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Transient Performance Analysis of the `1-RLS
Wei Gao, Member, IEEE, Jie Chen, Senior Member, IEEE, Cédric Richard Senior Member, IEEE,

Wentao Shi, Member, IEEE, and Qunfei Zhang, Member, IEEE

Abstract—The recursive least-squares algorithm with `1-norm
regularization (`1-RLS) exhibits excellent performance in terms
of convergence rate and steady-state error in identification of
sparse systems. Nevertheless few works have studied its stochastic
behavior, in particular its transient performance. In this letter, we
derive analytical models of the transient behavior of the `1-RLS
in the mean and mean-square sense. Simulation results illustrate
the accuracy of these models.

Index Terms—Transient analysis, sparse system, online identi-
fication, `1-RLS.

I. INTRODUCTION

SPARSITY aware adaptive filters have been successfully
applied to a wide range of applications, e.g., echo cancel-

lation [1], channel estimation [2], and system identification [3].
As the recursive least-squares (RLS) algorithm achieves better
performance than the least-mean-square (LMS) algorithm for
time-invariant system identification [4], [5], sparse RLS-type
algorithms have attracted considerable attention.

The recursive `1-regularized least-squares (SPARLS) al-
gorithm was introduced using the expectation-maximization
scheme [6]. The greedy sparse RLS algorithm with exponen-
tial window exploiting the orthogonal matching pursuit was
devised in [7]. The `1-norm regularized RLS (`1-RLS) algo-
rithm was proposed based on the modified least-squares cost
function with sparsity promoting regularization [8]. By con-
sidering two possible weighted `1-norm sparsity constraints
with the cost function, two weighted `1-RLS algorithms were
presented in [9]. They can be viewed as particular cases of the
convex regularized RLS (CR-RLS) algorithm, that was derived
by considering any convex function in the regularizer [10].
In [11], the cost function of the original RLS was modified
by adding an adaptively weighted `2-norm penalty resulting in
the proposal of two zero-attracting RLS (ZA-RLS) algorithms.
A distributed sparse RLS algorithm was also proposed for
decentralized scenarios over networks in [12]–[14].

The zero-attracting LMS (ZA-LMS) was extensively studied
in [15]–[17], with a focus on its transient behavior. In [18],
the authors analyzed the mean and mean-square deviations
at steady-state of the `0-norm regularized RLS (`0-RLS)
algorithm. In contrast, despite the superiority of the `1-RLS
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algorithm, no theoretical analysis of its transient behavior has
been reported so far. This may be due to the fact that there are
few analyses of the transient behavior of the RLS algorithm in
the literature. In addition, the analysis of the update equation in
the `1-RLS is critical from a statistical perspective. To address
this concern, we start this letter by reformulating the update
equation of the `1-RLS algorithm into a concise form. This
makes the analysis of its transient behavior tractable both in
the mean and mean-square sense. Simulation results validate
the theoretical findings.

Notation: [x]i and [X]ij denote the i-th entry of column
vector x and the (i, j)-th entry of matrix X, respectively. The
superscript (·)> represents the transpose of vector or matrix.
The matrix trace is denoted by tr{·}. The operator sgn{·} takes
the sign of the entries of its argument. All-zero vector of length
N is denoted by 0N , and all-one vector of length N is denoted
by 1N . The Gaussian distribution with mean µ and variance σ2

is denoted byN (µ, σ2). The multivariate Gaussian distribution
with mean µ and covariance matrix Σ is denoted by N (µ,Σ).
The cumulative distribution function (CDF) of the standard
Gaussian distribution is denoted by φ(x). The CDF of the
multivariate Gaussian distribution is denoted by Φ(x,µ,Σ).

II. THE PROBLEM AND `1-RLS ALGORITHM

Assume that the input-output sequences are generated by an
unknown time-invariant system with sparse impulse response:

yn = x>n w? + zn (1)

where xn ∈ RL is the regression vector at time instant n
with positive definite correlation matrix Rx = E{xnx>n },
and w? ∈ RL is the sparse optimal weight vector to be
estimated. The modeling error zn is assumed to be stationary,
white and Gaussian with zero-mean and variance σ2

z , and
statistically independent of any other signal. Consider the
batch least-absolute shrinkage and selection operator (LASSO)
estimator usually considered for sparse system identification
problems [19]:

wo = arg min
w∈RL

{
1

2

n∑
i=0

λn−i|yi −w>xi|2 + δ‖w‖1

}
(2)

with 0� λ < 1 a forgetting factor, and δ > 0 a regularization
parameter that controls the trade-off between the estimation
error and the sparsity of the weight vector.

Based on the modified deterministic normal equation result-
ing from the subgradient vector of (2), the `1-RLS algorithm
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proposed in [8]–[10] is given by:

kn =
Pn−1xn

λ+ x>n Pn−1xn
, (3)

wn = wn−1 + enkn + δ
(λ− 1

λ

) (
IL − knx>n

)
(4)

×Pn−1sgn{wn−1},
Pn = λ−1(Pn−1 − knx>n Pn−1), (5)

with the instantaneous estimation error en = yn − x>n wn−1.
Here, matrix Pn is defined as the inverse of the time-averaged
correlation matrix Φn for the input vector [4], [5], given by:

Φn =

n∑
i=0

λn−ixix
>
i + δλn+1IL = λΦn−1 + xnx>n . (6)

Recursion (4) is too complex to use in convergence analysis.
By inserting kn = Pnxn and IL − knx>n = λPnP−1n−1
from (3) and (5), respectively, into (4), it can be simplified
as follows:

wn = wn−1 + enPnxn + γPnsgn{wn−1} (7)

with γ = δ(λ − 1). This alternative recursion of the `1-RLS
algorithm makes the following analysis easier to handle. It can
be seen from (7) that the only difference between the RLS and
the `1-RLS lies in the rightmost zero attractor term.

III. TRANSIENT PERFORMANCE ANALYSIS OF `1-RLS

We shall now study the transient behavior of the `1-RLS
algorithm in the mean and mean-square sense. We define the
weight error vector w̃n as the difference between the weight
vector wn and w?, i.e.,

w̃n = wn −w?. (8)

In essence, the analysis of the `1-RLS consists of studying the
evolution over time of the expectation of w̃n and its correlation
matrix Kn = E{w̃nw̃>n }.

Before proceeding, we introduce the following statistical
assumptions for mathematical tractability.

A1: The weight error vector w̃n−1 is statistically indepen-
dent of the regression vector xn.

A2: Any pair of entries [w̃n]i and [w̃n]j with i 6= j is
jointly Gaussian.

The so-called independence assumption (IA) A1 is widely
used in the convergence analysis of adaptive filters [4], [5].
Assumption A2 has been used successfully in the analysis of
the ZA-LMS algorithm [17] as it makes the analysis of the
nonlinear sign term in (7) tractable. We shall illustrate the
validity of A2 with histograms of [w̃n]i versus [w̃n]j .

A. Mean Weight Error Behavior Model

We focus on the mean weight error analysis of the `1-RLS.
Taking the expectation of both sides of (6) yields:

E{Φn} = λE{Φn−1}+ Rx (9)

with Φ0 = ε−1IL and ε a positive number. This recursion
will be used in the following analysis. From (1) and (8), the
instantaneous estimation error en can be rewritten as follows:

en = zn − x>n w̃n−1. (10)

Subtracting w? from both sides of (7), using (8) and (10), we
have:

w̃n = w̃n−1 −Pnxnx>n w̃n−1

+ znPnxn + γPnsgn{w? + w̃n−1}.
(11)

Pre-multiplying both sides of (11) by P−1n , then applying (6)
and definition Φn = P−1n , leads to

Φnw̃n = λΦn−1w̃n−1 + znxn + γsgn{w? + w̃n−1}. (12)

Taking the expectation of both sides of (12), considering that
noise zn is statistically independent of any other signal and it
is zero mean, we have:

E{Φnw̃n} = λE{Φn−1w̃n−1}+ γE
{

sgn{w? + w̃n−1}
}
.

(13)
Using the following approximation presented in detail in [20],
and valid for small values of λ:

E{Φnw̃n} ≈ E{Φn}E{w̃n} (14)

equation (13) becomes:

E{Φn}E{w̃n} = λE{Φn−1}E{w̃n−1}
+ γE

{
sgn{w? + w̃n−1}

}
.

(15)

Let ui ∼ N (µi, σ
2
i ) a Gaussian random variable. Lemma 1

presented in [17] shows that:

E
{

sgn{ui}
}

= 1− 2φ(−µi/σi). (16)

In order to evaluate the last term on the r.h.s. of (15), we set
the i-th entry of E

{
sgn{w? + w̃n−1}

}
as follows:

[w? + w̃n−1]i → ui (17)

with
[w?]i + E

{
[w̃n−1]i

}
→ µi, (18)

E
{

[w̃n−1]2i
}
− E

{
[w̃n−1]i

}2 → σ2
i , (19)

where E
{

[w̃n−1]2i
}

can be extracted from the main diagonal
entries of matrix Kn−1 that will be determined in the next
subsection. With the above definitions, it then follows that:

E{Φn}E{w̃n} = λE{Φn−1}E{w̃n−1}+ γ(1L − 2ϕ) (20)

with ϕ =
[
φ(−µ1/σ1), φ(−µ2/σ2), . . . , φ(−µL/σL)

]>
. By

pre-multiplying both sides of (20) by E{Φn}−1, we arrive at
the mean weight error behavior for the `1-RLS algorithm:

E{w̃n} = λE{Φn}−1E{Φn−1}E{w̃n−1}
+ γE{Φn}−1(1L − 2ϕ)

(21)

where (9) is used to perform the above recursion.

B. Mean-Square Error Behavior Model

We shall now analyze the `1-RLS algorithm in the mean-
square sense. Squaring (10) and taking its expected value, then
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considering assumption A1 and the statistical property of zn,
the mean-square error (MSE) can be expressed as

E{e2n} ≈ σ2
z + tr{RxKn−1} (22)

where the second term on the r.h.s. of the above equation de-
notes the excess mean-square error (EMSE) [4], [5]. Moreover,
the instantaneous mean-square-deviation (MSD) is defined by:

MSDn = E{‖w̃n‖2} = tr{Kn}. (23)

In order to evaluate the EMSE or the MSE, and the MSD,
we have to determine a recursion to calculate the correlation
matrix Kn. Post-multiplying (12) by its transpose, taking the
expectation of both sides, and using the statistical property of
noise zn, yields

E{Φnw̃nw̃>n Φn} = λ2E{Φn−1w̃n−1w̃
>
n−1Φn−1}+ σ2

zRx

+ γ2E
{

sgn{w?
n + w̃n−1}sgn>{w?

n + w̃n−1}
}

+ λγE
{
Φn−1w̃n−1sgn>{w?

n + w̃n−1}
}

(24)

+ λγE
{

sgn{w?
n + w̃n−1}w̃>n−1Φn−1

}
.

Evaluating (24) is difficult without using some approximations.
The following approximations are used in the sequel:

E{Φnw̃nw̃>n Φn} ≈ E{Φn}KnE{Φn}, (25)

E
{
Φn−1w̃n−1sgn>{w?

n + w̃n−1}
}

≈ E{Φn−1}E
{
w̃n−1sgn>{w?

n + w̃n−1}
}
,

(26)

E
{

sgn{w?
n + w̃n−1}w̃>n−1Φn−1

}
≈ E

{
sgn{w?

n + w̃n−1}w̃>n−1
}
E{Φn−1}.

(27)

Similar approximations are presented in detail in [20]. To un-
derstand these approximations, we denote by ∆n the random
fluctuation of matrix Φn around E{Φn}, namely,

Φn = E{Φn}+ ∆n. (28)

Then, we have:

E{Φnw̃nw̃>n Φn} = E{Φn}KnE{Φn}
+ E{Φn}E{w̃nw̃>n ∆n}
+ E{∆nw̃nw̃>n }E{Φn}
+ E{∆nw̃nw̃>n ∆n},

(29)

E
{
Φn−1w̃n−1sgn>{w?

n + w̃n−1}
}

= E{Φn−1}E
{
w̃n−1sgn>{w?

n + w̃n−1}
}

+ E
{
∆n−1w̃n−1sgn>{w?

n + w̃n−1}
}
,

(30)

E
{

sgn{w?
n + w̃n−1}w̃>n−1Φn−1

}
= E

{
sgn{w?

n + w̃n−1}w̃>n−1
}
E{Φn−1}

+ E
{

sgn{w?
n + w̃n−1}w̃>n−1∆n−1

}
.

(31)

We assume that the entries of ∆n are small with respect to
those of E{Φn} based on the fact that (6) shows that Φn

is a low-pass filtering of xnx>n . The first term on the r.h.s.
of each one of the above three equations then dominates the
remaining ones, which leads to (25)–(27). Simulation results
in the sequel will confirm the validity of these approximations.

Using (25)–(27), expression (24) can then be written as:

E{Φn}KnE{Φn} = λ2E{Φn−1}Kn−1E{Φn−1}+ σ2
zRx

+ γ2Q1 + λγ
[
E
{
Φn−1}Q2 + Q>2 E{Φn−1}

]
(32)

with
Q1 = E

{
sgn{w?

n + w̃n−1}sgn>{w?
n + w̃n−1}

}
, (33)

Q2 = E
{
w̃n−1sgn>{w?

n + w̃n−1}
}
. (34)

Pre-multiplying and post-multiplying (32) by E{Φn}−1 simul-
taneously, it results that:

Kn = λ2E{Φn}−1E{Φn−1}Kn−1E{Φn−1}E{Φn}−1

+ σ2
zE{Φn}−1RxE{Φn}−1 + γ2E{Φn}−1Q1E{Φn}−1

+ λγE{Φn}−1
[
E
{
Φn−1}Q2 + Q>2 E{Φn−1}

]
E{Φn}−1.

(35)

In order to perform recursion (35), we shall now calculate Q1

and Q2. Before proceeding by using assumption A2, consider
two jointly Gaussian random variables u and v defined by:[

u
v

]
∼ N

(
µ :=

[
µu

µv

]
,Σuv :=

[
σ2
u ρuv

ρuv σ2
v

])
(36)

where µ and Σuv denote the mean vector and the covariance
matrix, respectively. According to Lemma 2 presented in [17],
it holds that:

E
{

sgn{u}sgn{v}
}

= Φ
(
02, [µu, µv]>,Σuv

)
+ Φ

(
02,−[µu, µv]>,Σuv

)
− Φ

(
02, [µu,−µv]>,Σuv

)
− Φ

(
02, [−µu, µv]>,Σuv

)
(37)

with
Σuv =

[
σ2
u −ρuv

−ρuv σ2
v

]
. (38)

On the one hand, observe that the main diagonal entries [Q1]ii
for 1 ≤ i ≤ L are equal to 1. On the other hand, considering
assumption A2 and (37), the off-diagonal entries [Q1]ij for
1 ≤ i 6= j ≤ L can be obtained by making the identifications:

[w? + w̃n−1]i → u, (39)
[w? + w̃n−1]j → v, (40)

with
E
{

[w? + w̃n−1]i
}
→ µu, (41)

E
{

[w? + w̃n−1]j
}
→ µv, (42)

E
{

[w̃n−1]2i
}
− E

{
[w̃n−1]i

}2 → σ2
u, (43)

E
{

[w̃n−1]2j
}
− E

{
[w̃n−1]j

}2 → σ2
v , (44)

E
{

[w̃n−1]i[w̃n−1]j
}
− E

{
[w̃n−1]i

}
E
{

[w̃n−1]j
}
→ ρuv, (45)

where the expectations E
{

[w̃n−1]i[w̃n−1]j
}

are available
from the off-diagonal entries [Kn−1]ij . Furthermore, based
on definition (36) and Lemma 3 proved in [17], it holds that:

E
{
u sgn{v}

}
(46)

=
1√

2πa|Σuv|

{√
2π

θ

(
µu +

c

a
µv

)[
1− 2φ

(
− µv

√
θ
)]

− c

a

√
2π

θ

[√
2

πθ
exp

(
−1

2
µ2
vθ

)
+ µv

(
1− 2φ

(
− µv

√
θ
))]}
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(a) Empirical vs. theoretical evolution for wi.
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(c) MSD curves.

Fig. 2. Comparisons of empirical and theoretical simulation results for the `1-RLS algorithm.

where θ = b− c2/a > 0 with

Σ−1uv =

[
a c
c b

]
. (47)

Likewise, in order to evaluate matrix Q2, we can make the
following identifications:

[w̃n−1]i → u, (48)
[w? + w̃n−1]j → v, (49)

with
E
{

[w̃n−1]i
}
→ µu, (50)

E
{

[w? + w̃n−1]j
}
→ µv, (51)

for 1 ≤ i, j ≤ L. Consequently, all the entries of matrix Q2

can be determined according to (46) under assumption A2. Us-
ing (9), (33), and (34), we can finally perform recursion (35),
which allows us to characterize the transient mean-square error
behavior of the `1-RLS algorithm.

IV. NUMERICAL TESTS

The good performance of the `1-RLS algorithm has already
been illustrated in the literature by comparing it with related
adaptive filters for sparse system identification [8]–[10]. We
shall now examine the accuracy of the analytical models
derived in this paper, via simulation results. All empirical
curves were obtained by averaging over 500 Monte Carlo runs.

The input signal was generated with a first-order AR model,
namely, xn = 0.6xn−1 + sn, with sn a zero-mean white
Gaussian random sequence. Its variance was set to σ2

s = 0.64,
in order that the variance of the input signal xn was σ2

x = 1.
The noise zn was zero-mean white and Gaussian with variance
σ2
z = 0.09. The optimal weight vector in (1) was set to:

w? = [0.9, 0.7, 0.5, 0.3, 0.1, 0>22,

− 0.1, −0.3, −0.5, −0.7, −0.9]> ∈ R32.
(52)

The exponential forgetting factor was set to λ = 0.995, and
the regularization parameter was set to δ = 0.25. The initial
parameter ε was set to 0.1. The weight vector was initialized
to zero, that is, w0 = 032.

Four histograms are depicted in Fig. 1 for two arbitrarily
selected pairs of entries of the weight error vector w̃n, i.e.,[
[w̃n]2, [w̃n]10

]
and

[
[w̃n]13, [w̃n]25

]
from 5× 103 simulated

samples, at time instant n = 200 and n = 1500, respectively.
As shown in Fig. 1, the four histograms of bivariate vector

(a)
[
[w̃n]2, [w̃n]10

]
at n = 200. (b)

[
[w̃n]2, [w̃n]10

]
at n = 1500.

(c)
[
[w̃n]13, [w̃n]25

]
at n = 200. (d)

[
[w̃n]13, [w̃n]25

]
at n = 1500.

Fig. 1. Histograms of bivariate vector
[
[w̃n]i, [w̃n]j

]
with 5×103 samples.[

[w̃n]i, [w̃n]j
]

have the required Gaussian-like profiles, which
validates the feasibility of assumption A2. The mean weight
behavior is shown in Fig. 2(a). One can observe that all the
theoretical curves of weight coefficients wi predicted by (21)
are generally consistent with those empirical curves includ-
ing the zero coefficients. Fig. 2(b) shows that the empirical
learning curves of the MSE and EMSE coincide with their
theoretical curves obtained from (22) and (35), respectively.
Fig. 2(c) shows the good agreement between the empirical
learning curve of MSD and its theoretical prediction obtained
from (23) and (35). Notice that there is a mismatch between
the simulated and theoretical results during the initial transient
stage due to the approximations (25)–(27). Fig. 2 illustrates
the correctness and accuracy of our analytical models and the
necessary approximations used in the analysis. These models
offer an effective means of profoundly understanding the
convergence behavior of the `1-RLS algorithm in the context
of online sparse system identification.

V. CONCLUSION

In this letter, the transient behavior of the `1-RLS algorithm
was theoretically studied in the mean and mean-square sense.
Simulation results illustrated their accuracy.
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[8] E. M. Ekşioğlu, “RLS adaptive filtering with sparsity regularization,” in
10th International Conference on Information Science, Signal Process-
ing and their Applications (ISSPA 2010), 2010, pp. 550–553.

[9] E. M. Eksioglu, “Sparsity regularised recursive least squares adaptive
filtering,” IET Signal Processing, vol. 5, pp. 480–487, Aug. 2011.
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