the GFSS is defined as:

tGFSS(y) = ‖gy‖2, (3)

where gy is the graph-filtered signal:

gy =

p∑
i=2

h∗(µi)(u
>
i y)ui, (4)

with h∗(µ) the frequency response of the filter defined in [5]:

h∗(µ) = min

{
1,

√
γ

µ

}
, µ > 0, (5)

and γ > 0 a tuning parameter; see [2], [10], [11] for details
on graph filtering.

To get more insight into statistics (3), it is important to recall
the role played by the eigenvectors ui of the graph Laplacian
matrix L in spectral clustering. Consider first the ideal case
of a graph with k > 1 connected components or communities,
and denote by Ci with i = 1, . . . , k the set of vertices in
component i. Each eigenvector ui of the Laplacian matrix
is proportional (with the factor 1/

√
|Ci|) to the indicator

function of the ith connected component Ci, and u>i y is
proportional to the sum of y on Ci. Consequently, (u>i y)ui

in (4) assigns to each vertex n of Ci, the mean value of the
signal samples y(n) at all vertices n within Ci. Finally, as the
number of components Ci is unknown, the frequency response
in (5) penalizes large numbers of components in (4). When
the k components Ci are connected by few edges, we can
assume that this analysis which relies on the properties of the
eigenvectors ui of the Laplacian matrix is still approximately
valid. Note that this kind of approximation is the starting point
of spectral clustering methods; see, e.g., [12], [13], [14].

B. Likelihood ratio test

Consider problem (1), and assume that all probability den-
sities are known. We denote by `t the p-dimensional vector
containing the log-likelihood ratios of the measurement yt(k):

`t(k) = log

(
f+k (yt(k))

fk(yt(k))

)
. (6)

The likelihood ratio test is a natural solution for addressing
a change-point detection problem such as (1). Nevertheless it
suffers from its computational complexity since it consists of
scanning all possible well-connected clusters of nodes Ck and
testing them individually.

Substituting y by `t in (4), and considering the resulting
graph signal g`t , it can be expected that the entries of g`t
will be approximately equal to:

g`t(k) ≈
1

|Ci|
log

(∏
n∈Ci f

+
n (yt(n))∏

n∈Ci fn(yt(n))

)
, (7)

for all node k in Ci. This means that, by exploiting the graph
topology, g`t assigns to each node of G the log-likelihood ratio
of the cluster to which it belongs. The clustered structure of
the graph is promoted in the log-likelihood ratio g`t by the
graph filter (5), which makes its use attractive to address the
change-point detection problem (1).

IV. DETECTION ALGORITHM

The approach outlined in Section III relies on the knowledge
of the likelihood ratio at each node n and time instant t. We
shall now devise a non-parametric detection scheme based on
an estimate ˆ̀

t of `t. Computing g`t from `t using (4) needs
to be carried out in a centralized manner. In order to make the
detection algorithm scalable, we shall investigate a distributed
implementation across the nodes of the network.

A. Online likelihood ratio estimation

Non-parametric change-point detection algorithms were in-
troduced to handle scenarios where no prior information on
the data distribution and the nature of the change is available.
They are usually classified into two categories, supervised and
unsupervised methods, depending if training data are available.
This paper focuses on unsupervised algorithms as their flexi-
bility allows them to handle many practical situations. Some of
them are based on subspace or manifold tracking methods [9],
[15], [16], and aim to detect abrupt changes in the sequence of
residuals. Their parametric form makes them pre-designed for
tracking specific statistics. Others are model-free as they do not



rely on particular parametric assumption [17]. They however
tend to be less accurate in high-dimensional problems because
of the curse of dimensionality. To overcome this difficulty,
recent contributions have focused on estimating the ratio of
probability densities directly without going through density
estimation [18], [19], [20]. In this paper, we are interested in
an algorithm, denoted as NOUGAT (Nonparametric Online
chanGepoint detection AlgoriThm) which implements this
strategy [21], [22]. It estimates the density ratio on two
consecutive intervals of the time series: a set of recent samples,
say, the test set, and the set of samples that came before, say,
the reference set. Unlike the algorithm considered in [8], it
naturally manipulates multivariate observations at each node.

NOUGAT aims to detect changes in the distribution of yt(k)
at each vertex k by estimating a model for rt(k) − 1, where
rt(k) = f+k (yt(k))/fk(yt(k)) is the density ratio (with some
abuse of notation) between the probability densities f+k (y) and
fk(y) of the data on a test and reference interval, respectively:(

yt−(Ntest−1)(k), . . . ,yt(k)
)
∈ Rpk×Ntest , (8)(

yt−(Nref+Ntest−1)(k), . . . ,yt−Ntest
(k)
)
∈ Rpk×Nref , (9)

with Ntest and Nref the number of samples in the test and
reference intervals, respectively. It is shown in [22] how
rt(k) − 1 can be estimated, in a reproducing kernel Hilbert
space K endowed with kernel κ(· , ·), by a kernel model.
Note that rt(k) − 1 is preferred to rt(k) because it leads to
an unbiased estimator under the no change-point hypothesis.
Using this model, we arrive at the estimation of `t(k) in (6):

ˆ̀
t(k) = log

(
θt−1(k)

>κk
ω(yt(k)) + 1

)
, (10)

κk
ω(·) =

(
κkω1

(·), . . . , κkωL
(·)
)>
, (11)

where κkωq
(·) = κ(· ,yωq

(k)), with q ∈ {1, . . . , L}, are
the elements of a dictionary of size L which ensures the
executability of the algorithm. This dictionary can be designed
in an online or offline way using a standard strategy as in [23].
For the sake of clarity, we shall assume in the sequel that the
dictionary has been designed beforehand.

Similarly to the derivation of the KLMS in [23], the
parameter vector θt(k) in (10) can be estimated recursively
at each vertex k by a stochastic gradient descent algorithm:

θt(k) = θt−1(k)−µ
(
(Ht(k)+ νI)θt−1(k)+ et(k)

)
, (12)

where µ is the adaptation step and ν is a ridge regularization
parameter. Quantities Ht(k) and et(k) are defined as:

et(k) = h
ref
t (k)− htest

t (k), (13)

htest
t (k) =

1

Ntest

t∑
i=t−(Ntest−1)

κk
ω(yi(k)), (14)

href
t (k) =

1

Nref

t−Ntest∑
i=t−(Ntest+Nref−1)

κk
ω(yi(k)), (15)

Ht(k) =
1

Nref

t−Ntest∑
i=t−(Ntest+Nref−1)

κk
ω(yi(k))κ

k>
ω (yi(k)). (16)

B. Distributed implementation

The test statistics `t defined in (6), and estimated in (10),
does not take into account the graph topology. The aim of
Section III was to show how graph-filtering `t to g`t improves
the localisation of the cluster containing the abrupt change.
The filtering operation defined in (4) requires centralized
computational resources and hence cannot be scaled to large
networks. Distributed implementations of graph filters have
received much attention in the literature [24], [25], [26], [27],
[28]. They are based on the approximation of the filtering
operator by a polynomial in L for which, similarly to a FIR
filter, the computation of the n-th entry of L`t depends on
`t(n) and on `t(m) where m ∼ n. Recently, [27], [28]
proposed novel filter approximation strategies where, as in
an IIR filter, each node recursively aggregates the previous
outputs of its neighbors, allowing for the computation of a
larger family of frequency responses with a limited memory
footprint.

These filters iterate on a static graph signal. In the context
of online change point detection, we propose to apply the
ARMAK filter defined in [27] to the streaming signal ˆ̀

t,
t ≥ 0, defined in (10):

xq,t = ψqLxq,t−1 + ϕ`
ˆ̀
t, xq,−1 = 0, ∀q = 1 . . .K, (17)

ĝˆ̀
t
=

K∑
q=1

xq,t + cˆ̀t. (18)

If we assume that: i). there is no change point, i.e. `t =
`, ii) ˆ̀

t is an unbiased estimate of `t, see [22] and iii)
max`{|ψ`|}ρ(L) < 1 with ρ(·) the spectral radius of its matrix
argument, it can be shown that limt→∞ E{ĝˆ̀

t
} = ĝ` where

ĝ` is ` graph filtered by

h(µ) = c+

K∑
q=1

ϕq

1− ψqµ
. (19)

The proof is omitted in this paper due to lack of space.
This suggests to estimate g`t by ĝˆ̀

t
where c and

{(φq, ψq)}q=1,...,L are compute in order that h(µ) approx-
imates h∗(µ) in (5). The corresponding distributed change
point detection algorithm is described in Alg. 1.

Algorithm 1: Distributed graph change point detection
1: for t = 1, 2, . . . do
2: // Each node updates separately its likelihood ratio
3: for n = 1, . . . , k do
4: Update θt(n) using (12)–(16)
5: end for
6: // One iteration of distributed ARMAK graph-filter
7: Compute ĝˆ̀

t
using (17)–(18)

8: // Test each node
9: if ∃n ∈ V : |ĝˆ̀

t
(n)| > ξ then

10: flag t as a change point on the graph at vertex n
11: end if
12: end for



(a) Graph topology.
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(b) Test statistic |ˆ̀t(n)| for t = t∗.
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(c) Test statistic |ĝˆ̀
t
(n)| for t = t∗.

Fig. 1: Graph topology with coloured clusters Ci and test statistics over the graph.

V. EXPERIMENTS

The graph G used for simulations is provided in Fig. 1a. It
is unweighted and contains p = 250 vertices and m = 2508
edges. In order to generate yt as in (1) with a change on C∗,
the communities Ci of G were unfolded using [29]. Cluster C∗
is colored in green khaki color at the center right of the graph.

The change-point (1) was set to tr = 1400 and defined as:

∀i ∈ C∗ : f+i ≡ N (0,C+
i ), and ∀i 6∈ C∗ : fi ≡ N (0, I),

with:

C+
i =

(
1 0.9
0.9 1

)
. (20)

The parameters of NOUGAT were set to Nref = Ntest = 128,
µ = 0.01 and λ = 0.01. Note that given these windows
lengths, see (8)–(9), NOUGAT detection is expected at t∗ =
tr+128. A Gaussian kernel κ with bandwidth

√
0.3 was used.

The kernel dictionary size was set to L = 80 with 40 elements
sampled from fi and 40 elements sampled from f+i . Parameter
γ of the GFSS filter (5) was set to γ = 0.3, and K in ARMAK

approximation to K = 4 [8].
Figure 2 evaluates the detection performance of Algorithm 1

by comparing ‖ˆ̀t‖22 and ‖ĝˆ̀
t
‖22, for illustration purposes only

since these two statistics are global. As expected, ‖ĝˆ̀
t
‖22

clearly benefits from the graph topology through GFSS filter.
In order to show that this improvement comes from the ability
of ĝˆ̀

t
to better localize the nodes where a change occurs,

Figs. 1b and 1c represents the two test statistics on G at time
t = t∗. To confirm this result Monte Carlo simulation were
performed to estimate ROC curves in both cases. Probabilities
of detection and false alarm are defined (e.g. for |ˆ̀t∗(n)|) as:

Pd = Prob
(
|ˆ̀t∗(k)| > ξ | k ∈ C∗

)
, (21)

Pfa = Prob
(
|ˆ̀t∗(k)| > ξ | k 6∈ C∗

)
. (22)

Figure 3 clearly shows the benefit of using graph filtering in
the proposed algorithm.
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Fig. 2: Global change point detection statistics over G.
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Fig. 3: ROC curves for ˆ̀t∗ and ĝˆ̀
t∗

VI. CONCLUSION

This paper introduces a novel algorithm to detect a change
point on a streaming graph signal which is located on an
unknown cluster of the graph. The algorithm is fully non-
parametric: it does not require any model of the change point
and applies to multivariate measurements on the nodes of
the graph. It also achieves scalability to large-scale dynamic
networks through: i) a fully distributed implementation across
the nodes, ii) an online processing of the measurements. The
detection and localization performances of the algorithm are
illustrated using simulated data.
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