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Convex Combination of Diffusion Strategies over
Networks

Danqi Jin, Student Member, IEEE, Jie Chen, Senior Member, IEEE, Cédric Richard, Senior Member, IEEE,
Jingdong Chen, Senior Member, IEEE, Ali H. Sayed, Fellow, IEEE

Abstract—Combining diffusion strategies with complementary
properties enables enhanced performance when they can be run
simultaneously. In this paper, we propose two convex combination
schemes, the power-normalized one and the sign-regressor one.
Without loss of generality, theoretical investigations are focused
on the former. An analysis of universality shows that it cannot
perform worse than any of its component strategies in terms
of the excess mean-square-error (EMSE) at steady-state. A
theoretical analysis of stability also reveals that it is more
stable than affine combination schemes. Next, several adjustments
are proposed to further improve the performance of convex
combination schemes. Finally, simulation results are presented
to demonstrate their effectiveness as well as the accuracy of the
theoretical results.

Index Terms—Distributed optimization, diffusion strategy, con-
vex combination, adaptive fusion strategy, performance analysis.

I. INTRODUCTION

Model and parameter selection problems are ubiquitous and
challenging in signal processing and machine learning. In most
situations, selecting an optimal model structure is a difficult
task and requires deep knowledge of the problem domain.
Instead, one can resort to training a collection of models
and combining them in a manner that enhances performance.
Combination strategies have already been successfully con-
sidered for traditional adaptive filters [2], [3], in multi-kernel
learning [4], as well as with deep neural network structures [5].

An inspection of the existing literature on diffusion strate-
gies reveals that they include diffusion LMS [6], [7], diffusion
APA [8], diffusion Kalman filter [9], diffusion RLS [10], and
others [11]–[13], in addition to multi-task learning counter-
parts [14]–[25]. These different strategies perform well in the
conditions under which they were derived; some deliver better
performance than others depending on the underlying model
for the data. In this paper, we show how to take advantage of
multiple schemes by combining them in a way that can lead
to enhanced performance. We introduce several combination
strategies and study how performance improvements occur.

Convex and affine combinations are two useful schemes for
fusing adaptive schemes with different adaptation gains [26]–
[31] or complementary capabilities [32]–[35]. In [36], we
have thoroughly studied the affine combination of diffusion
strategies over networks. Its universality at steady-state was
established, and its stochastic behavior was analyzed in the
mean and mean-square sense. Though affine combination can
provide good performance, convex combination scheme is
often preferred for stand-alone adaptive filters since it has a

A preliminary version of this work appeared in [1].

wider stability range [31]. The aim of this paper is to determine
if these conclusions still hold for convex combinations of
diffusion strategies compared to affine combinations ones. This
question is particularly challenging in the context of adaptive
networks due to the multiple agents that can interact. The
contributions of this work are summarized as follows:

1) Convex combinations of diffusion strategies are intro-
duced to address the model and parameter selection
problem within the context of distributed estimation over
adaptive networks. In particular, two convex combiners
are considered, the power-normalized one and the sign-
regressor one.

2) A theoretical analysis of the convex power-normalized
combiner is conducted to illustrate universality at steady
state, and to derive conditions that ensure the mean
and mean-square stabilities of this scheme. Theoretical
results reveal that, compared to affine combination,
convex power-normalized combiners are more stable.

3) Extensions are discussed to further improve the perfor-
mance of convex combination schemes.

4) The computation and communication complexities of
convex combiners are discussed, and a comparison of
convex and affine combination schemes is provided.

Though the convex combination algorithm shares a similar
form with the affine combination strategy studied in [36], the
universality and behavior analyses require original manipula-
tions. Similar steps are voluntarily omitted in the presentation
to avoid redundancy and focus on the main differences. The
result shows that, as long as each component strategy is
stable, any diffusion network with convex power-normalized
combination scheme will be stable. This differs from [36]
where additional conditions are required to ensure the stability
of affine combiners.

The paper is organized as follows. Signal model and dif-
fusion LMS algorithm are presented in Section II. Section III
presents the convex combination framework and introduces
two strategies to adapt the convex combination coefficients.
Section IV analyzes the theoretical performance of the convex
power-normalized combiner with two diffusion LMS. Exten-
sions of this scheme are discussed to further improve the
performance in Section V. Discussions about the computation
and communication complexities are provided in Section VI,
as well as a comparison with the affine combination scheme.
Simulation results are provided in Section VII. Section VIII
concludes this work.

Notation. Normal font x denotes scalars. Boldface lower-
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cased letters x and capital letters X denote column vectors
and matrices, respectively. The superscript (·)> denotes the
transpose operator. The inverse of a matrix is denoted by
(·)�1. The mathematical expectation is denoted by E{·}. The
operator [ · ]|ba truncates its argument with lower bound a
and upper bound b. The operator diag{·} takes the diagonal
elements of its matrix argument, or generates a diagonal matrix
from its vector argument. IN and 0N denote identity matrix
and zero matrix of size N ⇥ N , respectively. All-one vector
of length N is denoted by N . Nk denotes the neighbors of
node k, including k.

II. SIGNAL MODEL AND DIFFUSION LMS
Consider a connected network consisting of N nodes. The

problem is to estimate an unknown parameter vector w
?
k of

length L⇥ 1 at each agent k. Agent k has access to temporal
measurement sequences {dk,n,uk,n}, where dk,n denotes a
reference signal, and uk,n is an L⇥ 1 regression vector with
positive definite covariance matrix Ru,k. The data at agent k
and time instant n are related according to the linear model:

dk,n = u
>
k,nw

?
k + zk,n, (1)

where zk,n is an additive noise satisfying Assumption 1 below.
Note that the network operates in the so-called multi-task
setting when the unknown parameter vectors w

?
k differ from

each other. The single-task setting usually considered in the
literature is a special case of the multi-task one considered in
this paper. It is obtained by setting w

?
1 = w

?
2 = · · · = w

?
N .

Assumption 1: zk,n is a zero-mean, stationary, independent
and identically distributed (i.i.d.) additive noise with variance
�2
z,k, and independent of any other signals.
A11 is widely adopted in the literature of adaptive filters

and distributed online learning over networks. To determine
w

?
k, we consider the MSE cost at agent k:

Jk(w) = E
�
|dk,n � u

>
k,nw|2

 
. (2)

Clearly, Jk(w) is minimized at w?
k. For single-task problems,

each agent in the network estimates the same parameter vector,
while for multi-task problems, agents may estimate distinct
parameter vectors.

Diffusion LMS was derived in [6], [7], [37], [38] to mini-
mize the global cost defined by:

Jglob(w) =
NX

k=1

Jk(w) (3)

in a cooperative manner. The general diffusion LMS algorithm
is given by:
8
>>>>>>><

>>>>>>>:

�k,n =
X

`2Nk

a1,`k w`,n

 k,n+1 = �k,n + µk

X

`2Nk

c`k u`,n (d`,n � u
>
`,n �k,n)

wk,n+1 =
X

`2Nk

a2,`k  `,n+1

(4)

1In this paper, we adopt the acronym ‘A’ for ‘Assumption’.

where the nonnegative coefficients {a1,`k}, {a2,`k} and {c`k}
are (`, k)-th entries of two left stochastic matrices A1,A2 and
a right stochastic matrix C, respectively, satisfying:

A
>
1 N = N , A>

2 N = N , C N = N , (5)
a1,`k = 0, a2,`k = 0, c`k = 0 if ` /2 Nk. (6)

Setting A1 = I or A2 = I leads to the adapt-then-combine
(ATC) and the combine-then-adapt (CTA) diffusion strategy,
respectively. Note that algorithm (4) can be used to solve both
single-task problems [39] and multi-task problems [15] by
selecting appropriate matrices A1 and A2.

III. CONVEX COMBINATION FRAMEWORK

As illustrated in Fig. 1, the convex combination framework
consists of two concurrent layers, namely, a diffusion strat-
egy layer and a combination layer. In the diffusion strategy
layer, the network simultaneously runs M candidate diffusion
strategies, resulting in M groups of estimates for the optimal
weight vector. We shall consider, without lack of generality,
the case M = 2 in the rest of the paper.

Diffusion strategy S(i) parameters are A
(i)
1 , A(i)

2 , C(i), µ(i)
k

for i = 1, 2, where the superscript (i) is the indicator for the
i-th component strategy. Based on the signal model (1), we
define the estimates of the reference signal, the a priori output
estimation error, and the a priori estimation error, as follows:

y(i)k,n , u
>
k,n w

(i)
k,n (7)

e(i)k,n , dk,n � u
>
k,n w

(i)
k,n (8)

ẽ(i)k,n , u
>
k,n (w

?
k �w

(i)
k,n). (9)

respectively, at each agent k and time instant n. The input
of the combination layer consists of the two outputs from
the diffusion strategy layer. By assigning convex combination
coefficients:

�(1)
k,n , �k,n (10)

�(2)
k,n , 1� �k,n (11)

to the two component strategies at agent k and time instant n,
we obtain the overall weight estimation wk,n at the combina-
tion layer for agent k:

wk,n =
2X

i=1

�(i)
k,nw

(i)
k,n

= �k,nw
(1)
k,n + (1� �k,n)w

(2)
k,n. (12)

Convex constraint on �(i)
k,n requires that �(i)

k,n 2 [0, 1]. By using
model (1) and equations (7)–(12), we obtain the following
relation between the overall quantities at the combination layer
and the corresponding quantities at the diffusion strategy layer,
at each node k and time instant n:

xk,n =
2X

i=1

�(i)
k,nx

(i)
k,n (13)

where the quantities x(i)
k,n for each component strategy S(i) and

xk,n at the combination layer generically refer to the estimates
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k +

�(M)
k,n

�(2)
k,n

�(1)
k,n

y(1)k,n

y(2)k,n

y(M)
k,n

k

k

k

dk,n

yk,n
Overall output

...

Nk

dk,n
uk,n

Di↵usion strategy S1

Di↵usion strategy S2

e(M)
k,n

e(2)k,n

e(1)k,n

w
(M)
k,n

w
(2)
k,n

w
(1)
k,n

�(i)
k,n � 0, 8i

�(1)
k,n + · · ·+ �(M)

k,n = 1

Convex combination

Di↵usion Strategy SM

Combination layerDiffusion strategy layer (candidate strategies)Original network

�(1)
k,n � 0, �(2)

k,n � 0

�(2)
k,n = 1� �(1)

k,n

Case M = 2 :

Case general M :

Affine combination

�(1)
k,n + · · ·+ �(M)

k,n = 1

Fig. 1. Illustration of the combination framework with M component diffusion strategies. Section III is a special case by setting M = 2.

of the reference signal in (7), the error signals in (8), and the
a prior estimation error in (9), respectively.

The goal of the combination layer is to learn which diffusion
strategy performs better at each time instant and each agent,
and to assign them with weights in order to optimize the over-
all network performance. The problem then reduces to design-
ing a strategy to adjust �k,n. To avoid using hard-thresholding
operators to satisfy the convex combination requirement, we
introduce an auxiliary variable ↵k,n to reparameterize �k,n as
follows:

�(1)
k,n = �k,n =

1

1 + e�↵k,n
(14)

�(2)
k,n = 1� �k,n. (15)

Then, we adjust ↵k,n by minimizing the MSE at the combi-
nation layer, which is defined by:

JMSE
n =

1

2

NX

k=1

E
�
e2k,n

 
. (16)

Adaptation of ↵k,n can be conducted by performing stochastic
gradient descent on (16), that is,

↵k,n+1 = ↵k,n � v0↵k

@JMSE
n

@↵k,n

⇡ ↵k,n + v0↵k
�k,n(1� �k,n)ek,nu

>
k,n(w

(1)
k,n �w

(2)
k,n)
(17)

with v0↵k
a positive step-size. On the one hand, observe that

iteration (17) will stop if ↵k,n is allowed to have unbounded
growth or decline, since �k,n will get close to 0 or 1 and
will make the term �k,n(1 � �k,n) being 0. Then, to ensure
continuous learning, we propose restricting ↵k,n to be within
the interval [�↵+,↵+] [31]. On the other hand, in order
to compensate the effect of large fluctuations in the power
of [u>

k,n(w
(1)
k,n � w

(2)
k,n)] at the adaptation level, we propose

normalizing the step-sizes v0↵k
in the following two ways.

1) Convex power-normalized scheme: Setting v0↵k
=

v↵k
"+pk,n

with v↵k the initial step-size, we obtain the convex power-
normalized scheme. In this expression, parameter " is a small
positive constant to avoid dividing by zero, and pk,n is an

estimate of the power of u>
k,n(w

(1)
k,n �w

(2)
k,n) calculated as:

pk,n = ⌘ pk,n�1 + (1� ⌘)
⇥
u
>
k,n(w

(1)
k,n �w

(2)
k,n)

⇤2
, (18)

with 0 ⌧ ⌘ < 1 a temporal smoothing factor.

2) Convex sign-regressor scheme: To save computation and
storage resources in evaluating pk,n in the power-normalized
scheme, we introduce another normalization. Setting

v0↵k
=

v↵k

|u>
k,n(w

(1)
k,n �w

(2)
k,n)|

results in the convex sign-regressor scheme given by:

↵k,n+1 =

↵k,n + v↵k�k,n(1�k,n)ek,nsgn{u>
k,n(w

(1)
k,n �w

(2)
k,n)} (19)

where sgn{x} is the sign function. Compared with the power-
normalized scheme, (19) requires only evaluating the sign
function.

IV. THEORETICAL ANALYSIS OF CONVEX
POWER-NORMALIZED SCHEME

Due to space limitation and technical complexity, we shall
only conduct the theoretical analysis for the power-normalized
scheme. The theoretical analysis of the sign-regressor scheme
can be derived by following the same routine. However, other
techniques for dealing with the nonlinear sign function may
be required.

To facilitate the theoretical analysis, we shall now introduce
several assumptions and approximations as in [36].
Assumption 2: The regression vector uk,n, generated from
a zero-mean random process, is temporally stationary, white
(over n) and spatially independent (over k) with positive
definite covariance matrix Ru,k = E{uk,nu

>
k,n}.

Approximation 1: At steady state, �k,n is statistically indep-
endent of ẽ(i)k,n and pk,n.
Approximation 2: For a large enough temporal smoothing fa-
ctor ⌘, pk,n is statistically independent of u

>
k,nw

(i)
k,n, that is,

it is independent of ẽ(i)k,n.
Approximation 3: At each time instant n, �k,n is statistically
independent of w(i)

k,n for i = 1, 2.
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Approximation 4: �n+1 is statistically independent of B
(i)
n ,

v
(i)
n , g(i)

n and r
(i)
n for i = 1, 2, where �n+1 is defined further

ahead in (35), v(i)
n is defined in (38), g(i)

n and r
(i)
n are defined

in (81) and (85) of Appendix B, respectively.
Approximation 5: Parameter ↵k,n varies slowly enough so
that E{↵k,nẽ

(m)
k,n ẽ

(n)
k,n} ⇡ E{↵k,n}E{ẽ(m)

k,n ẽ
(n)
k,n}, m,n = 1, 2.

Approximation 6: The a priori estimation errors ẽ(1)k,n and ẽ(2)k,n
are jointly Gaussian distributed, which implies [40]:

E
�
(ee(i)k,n)

4 
= 3

⇥
J (i)

ex,k,n

⇤2
, i = 1, 2, (20)

E
�
(ee(1)k,n)

3
(ee(2)k,n)

1 
= 3 J (1)

ex,k,nJ
(1,2)
ex,k,n, (21)

E
�
(ee(1)k,n)

1
(ee(2)k,n)

3 
= 3 J (1,2)

ex,k,nJ
(2)
ex,k,n, (22)

E
�
(ee(1)k,n)

2
(ee(2)k,n)

2 
= 2

⇥
J (1,2)

ex,k,n

⇤2
+ J (1)

ex,k,nJ
(2)
ex,k,n, (23)

where J (i)
ex,k,n and J (1,2)

ex,k,n are defined further in (24) and (26).
Approximation 7: At steady state when n ! 1, the variance
of �k,n is small.

Although not true in general, these assumptions and ap-
proximations are usually adopted to simplify the derivation
without constraining the conclusions. Specifically, there are
several results in the literature showing that performance
results obtained under A2 match well with actual performance
when step-sizes are sufficiently small [39], [41]. As discussed
in [2], approximation Ap12 is reasonable when adopting a
decaying step-size v↵k , and is more justified when ↵k,n+1

approaches ↵+ or �↵+, in which case �k,n(1� �k,n) of (17)
tends to zero. Ap2 is justified when using a large temporal
smoothing factor ⌘. Though actually not hold, Ap3 and Ap4
do not affect the theoretical results heavily, as illustrated in
simulation results. Ap5 is widely adopted in the analysis of
convex combinations of filters [42], [43], and it coincides
with simulation result that ↵k,n converges slowly compared
to the variation of uk,n, thus to the variation of ẽ(i)k,n. Ap6 is
also adopted and examined in the analysis of combinations of
adaptive filters [29], [42]. Ap7 has been adopted in the analysis
of adaptive filters [2], and it is reasonable in that at steady
state, �k,n will converge to a fixed value or fluctuate within
a small neighborhood of this value. Thus it is reasonable to
assume that the variance of �k,n is small. We shall challenge
these assumptions and approximations in the simulations.

A. Universality at steady state

The EMSE of component strategy S(i) and that after com-
bination at node k and time instant n are defined by:

J (i)
ex,k,n , E{(ẽ(i)k,n)

2} (24)

Jex,k,n , E
�
[�k,nẽ

(1)
k,n + (1� �k,n)ẽ

(2)
k,n]

2
 
, (25)

respectively. Let us also introduce the cross-EMSE defined as:

J (1,2)
ex,k,n , E{(ẽ(1)k,nẽ

(2)
k,n} (26)

2In this paper, we adopt the acronym ‘Ap’ for ‘Approximation’.

The EMSEs of the entire network, for component strategy S(i)

and after combination, are respectively defined by:

J (i)
ex,net,n ,

NX

k=1

J (i)
ex,k,n for i = 1, 2 (27)

Jex,net,n ,
NX

k=1

Jex,k,n. (28)

By taking the limit as n ! 1, we obtain the corre-
sponding values at steady state: J (i)

ex,k,1, Jex,k,1, J (i)
ex,net,1

and Jex,net,1. Based on the above definitions and several
approximations, we arrive at the following result.
Theorem 1 (Universality at steady state): Assume data model

(1), assumptions A1, A2 and approximations Ap1, Ap2, Ap7
hold. Then for any initial conditions, the network with power-

normalized scheme (17) is universal at steady state, which

means that the EMSE of the diffusion network after combina-

tion cannot be worse than that of the best component strategy,

namely,

Jex,net,1  min{J (1)
ex,net,1, J (2)

ex,net,1}. (29)

Further, when J (i)
ex,k,1 > J (1,2)

ex,k,1 for i = 1, 2 and �̄k,1 defined
in (65) satisfies �̄k,1 2

�
1� ✓+k , ✓

+
k

�
for some node k, there

is an improvement in the EMSE after combination, such that:

Jex,net,1 < min{J (1)
ex,net,1, J (2)

ex,net,1}. (30)

Proof: See Appendix A. ⌅
Theorem 1 is meaningful in that it shows that, through

local combination at each node, the convex power-normalized
scheme reaches the minimal EMSE of the two component
strategies, and can even do better.

B. Mean weight and mean-square behaviors analysis

The mean weight and mean-square behavior analysis fol-
lows a similar routine as in [36] for affine combination
schemes. To avoid redundancy, we provide the main results
without proving them to better highlight the main differences.

Define the following block vectors:

w
? , col{w?

1 , · · · ,w?
N} (31)

w
(i)
n , col{w(i)

1,n, · · · ,w
(i)
N,n} (32)

wn , col{w1,n, · · · ,wN,n}, (33)

where w
? is the block optimum weight vector, w

(i)
n and

wn are the block weight estimate of component strategy S(i)

and after combination at time instant n, respectively. Using
definitions (12) and (32), (33), we arrive at:

wn = �nw
(1)
n + (INL � �n)w

(2)
n , (34)

where
�n , diag{�1,n, · · · , �N,n}⌦ IL (35)

with symbol ⌦ denoting the Kronecker product. The weight
error vector of node k for component strategy S(i) and that
for combination layer are defined by:

v
(i)
k,n , w

(i)
k,n �w

?
k (36)

vk,n , wk,n �w
?
k, (37)
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5

respectively. By stacking v
(i)
k,n and vk,n over the entire network

into block vectors, we have:

v
(i)
n , col{v(i)

1,n, · · · ,v
(i)
N,n} (38)

vn , col{v1,n, · · · ,vN,n}. (39)

Using (31)–(39), we have:

vn = �nv
(1)
n + (INL � �n)v

(2)
n . (40)

1) Mean weight behavior analysis

Under approximation Ap3 and using (40), the mean weight
behavior at the combination layer satisfies:

E{vn+1} = E
�
�n+1

 
E{v(1)

n+1}
+ E

�
INL��n+1

 
E{v(2)

n+1}. (41)

We need to evaluate the iteration of E
�
v
(i)
n+1

 
to analyze the

mean weight behavior of vn+1; see Appendix B. Based on
Appendix B, we obtain the following result.
Theorem 2 (Stability in the mean): Assume data model (1),
assumptions A1, A2 and approximation Ap3 hold. Then for

any initial conditions, the network with power-normalized

scheme (17) asymptotically converges in the mean if the step

sizes in the network are chosen to satisfy:

0 < µ(i)
k <

2

�max{R(i)
k }

, k = 1, · · · , N and i = 1, 2 (42)

with �max{·} denoting the largest eigenvalue of its matrix

argument. The asymptotic bias at steady state is given by:

E
�
v1

 
= �E

�
�1

 �
INL �B

(1)
��1

r
(1)

� (INL � E
�
�1

 
)
�
INL �B

(2)
��1

r
(2). (43)

Proof: On the basis of Appendix B, arguments run along
the lines of [36, Appendix C] where affine combinations of
two diffusion LMS are considered. ⌅

Unlike the proof in [36] where we need to impose an
additional condition on the step-size v↵k of the combination
layer to ensure that matrix E

�
�n+1

 
is bounded, we do not

have such condition in the current work for convex power-
normalized scheme. In that way, convex combination schemes
are more stable than affine ones in the mean sense.

2) Mean-square behavior analysis

The concept of mean-square stability is one of the most
attractive ones within the large branch of stability analysis, and
is widely adopted in the analyses of adaptive filters [41], [44],
[45] and adaptive networks [37]–[39]. Indeed, requiring only
mean stability for adaptive filters and adaptive networks is not
fully satisfactory since a filter can converge in the mean sense
but may fluctuate around its mean value. Mean-square stability
analyses provide complementary tools for understanding and
predicting filters behavior.

We need to evaluate the evolution of E
�
kvn+1k2⌃

 
over

time, where ⌃ denotes an arbitrary positive semi-definite
matrix, and kxk2⌃ , x

>⌃x. The evolution of E
�
kvn+1k2⌃

 

is depicted in Appendix C. On the basis of Appendix C, we
obtain the following theorem.
Theorem 3 (Mean-square stability): Assume data model (1),
assumptions A1, A2 and approximations Ap3, Ap4 hold.

Assume further that step-sizes µ(i)
k are sufficiently small such

that condition (42) is satisfied and approximations (93), (100)
are justified by ignoring higher powers of step-size. Then for

any initial conditions, any network with doubly stochastic

matrices A
(i)
1 ,A(i)

2 , i.e., both columns and rows add up to

one, and power-normalized scheme (17) is mean-square stable

for sufficiently small step-sizes satisfying condition (42).
Proof: On the basis of the Appendix C, the proof of this

theorem follows the same routine as in [36, Appendix E]. We
omit it to avoid redundancy. ⌅

Unlike the proof in [36] where we impose an additional
condition on the step-size v↵k of the combination layer to
ensure that matrix E

�
�>
n+1 ⌦ �>

n+1

 
is bounded, we do not

have such condition here since it is bounded with convex
power-normalized scheme.
Corollary 1 (Transient MSD): Using (87) with ⌃ = 1

N INL,
we evaluate the mean-square-deviation (MSD) learning curve
of the entire network, defined by ⇠n+1 , E

�
kvn+1k21

N INL

 
.

All terms on the RHS of (87) can be evaluated recursively. See
Appendix D for the explicit expressions of these recursions.
Corollary 2 (Steady-state MSD): For sufficiently small step-
sizes satisfying condition (42) to ensure stabilities in the mean
and mean-square sense of the power-normalized scheme, the
steady-state MSD is provided by (107) in Appendix E.

Proof: Following the same routine as in [36, Appendix G]
leads to the result. ⌅

Corollaries 1 and 2 characterize the transient and steady-
state MSD of the convex power-normalized scheme. These
results help to tune the model parameters in practice.

C. Mean and mean-square behaviors of �k,n

To analyze the mean and mean-square behaviors of the
power-normalized scheme, we need to study the mean behav-
iors of �n and �>

n�n. They are obtained by characterizing the
mean and mean-square behaviors of �k,n since �n is diagonal.
Following the lines in [42], [43], we can conduct a theoretical
analysis for �k,n by using a first-order Taylor series expansion.
The derivations are depicted in Appendix F and Appendix G.
We arrive at the following two theorems.
Theorem 4 (Mean behavior of �k,n): Assume data model

(1) and approximations Ap1, Ap5 hold. Then for any initial

conditions, the convex combination coefficients �k,n are stable

in the mean sense. The mean behavior of �k,n is described by

(123) in Appendix F. The value of E{�k,n} at steady-state is

given by (65).
Proof: See Appendix F. ⌅

Theorem 5 (Mean-square behavior of �k,n): Assume data

model (1) and approximations Ap1, Ap5, Ap6 hold. Then

for any initial conditions, the convex combination coefficients

�k,n are stable in the mean-square sense. The mean-square
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behavior of �k,n is described by (125) in Appendix G. The

value of E{�2
k,n} at steady-state is given by (134).

Proof: See Appendix G. ⌅

V. EXTENSIONS OF THE SCHEME

We shall now introduce several extensions to further im-
prove the performance of convex combiners, and generalize
them to multiple strategies.

A. Performance improvements

Several adjustments can be implemented to further improve
the performance of combination schemes in certain situations.
We shall now extend the adjustment strategies already pro-
posed for combinations of adaptive filters [3], [31], [46], [47]
to combinations of diffusion strategies.

1) Weight transfer: At each time instant n and each node k,
parameter �k,n indicates which component strategy locally
performs better. So, at each time instant n and each node k, the
weight vector of the best component strategy can be transferred
to the other component strategies in order to improve the over-
all performance of the combination layer. Depending on how
the selected weight vector is shared, weight transfer strategies
can be further divided into two categories, the copying one and
the leakage one. Note that the sharing procedures described
below have to be run after the combination step has been
completed. The results obtained with these procedures will
then be used by each node at the adaptation step of the next
iteration.

Copying weights: The component strategy with the weakest
performance copies the received weight vector for itself when
the following conditions are satisfied simultaneously:

• �k,n > �1 or �k,n < 1 � �1, where 0 ⌧ �1 < 1 is a
pre-defined threshold value with typical value 0.95. This
condition means that the weight transfer can occur when
one component greatly outperforms another.

• mod(n,N0) = 0, where the mod(·, ·) function returns
the remainder after division, and N0 � 2. This condition
implies that weight transfers can occur periodically with
period N0 � 2.

By combining the above two conditions, we finally have:

w
(1)
k,n=

(
w

(2)
k,n, if �k,n<1� �1 and mod(n,N0)=0

w
(1)
k,n, otherwise

(44)
and

w
(2)
k,n=

(
w

(1)
k,n, if �k,n > �1 and mod(n,N0) = 0

w
(2)
k,n, otherwise.

(45)

Leakage transfer: The component strategy with the weakest
performance partially absorbs the received weight vector when
�k,n > �2 or �k,n < 1� �2, that is,

w
(1)
k,n =

(
⇢w(1)

k,n + (1� ⇢)w(2)
k,n, if �k,n < 1� �2

w
(1)
k,n, otherwise

(46)

and

w
(2)
k,n =

(
⇢w(2)

k,n + (1� ⇢)w(1)
k,n, if �k,n > �2

w
(2)
k,nm otherwise

(47)

where �2 and ⇢ are two non-negative parameters satisfying
0 ⌧ �2 < 1 and 0 ⌧ ⇢ < 1, with typical value of 0.95.

2) Weight feedback: Since the combined estimate at each
node cannot be worse than the estimate of each component
strategy, we can feedback the combined estimate to each
component strategy periodically to improve the performance,
that is,

w
(1)
k,n =

(
wk,n, if mod(n,N 0

0) = 0

w
(1)
k,n, otherwise

(48)

w
(2)
k,n =

(
wk,n, if mod(n,N 0

0) = 0

w
(2)
k,n, otherwise,

(49)

with period N 0
0 a large positive integer.

B. Convex combination of multiple strategies

We shall now extend the convex combination scheme to
multiple component strategies. The general scheme follows the
description in Section III except that we have M component
diffusion strategies. We introduce M convex combination co-
efficients �(1)

k,n, �
(2)
k,n, · · · , �

(M)
k,n at each node k and time instant

n, satisfying the non-negativity and sum-to-one constraints. By
combining the M local estimates at each agent k, we obtain
the overall system coefficients wk,n and estimation error ek,n
at the combination layer, defined as follows:

wk,n =
MX

i=1

�(i)
k,nw

(i)
k,n (50)

ek,n =
MX

i=1

�(i)
k,ne

(i)
k,n (51)

We adapt �(i)
k,n by minimizing the MSE of the combination

layer. To satisfy the non-negativity and sum-to-one constraints,
we introduce a nonlinear modified softmax function to calcu-
late �(i)

k,n as:

�(i)
k,n =

exp(↵(i)
k,n) + �

PM
j=1 exp(↵

(j)
k,n) +M�

, , i = 1, · · · ,M, (52)

where � � 0, ↵(i)
k,n are newly introduced auxiliary variables,

and exp(·) denotes the exponential function. Parameterization
of �(i)

k,n via (52) satisfies the non-negativity and the sum-to-one
constraints.

We shall now directly update ↵(i)
k,n instead of �(i)

k,n by
considering the following adaptation scheme. Using stochastic
gradient descent to minimize (16), we obtain the multiple
strategies LMS scheme as:

↵(i)
k,n+1 = ↵(i)

k,n � v↵k

@JMSE
n

@↵(i)
k,n

⇡ ↵(i)
k,n + v↵k

exp(↵(i)
k,n)(ek,n � e(i)k,n)

PM
j=1 exp(↵

(j)
k,n) +M�

ek,n. (53)
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Specifically, when setting � = 0, (53) reduces to:

↵(i)
k,n+1 ⇡ ↵(i)

k,n + v↵k�
(i)
k,nek,n(ek,n � e(i)k,n) (54)

To bound the dynamic of ↵(i)
k,n+1, parameters ↵(i)

k,n are further
required to be in interval [�↵+

0 ,↵
+
0 ] with ↵+

0 > 0.

VI. DISCUSSION

A. Computation complexity and communication overhead

The computation complexity and communication overhead
of the convex combination schemes result from those of the
diffusion strategy layer and the combination layer. We shall
consider the case of M component strategies S(i).

• Regarding the computation overhead, since convex com-
bination schemes can be applied to any component strate-
gies, we cannot describe all scenarios in a unified man-
ner since the computation overhead of each component
strategy is unknown. To alleviate this, we shall adopt the
following description. We denote the computation cost
of each component strategy by q(i), and we adopt the
notation pk to denote the computation overhead of node
k at the combination layer. Then the total computational
complexity q can be evaluated as:

q =
MX

i=1

q(i) +
NX

k=1

pk. (55)

Given any candidate diffusion strategy, q(i) is related to
the filter length L and the total number of nodes N , as
well as the complexity in evaluating the stochastic matri-
ces A1, A2 and C. Quantity pk in convex combination
schemes is related to the total number M of candidate
diffusion strategies and the complexity in evaluating the
exponential function in (52), or the sigmoid function (14).
If the exponential function can be evaluated in advance
and its values stored in a table, the computation overhead
can be reduced greatly. As a conclusion, the total com-
putation complexity q of convex combination schemes is
larger than the sum of the computation complexities of
all component strategies.

• We denote the communication cost of each component
strategy by h(i). Since the combination schemes are
conducted in a distributed manner at each node, there
is no communication overhead at the combination layer.
Therefore, the total communication cost h of the convex
combination scheme can be evaluated as:

h =
MX

i=1

h(i), (56)

which means that h is equal to the sum of the com-
munication costs of all component strategies. Given any
candidate diffusion strategy, h(i) is related to the filter
length L and the network topology. The total communi-
cation complexity h can be reduced, for instance, by using
compression coding methods before communicating with
neighboring nodes [48], [49].
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Fig. 2. (a) Network topology; (b) Agent input and noise variances.

B. Comparison with the affine combination scheme

Without loss of generality, we focus on the case of two
component strategies. For ease of comparison, we recall the
update equation of the affine combination schemes in [36]:

�k,n+1 = �k,n + v0↵k
ek,nu

>
k,n(w

(1)
k,n �w

(2)
k,n) (57)

Compared with the affine combination scheme (57), the update
equation of the convex combination scheme (17) is more
complex, in particular because of the truncation operation and
the nonlinear function used to evaluate coefficients �k,n+1.
However, as derived in the current work, the convex combi-
nation scheme is more stable than the affine one.

VII. SIMULATION RESULTS

In this section, we present simulation results to illustrate the
proposed convex combination schemes and theoretical results.
All simulated curves were obtained by averaging over 100
Monte Carlo runs.

A. Validation of convex combination schemes

We considered a non-stationary system identification sce-
nario where w

?
k varies over time. The network consisted of

10 nodes with connection topology depicted in Fig. 2(a).
The regressors were generated from a zero-mean multivariate
Gaussian distribution with covariance matrix Ru,k = �2

u,kI60.
The noise signals was generated from Gaussian distribution
N (0,�2

z,k). Variances �2
u,k and �2

z,k were generated randomly
as depicted in Fig. 2(b).

1) Combination of two diffusion LMS strategies: We con-
sidered two ATC diffusion LMS strategies with C = IN

and A
(i)
1 = IN as component strategies. For matrices A

(i)
2 ,

we considered two groups of settings: static matrices with
A

(1)
2 = IN and A

(2)
2 generated from the averaging rule,

and adaptive matrices with A
(1)
2 ,A(2)

2 given by [15] and
[50], respectively. The evolution of w

?
k was divided into

five stationary stages and four transient episodes. During the
stationary stages, we set w?

k of each agent so that, from n = 1
to 1000, and from n = 4500 to 6000, the entire network
pursued the same target. While from instant n = 1500 to
2500, from n = 3000 to 4000 and from n = 6500 to 8000,
the network split to pursue 2, 4, and 6 targets, respectively. The
transient episodes between two adjacent stationary stages were
designed by using linear interpolation over 500 time instants.
The results are plotted in Figs. 3 and 4.

In Fig. 3(a), as expected, both the power-normalized scheme
and the sign-regressor scheme with static fusion matrices tend
to the best component strategy at each stage. Their behavior
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Fig. 3. Simulation results with static fusion matrices. (a) Network MSD
learning curves; (b) Evolution of convex combination coefficient �k,n for
power-normalized scheme.
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Fig. 4. Simulation results with adaptive fusion matrices.

is similar to that of the non-cooperative diffusion LMS when
estimating multiple targets, and similar to that of the diffusion
LMS with averaging rule when pursuing the same target. The
evolution of the convex combination coefficients in Fig. 3(b)
validates the effectiveness of the combination scheme.

The results with adaptive fusion matrices are illustrated in
Fig. 4. A similar learning behavior can be observed and a
similar conclusion can be drawn.

2) Combination of two distinct diffusion strategies: We
considered the multitask diffusion strategies for clustered
networks proposed in [14] and [21], where the former uses
squared `2-norm co-regularizer to promote cooperation within
clusters, and the latter uses `1-norm co-regularizer. The simu-
lation setting was the same to that in Section VII-A1, except
that the 10 nodes were divided into three clusters to pursue
three groups of different but related targets, and the targets
for nodes within the same cluster were identical. For four
stationary stages, the weight vectors w

?
Ci

were generated
according to w

?
Ci

= wo+�CiwCi . When �Ci for i = 1, 2, 3 are
the same, the component strategy with `1-norm co-regularizer
should perform better. Otherwise, the component strategy
with squared `2-norm co-regularizer should have a better
performance. We set the regularization strengths of both co-
regularizers to 0.1, and a uniform A

(i)
2 was used such that:

a(i)2,`k = |Nk \ C(k)|�1

The results are plotted in Figs. 5 and 6. Both the power-
normalized scheme and the sign-regressor scheme have quite
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Fig. 5. Simulation results of the power-normalized scheme with the two
component strategies in [14] and [21]. (a) Network MSD learning curves; (b)
Evolution of the convex combination coefficients �k,n.
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Fig. 6. Simulation results of the sign-regressor scheme with the two diffusion
strategies in [14] and [21].

the same behavior as the optimum component strategy at the
different stages.

3) Combination of multiple diffusion strategies: We shall
now examine the performance of the combination scheme (53)
via simulation. The simulation setting was similar to that in
Section VII-A1, except that we changed the duration time of
the stationary stages. We considered three component diffusion
strategies for illustration purposes: A

(2)
2 was obtained by

the averaging rule with network step-sizes µ(2)
k being set to

0.01, while A
(1)
2 and A

(3)
2 was set to the identity matrix

corresponding to non-cooperative strategy, with the network
step-sizes being set to µ(1)

k = 0.01 and µ(3)
k = 0.0028,

respectively. When the entire network cooperates to pursue
the same target, i.e., from time instant n = 1 to 800 and
from instant n = 5000 to 6300 in Fig. 7(a), the diffusion
strategy with averaging rule A

(2)
2 should perform better. At

other time instants when the network is split to pursue 2, 4 and
6 targets, the non-cooperative diffusion strategies with fusion
matrices A(1)

2 and A
(3)
2 should perform better. Moreover, since

the step-sizes µ(i)
k control the trade-off between convergence

rate and steady-state performance, it should be helpful to adopt
two different step-sizes and combine them, such as from time
instant n = 1000 to 5000 when the network pursues multiple
targets, to obtain a faster initial convergence speed and lower
misadjustment at steady state simultaneously.

The results are illustrated in Fig. 7. As expected, at the
different stages the proposed combination scheme tracks the
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Fig. 7. Simulation results of combination scheme for three diffusion
strategies. (a) Network MSD learning curves; (b) Evolution of combination
coefficients �

(i)
k,n at agent 9.
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Fig. 9. Simulation results of the convex sign-regressor scheme with different
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best component strategy, which is further validated from the
evolution of affine combination coefficients of node 9 in
Fig. 7(b). These results illustrate the effectiveness of combina-
tion framework in combining multiple component strategies.

4) Influence of the step-size v↵,k: We shall now exam-
ine the influence of the parameters in the power-normalized
scheme, sign-regressor scheme and the multiple strategies
LMS scheme. Based on various experiments, we found that
the performance of the combination schemes is not sensitive
to the temporal smoothing factor ⌘, to parameters ↵+ or ↵+

0 ,
and to small-valued ". We therefore set ⌘ to a typical value
of 0.95 and ↵+ to 4, ↵+

0 to 2.5 and " to 0.05. We shall also
examine the influence of the step-size v↵,k. The simulation
settings were identical to those used in the first experiment,
and we only considered static combination matrices.

The results are plotted in Figs. 8 to 10. For all these three
schemes, a small-valued v↵,k results in a weak ability of
tracking the best component, while a large-valued v↵,k leads
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Fig. 10. Simulation results of the multiple strategies LMS scheme with
different step-sizes v↵,k .

to bias. Thus the value of v↵,k needs to be fine-tuned to ensure
tracking performance and estimation accuracy.

B. Adjustments to improve performance

We shall now check the effectiveness of the three adjustment
strategies proposed to improve the performance of the combi-
nation schemes. The simulation setting was similar to that in
Section VII-A, except that we merely considered the first four
stationary stages and the duration of stationary stages were
set to different values. We considered the diffusion LMS with
two static fusion matrices: non-cooperative A

(1)
2 = I with

network step-size being set to 0.01, and the averaging rule for
A

(2)
2 with network step-size being set to 0.0015. Besides, for

the three adjustment strategies, we set �1, �2 and ⇢ to 0.95,
N0 to 50 and N 0

0 to 170.
The results are illustrated in Fig. 11. As depicted by grey

dashed lines in sub-figures (a), (b) and (c), the results with
the three proposed adjustments are not worse than the original
power-normalized scheme, and sometimes even offer a faster
convergence rate and a lower misadjustment, such as from
time instant n = 1 to n = 2500 and from n = 9000 to
n = 12000. Besides, though obtaining similar steady-state
MSDs, the convergence rate of the weight feedback adjustment
is faster than those of the leakage adjustment and copying
adjustment.

C. Validation of improvement with power-normalized scheme

We shall now validate the improvement in the EMSE
obtained with the power-normalized scheme. As stated in The-
orem 1, the improvement occurs when conditions J (1,2)

ex,k,1 <

J (i)
ex,k,1 and �̄k,1 2

�
1� ✓+k , ✓

+
k

�
are satisfied. We considered

the same setting as that used in Fig. 4 of Section VII-A1,
except that we only considered the second stationary stage.
The simulation results are plotted in Fig. 12 and given in
Table I. The EMSE learning curve of Fig. 12(a) validates the
improvement in convex power-normalized scheme at steady
state. The estimated steady-state EMSEs J (i)

ex,k,1 with i = 1, 2

and steady-state cross-EMSE J (1,2)
ex,k,1, averaged over the last

1500 iterations, are plotted in Fig. 12(b).As can be observed in
Fig. 12(b), for several nodes the condition J (1,2)

ex,k,1 < J (i)
ex,k,1

is satisfied. It can be further checked in Table I that �̄k,1 2�
1� ✓+k , ✓

+
k

�
for nodes 1 and 6. All these results in Fig. 12

and Table I validate the improvement in the EMSE at steady
state with the power-normalized scheme.
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Fig. 11. Simulation results of convex power-normalized scheme with three adjustments. (a) Network MSD learning curves with copying weights; (b) Network
MSD learning curves with leakage transfer; (c) Network MSD learning curves with weight feedback.
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Fig. 12. Validation of the improvement obtained via the convex power-
normalized scheme.

TABLE I
ESTIMATED STEADY-STATE VALUES �̄k,1 AT EACH NODE. SINCE WE SET

↵+ TO 4, ✓+k , 1

1+e�↵+ = 0.982 AND 1� ✓+k = 0.018.

Node k 1 2–5 6 7–10
�̄k,1 0.0541 0.018 0.0376 0.982

D. Theoretical model validation

As has been done in [36], to illustrate the theoretical results
as well as to challenge the assumptions and approximations
adopted in the theoretical analysis, we considered two net-
works with different connectivity parameters as described
in Table II. Net1 consisted of 10 nodes with the network
topology given in Fig. 2(a). Net2 was generated by splitting
20 nodes into seven fully connected clusters, with 3 nodes in
each of the first six clusters and 2 nodes in the last cluster.
These seven clusters were connected in chain, with a single
edge connecting adjacent clusters: agent 3 (in cluster 1) was
connected with agent 4 (in cluster 2), and agent 6 (in cluster
2) was connected with agent 7 (in cluster 3), and so on until
agent 18 (in cluster 6) was connected to agent 19 (in cluster
7).

The unknown system coefficients to be estimated were of
length L = 2. The regressors were generated from a zero-mean
Gaussian distribution with covariance matrix Ru,k = �2

u,kIL

for white inputs and with

Ru,k = �2
u,k

✓
1 0.5
0.5 1

◆

TABLE II
NETWORK STATISTICS FOR THEORETICAL MODELS VALIDATION. L IS THE
LAPLACIAN MATRIX ASSOCIATED WITH THE GRAPH (NETWORK), �2(L)

IS THE ALGEBRAIC CONNECTIVITY [51] OF GRAPH, SIZE IS THE NUMBER
OF NODES, DENSITY IS THE NUMBER OF NON-ZERO ENTRIES OF THE

ADJACENCY MATRIX OF GRAPH, AND DIAMETER IS THE MAXIMUM
DISTANCE BETWEEN ANY TWO NODES [52].

Network Size Density �2(L) Diameter
Net1 10 44% 0.8576 3
Net2 20 17.25% 0.0439 13

for colored inputs. Variances �2
u,k and �2

z,k at each agent were
generated randomly. For white inputs, by varying �2

z,k, we
changed the signal-to-noise ratio (SNR) [53] to two levels as
described in Table III. For illustration purpose, we plot �2

u,k

and �2
z,k of each agent with SNR1 in Fig. 2(b). The power-

normalized scheme was run with network step-sizes being set
to 0.01 and 0.004, respectively.

TABLE III
TWO SNR LEVELS IN DECIBEL (DB) FOR THEORETICAL MODELS

VALIDATION. SINCE SNRS VARY FROM ONE NODE TO ANOTHER, WE
ENUMERATE THE MAXIMUM, MINIMUM AND MEAN VALUES.

SNR Level Maximum Minimum Mean
SNR1 7.079 5.4439 6.2272
SNR2 -8.9416 -10.5767 -9.7934

We first validate the theoretical results for the mean and
mean-square behaviors of �k,n, the transient and steady-state
MSDs of each component strategies, and the cross-MSD of
two component strategies over the entire network defined
by MSDcross , 1

NE
�
v
(1)>
n v

(2)
n
 

. All these quantities are
necessary in evaluating the MSD behavior of the convex
power-normalized scheme. Then by using these results, we
evaluate the theoretical MSD behaviors of the convex power-
normalized scheme. All results are plotted in Figs. 13 to 19.

We observe in Figs. 13 to 15 that the simulated and
theoretical transient values, and theoretical steady-state values
of network cross-MSD and MSDs of two component diffusion
strategies are superimposed, respectively, which illustrates
the accuracy of the theoretical analysis for MSD at each
component. Since the analysis of E{�k,n} and E{�2

k,n} are
based on the Taylor series expansion, there are biases be-
tween simulated and theoretical transient values of E{�k,n}
and E{�2

k,n}. However the theoretical results for the power-
normalized scheme are still acceptable and satisfying.

The results of the power-normalized diffusion for white
Gaussian inputs with Net2 and SNR1 are plotted in Fig. 16.
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Fig. 13. Illustration of simulation results (model vs. Monte Carlo) for the convex power-normalized scheme. Transient and steady-state values of E{�k,n}
derived in (123) and (65) (top), as well as these of E{�2

k,n} derived in (125) and (134) (bottom) for network step-size 0.01 (a) and 0.004 (c); (b) Transient
and steady-state cross-MSDs derived in (104) and (107).
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and SNR1.
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vs. Monte Carlo) with network step-size 0.01 for white input in Net2 and
SNR1.

The results with Net1 and SNR2 are plotted in Fig. 17.
Together with Figs. 14 and 15, all these results validate the ac-
curacy of theoretical analyses under different SNR conditions
and network connectivity parameters.

The results for moderately colored inputs with Net1 and
SNR1 are provided in Fig. 18–Fig. 19. Though assumption A2
is violated, the superimposition of simulated and theoretical
curves validates the accuracy of the theoretical results for
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Fig. 17. Network performance with the power-normalized scheme (model
vs. Monte Carlo) with network step-size 0.01 for white input in Net1 and
SNR2.
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Fig. 18. Network MSD performance of convex power-normalized scheme
(model vs. Monte Carlo) with network step-size 0.01 for colored input in
Net1 and SNR1.
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Fig. 19. Network MSD performance of convex power-normalized scheme
(model vs. Monte Carlo) with network step-size 0.004 for colored input in
Net1 and SNR1.

sufficiently small step-sizes.
In addition, observe in Figs 14 to 19 that the combination

scheme performs worse than the best component strategy.
On the one hand, the performance of the power-normalized
scheme is closely related to the system parameters, and when
L is large, it is easier for the power-normalized scheme
to track the best component strategy. Unfortunately, in the
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simulation setting of Figs. 14 to 19, for the purpose of saving
computations, we set parameter L = 2. On the other hand, we
have proved in Theorem 1 that the power-normalized scheme
is universal at steady state. The Monte-Carlo curves coincide
with the theoretical results.

VIII. CONCLUSIONS

Combining diffusion strategies enables a network to reach a
better performance. In this paper, we proposed several schemes
for the convex combination of multiple component diffusion
strategies, as well as several adjustments to further improve
the performance. We conducted theoretical analysis for the
convex power-normalized scheme. Based on the theoretical
results, we conclude that the convex power-normalized scheme
is universal at steady state, meanwhile the mean and mean-
square stabilities of power-normalized scheme require only the
stability of its two component diffusion strategies. Thus the
convex power-normalized schemes are more stable than affine
combination schemes. Several open problems still have to be
addressed. For instance, it would be interesting to conduct
a theoretical analysis for the convex sign-regressor scheme.
It would also be interesting to explore other combination
frameworks and schemes.

APPENDIX A
PROOF OF UNIVERSALITY ANALYSIS RESULT

We first consider two extreme situations of ↵k,n:
• Situation 1: If limn!1 E{↵k,n} = ↵+, we conclude that

↵k,n ! ↵+ with n ! 1 is almost sure. Then we have
�k,n ! ✓+k , 1

1+e�↵+ ⇡ 1, and Jex,k,1 ⇡ J (1)
ex,k,1.

• Situation 2: If limn!1 E{↵k,n} = �↵+, we deduce
that ↵k,n ! �↵+ as n ! 1 in a high probability. Then
we have �k,n ! 1

1+e↵+ = 1 � ✓+k ⇡ 0, and Jex,k,1 ⇡
J (2)

ex,k,1.
Based on the above results, to evaluate the EMSE after
combination at steady state, it is necessary to examine the
limiting behavior of E{↵k,n}. To do so, taking the expectation
of (17), we have:

E{↵k,n+1} ⇡
⇥
E{↵k,n + µ0

↵k
�k,n(1� �k,n)

ek,nu
>
k,n(w

(1)
k,n �w

(2)
k,n)}

⇤↵+

�↵+ , (58)

where we have exchanged the order of expectation and trunca-
tion operations to simplify the derivation. This approximation
is reasonable, since the likelihood of ↵k,n+1 to be greater
than ↵+ or less than �↵+ before truncation is small due to
the existence of factor �k,n(1� �k,n) in the update equation.
From (9) and (13), we have:

u
>
k,n(w

(1)
k,n �w

(2)
k,n) = ẽ(2)k,n � ẽ(1)k,n (59)

ek,n = �k,nẽ
(1)
k,n + (1� �k,n)ẽ

(2)
k,n + zk,n. (60)

Under assumptions A1 and A2, substituting (59), (60) into
(58), and taking the limit with n ! 1, we obtain:

E{↵k,n+1} =
⇥
E{↵k,n}� v̄↵k,nE

�
�2
k,n(1� �k,n)

 
4J (1)

k,1

+v̄↵k,nE
�
�k,n(1��k,n)

2
 
4J (2)

k,1
⇤↵+

�↵+ with n!1, (61)

where v̄↵k,n , E
� v↵k

"+pk,n

 
, and 4J (i)

k,1 , J (i)
ex,k,1 � J (1,2)

ex,k,1
measures the difference between the steady-state EMSE and
steady-state cross-EMSE, with the latter being defined by
J (1,2)

ex,k,1 , limn!1 E{ẽ(1)k,nẽ
(2)
k,n}. From Cauchy-Schwartz in-

equality and according to the relations between J (1,2)
ex,k,1 and

J (i)
ex,k,1, we further divide the problem of evaluating the

limiting behavior of E{↵k,n} into three cases:

• Case 1: J (1)
ex,k,1  J (1,2)

ex,k,1  J (2)
ex,k,1. We then have

4J (1)
k,1  0 and 4J (2)

k,1 � 0. Since �k,n and 1 � �k,n
lie in the interval [1 � ✓+k , ✓

+
k ], both E

�
�2
k,n(1 � �k,n)

 

and E
�
�k,n(1� �k,n)

2 are lower bounded by b̂k ,
✓+k (1� ✓+k )

2. Define b̄k , limn!1 v̄↵k,n . Then (61)
writes to:

E{↵k,n+1}�
⇥
E{↵k,n}+bk

⇤↵+

�↵+ with n ! 1 (62)

where bk , b̂k b̄k(4J (2)
k,1�4J (1)

k,1) > 0. It follows from
(62) that the unique stationary point of E{↵k,n+1} with
n ! 1 is ↵+. According to the previous conclusion
drawn in Situation 1, we conclude that Jex,k,1 ⇡
J (1)

ex,k,1.
• Case 2: J (1)

ex,k,1 � J (1,2)
ex,k,1 � J (2)

ex,k,1. We then have
4J (1)

k,1 � 0 and 4J (2)
k,1  0. Then (61) writes to:

E{↵k,n+1} 
⇥
E{↵k,n}� b0k

⇤↵+

�↵+ with n ! 1 (63)

where b0k , b̂k b̄k(4J (1)
k,1�4J (2)

k,1) > 0. Thus the unique
stationary point of E{↵k,n+1} with n ! 1 is �↵+.
According to the conclusion drawn in Situation 2, we
have Jex,k,1 ⇡ J (2)

ex,k,1.
• Case 3: J (i)

ex,k,1 > J (1,2)
ex,k,1 for i = 1, 2. We then have

4J (i)
k,1 > 0. Iteration (61) converges to the stationary

point if and only if:

E{�2
k,n(1� �k,n)}4J (1)

k,1 =

E{�k,n(1� �k,n)
2}4J (2)

k,1 with n ! 1. (64)

To make equation (64) tractable, by using Ap7 which
assumes that the variance of �k,n is small with n ! 1,
we obtain:

�̄k,1, lim
n!1

E{�k,n}=
 4J (2)

k,1

4J (1)
k,1+4J (2)

k,1

�✓+
k

1�✓+
k

. (65)

Since the steady-state EMSE of node k after combination
writes to:

Jex,k,1 = �̄2
k,1J (1)

ex,k,1 + (1� �̄k,1)2J (2)
ex,k,1

+ 2�̄k,1(1� �̄k,1)J (1,2)
ex,k,1, (66)

by substituting �̄k,1 of (65) without truncation operation
into (66) and after some algebraic manipulations, we
arrive at:

Jex,k,1 = J (1,2)
ex,k,1 +

4J (1)
k,14J (2)

k,1

4J (1)
k,1 +4J (2)

k,1

. (67)
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Since J (i)
ex,k,1 > J (1,2)

ex,k,1 for i = 1, 2, we have
4J(1)

k,14J(2)
k,1

4J(1)
k,1+4J(2)

k,1
< 4J (i)

k,1, and we conclude:

Jex,k,1 < J (i)
ex,k,1, (68)

which means that there is an improvement of EMSE after
combination. Since the cross-EMSE is lower than EMSE
of each component, we may extract extra information
through combination, which brings the gain in EMSE.
As for �̄k,1 = ✓+k or 1 � ✓+k obtained with truncation,
we have derived in Situation 1 and Situation 2 that

Jex,k,1 ⇡ min{J (1)
ex,k,1, J (2)

ex,k,1}. (69)

For the steady-state EMSE of the entire network defined by:

Jex,net,1 ,
NX

k=1

Jex,k,1, (70)

we have:

Jex,net,1  min
�
J (1)
ex,net,1, J (2)

ex,net,1
 
, (71)

which means that the EMSE of diffusion network after com-
bination is no worse than that of the best component strategy,
leading to the universality of convex power-normalized scheme
at steady state.

APPENDIX B
ITERATION OF E

�
v
(i)
n+1

 

Under assumption A1 and along the lines developed in [15],
we have:

v
(i)
n+1 = B

(i)
n v

(i)
n + g

(i)
n � r

(i)
n , (72)

E
�
v
(i)
n+1

 
= B

(i) E
�
v
(i)
n

 
� r

(i), (73)

with quantities defined by:

B
(i)
n =AAA(i)>

2

�
INL �U

(i)
H

(i)
n

�
AAA(i)>

1 , (74)

B
(i)

=AAA(i)>
2

�
INL �U

(i)
H

(i)�AAA(i)>
1 , (75)

AAA(i)
j = A

(i)
j ⌦ IL, 8j = 1, 2, (76)

U
(i) = diag

�
µ(i)
1 , · · · , µ(i)

N

 
⌦ IL, (77)

H
(i)
n = diag

nX

`2Nk

c(i)`k x`,nx
>
`,n

oN

k=1
, (78)

H
(i)

= diag
�
R

(i)
1 , · · · ,R(i)

N

 
, (79)

R
(i)
k ,

X

`2Nk

c(i)`kRu,`, (80)

g
(i)
n =AAA(i)>

2 U
(i)
p
(i)
zx,n, (81)

p
(i)
zx,n = col

nX

`2Nk

c(i)`k x`,nz`,n
oN

k=1
, (82)

h
(i)
u,n = col

nX

`2Nk

c(i)`k x`,nx
>
`,n

�
w

?
k �w

?
`

�oN

k=1
, (83)

h
(i)
u = col

nX

`2Nk

c(i)`kRu,k

�
w

?
k �w

?
`

�oN

k=1
, (84)

r
(i)
n ,AAA(i)>

2 U
(i)
h
(i)
u,n| {z }

r(i)
u,n

�

h
AAA(i)>

2

�
INL�U

(i)
H

(i)
n

� �
AAA(i)>

1 �INL

�
+(AAA(i)>

2 �INL)
i
w

?

| {z }
r(i)
w,n

(85)

r
(i) , E{r(i)n } = r

(i)
u � r

(i)
w . (86)

Expression (73) helps to evaluate the iteration of the mean
behavior E{v(i)

n+1}.

APPENDIX C
EVOLUTION OF E

�
kvn+1k2⌃

 

Using (40), we have:

E
�
kvn+1k2⌃

 
= 2E

�
v
(1)>
n+1 �n+1⌃(INL � �n+1)v

(2)
n+1

 

+E
���(INL � �n+1)v

(2)
n+1

��2
⌃

 
+ E

����n+1v
(1)
n+1

��2
⌃

 
. (87)

Define:

⌃(1)
n+1 , E

�
�>
n+1⌃�n+1

 
(88)

⌃(2)
n+1 , E

�
(INL � �n+1)

> ⌃ (INL � �n+1)
 

(89)

�
(i)
n+1 = vec

�
⌃(i)

n+1

 
. (90)

Under approximation Ap3, the last two terms on the RHS of
(87) can be written in compact form as E

n
v
(i)>
n+1⌃

(i)
n+1v

(i)
n+1

o

for i = 1, 2, which are evaluated in [36] under Ap4 as:

E
n��v(i)

n+1

��2
�(i)

n+1

o
= E

n��v(i)
n

��2
K(i)�(i)

n+1

o
+

⇥
vec{G(i)>}

⇤>
�

(i)
n+1 + f

�
r
(i),⌃(i)

n+1,E
�
v
(i)
n

 �
, (91)

where k · k2
⌃(i)

n+1
and k · k2

�(i)
n+1

are used interchangeably, with:

f
�
r
(i),⌃(i)

n+1,E
�
v
(i)
n

 �

,
��r(i)

��2
⌃(i)

n+1
� 2r(i)>⌃(i)

n+1B
(i)E

�
v
(i)
n

 
(92)

K
(i) ⇡ B

(i)> ⌦B
(i)>

(93)

G
(i) , E

�
g
(i)
n g

(i)>
n

 
. (94)

Expression (91) was derived in Appendix D of [36]. For the
first term on RHS of (87), we have:

E
�
v
(1)>
n+1 ⌃x,n+1 v

(2)
n+1

 
=

E
�
v
(1)>
n ⌃xc,n+1v

(2)
n

 
+
⇥
vec{G>

x }
⇤>
�x,n+1+

fx
�
r
(1), r(2),⌃x,n+1,E

�
v
(1)
n

 
,E
�
v
(2)
n

 
,B

(1)
,B

(2)�
, (95)

where

fx
�
r
(1), r(2),⌃x,n+1,E

�
v
(1)
n

 
,E
�
v
(2)
n

 
,B

(1)
,B

(2)�

, r
(1)>⌃x,n+1 r

(2) � E
�
v
(1)>
n

 
B

(1)>
⌃x,n+1r

(2)

� r
(1)>⌃x,n+1B

(2)E
�
v
(2)
n

 
(96)
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with

⌃x,n+1 , E
�
�n+1⌃(INL � �n+1)

 
, (97)

⌃xc,n+1 , vec�1
�
Kx�x,n+1

 
, (98)

�x,n+1 , vec
�
⌃x,n+1

 
, (99)

Kx ⇡ B
(2)> ⌦B

(1)>
, (100)

Gx , E
�
g
(2)
n g

(1)>
n

 
, (101)

and vec�1{·} is the inverse vectorization operator. Expres-
sion (87) helps evaluate the transient mean-square behavior
E
�
kvn+1k2⌃

 
, which is important in setting model parameters

in practice.

APPENDIX D
RECURSIONS FOR EVALUATING TRANSIENT MSD

Recursion for evaluating E
���v(i)

n

��2
K(i)�(i)

n+1

 
, that is the last

two terms of (87) compactly, is given in [15] as:
⇠(i)n+1 = ⇠(i)n +

⇥�
vec{G(i)>}

�>
(K(i))

n
�

(i)

+ kr(i)k
2

(K(i))n�(i) � kv(i)
0 k

2

(I�K(i))(K(i))n�(i)

� 2
�
⇤(i)

n + (B
(i)E{v(i)

n })
>
⌦ r

(i)>�
�

(i)
⇤
, (102)

and

⇤(i)
n+1=⇤(i)

n K
(i)+

�
(B

(i)E{v(i)
n })

>
⌦r

(i)>��
K

(i)�I
�

(103)

with ⇤(i)
0 = 01⇥(NL)2 , ⇠(i)n+1 = E

���v(i)
n+1

��2
K(i)�(i)

n+1

 
, ⇠(i)0 =

��v(i)
0

��2
K(i)�(i)

n+1
,�(i) = K

(i)
�

(i)
n+1 for i = 1, 2. Following

the same routine, E
�
v
(1)>
n ⌃xc,n+1v

(2)
n
 

can be evaluated as
follows:

⇠x,n+1 = ⇠x,n +
�
vec{G>

x }
�>

(Kx)
n
�x + (⇧(1)

n +⇧(2)
n )�x

�
⇥�
B

(2)E{v(2)
n }

�> ⌦ r
(1)> + r

(2)> ⌦
�
B

(1)E{v(1)
n }

�>⇤
�x

� v
(1)>
0 vec�1

�
(I �Kx)

�
(Kx)

n
�x

� 
v
(2)
0

+ r
(1)>vec�1

�
(Kx)

n
�x

 
r
(2), (104)

and

⇧(1)
n+1=⇧(1)

n Kx+
⇥
r
(2)>⌦(B

(1)E{v(1)
n })>

⇤�
I�Kx

�
, (105)

⇧(2)
n+1=⇧(2)

n Kx+
⇥
(B

(2)E{v(2)
n })>⌦r

(1)>⇤�
I�Kx

�
(106)

with ⇧(i)
0 = 01⇥(NL)2 , �x = Kx�x,n+1, ⇠x,n+1 =

E
�
v
(1)>
n+1 ⌃xc,n+1v

(2)
n+1

 
, ⇠x,0 = E

�
v
(1)>
0 ⌃xc,n+1v

(2)
0

 
. By

substituting (102) and (104) into (87), we evaluate the transient
MSD of the convex power-normalized scheme.

APPENDIX E
STEADY-STATE MSD OF DIFFUSION NETWORK WITH

POWER-NORMALIZED SCHEME

MSDsteady=
⇥
vec{G(1)>}

⇤>
�

(1)
1 +f

�
r
(1),⌃(1)

1 ,E
�
v
(1)
1
 �

+
⇥
vec{G(2)>}

⇤>
�

(2)
1+f

�
r
(2),⌃(2)

1 ,E
�
v
(2)
1
 �
+
⇥
vec{G>

x }
⇤>
�x,1

+ fx
�
r
(1),r(2),⌃x,1,E

�
v
(1)
1
 
,E

�
v
(2)
1
 
,B

(1)
,B

(2)�
(107)

with

⌃(i)
1 =vec�1{�(i)

1 }, 8 i = 1, 2 (108)
⌃x,1=vec�1{�x,1}. (109)

Expression (107) characterizes the steady-state MSD of the
convex power-normalized scheme.

APPENDIX F
PROOF OF THEOREM 4

Since �k,n is related to ↵k,n via the mapping (14), we
evaluate the behaviors of ↵k,n first, then �k,n.

Substituting (59) and (60) into (17), we have:

↵k,n+1⇡
⇥
↵k,n+v0↵k

�k,n(1��k,n)
�
(2�k,n�1)ẽ(1)k,nẽ

(2)
k,n�

�k,n(ẽ
(1)
k,n)

2+(1��k,n)(ẽ
(2)
k,n)

2+(ẽ(2)k,n�ẽ(1)k,n)zk,n
 ⇤↵+

�↵+ .
(110)

Define:

⇣1 , (ẽ(1)k,n)
2 (111)

⇣2 , (ẽ(2)k,n)
2 (112)

⇣3 , ẽ(1)k,nẽ
(2)
k,n (113)

⇣4 , (ẽ(2)k,n�ẽ(1)k,n)zk,n (114)

f1(↵k,n) , ��2
k,n(1��k,n) (115)

f2(↵k,n) , �k,n(1��k,n)
2 (116)

f3(↵k,n) , �k,n(1��k,n)(2�k,n�1) (117)
f4(↵k,n) , �k,n(1��k,n) (118)

Using definitions (111)–(118), expression (110) becomes:

↵k,n+1 ⇡
h
↵k,n + v0↵k

4X

`=1

f`(↵k,n)⇣`
i↵+

�↵+
. (119)

Observing (110) and (119), the iterations for ↵k,n are coupled
with �k,n. It is difficult, if not impossible, to evaluate the
behavior of ↵k,n directly since the explicit probability distri-
bution of ↵k,n is unknown. We alleviate this problem by using
the first-order Taylor series expansion. Though not accurate,
the first-order Taylor series expansion is widely adopted in
the analysis of adaptive filters to simplify the derivations [42],
[43]. Define ↵̄k,n , E{↵k,n}. Expanding f`(↵k,n) around
↵̄k,n to its first-order, we have:

f`(↵k,n) ⇡ f`(↵̄k,n) + f 0
`(↵̄k,n)(↵k,n � ↵̄k,n) (120)

for ` = 1, · · · , 4, where f 0
`(↵̄k,n) =

df`(↵̄k,n)
d↵k,n

is the first-order
derivative of f`(↵k,n) over ↵k,n and evaluated at ↵k,n = ↵̄k,n.

Under approximations Ap1, Ap5, substituting (120) into
(119) and taking the expectation, we get the mean behavior
of ↵k,n:

E{↵k,n+1} ⇡
⇥
↵̄k,n + v̄↵k,nf1(↵̄k,n)J

(1)
ex,k,n+

v̄↵k,nf2(↵̄k,n)J
(2)
ex,k,n + v̄↵k,nf3(↵̄k,n)J

(1,2)
ex,k,n

⇤↵+

�↵+ , (121)

where the order of the expectation and truncation opera-
tions are changed to facilitate the analysis, and J (1,2)

ex,k,n ,
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E
�
e(1)a,k,ne

(2)
a,k,n

 
is the cross-EMSE at node k and time instant

n. Besides, the following approximation in (121) is adopted
to simplify the derivation:

v̄↵k,n = E
n v↵k

"+ pk,n

o
⇡ v↵k

"+ p̄k,n
with

p̄k,n=⌘p̄k,n�1+(1�⌘)(J (1)
ex,k,n+J (2)

ex,k,n�2J (1,2)
ex,k,n). (122)

Then, for the mean behavior of �k,n, we evaluate it via the
approximation:

E{�k,n} ⇡ 1

1 + e�E{↵k,n}
. (123)

For the steady-state value �̄k,1 , E{�k,1}, taking the limit
of (121) with n ! 1 and solving for �̄k,1, we obtain the
same steady-state value as (65).

Transient value E{�k,n} of (123) and steady-state value
E{�k,1} of (65) are used in evaluating the transient and
steady-state mean behavior of the convex power-normalized
scheme, respectively.

APPENDIX G
PROOF OF THEOREM 5

Similarly, we evaluate the mean-square behavior of �k,n
based on the first-order Taylor series expansion. Define
f5(↵k,n) , 1

1+e�↵k,n
. Using the first-order Taylor series

expansion, we have:

f5(↵k,n) ⇡ f5(↵̄k,n) + f 0
5(↵̄k,n)(↵k,n � ↵̄k,n), (124)

where f 0
5(↵̄k,n) , df5(↵̄k,n)

d↵k,n
is the first-order derivative of

f5(↵k,n) and evaluated at ↵k,n = ↵̄k,n. Substituting the
explicit expression of f5(↵k,n), we have that f 0

5(↵̄k,n) =
f5(↵̄k,n)

⇥
1 � f5(↵̄k,n)

⇤
. Since �k,n = f5(↵k,n) and using

(124), we have:

E{�2
k,n} ⇡

⇥
f5(↵̄k,n)

⇤2
+
⇥
f 0
5(↵̄k,n)

⇤2
�2
↵k,n

, (125)

where �2
↵k,n

is the variance of ↵k,n, and we have:

�2
↵k,n

= E{↵2
k,n}�

⇥
E{↵k,n}

⇤2
. (126)

In order to use (126) in calculating E{�2
k,n} of (125), we need

to evaluate E{↵2
k,n}. By first discarding the truncation opera-

tion, squaring both sides of (119) and taking the expectation,
we have:

E{↵2
k,n+1} ⇡ E{↵2

k,n}+ 2v̄↵k,n

4X

`=1

E
�
↵k,n⇣`f`(↵k,n)

 

+ v̄2↵k,n

4X

`=1

4X

m=1

E
�
f`(↵k,n)fm(↵k,n)⇣`⇣m

 
, (127)

where in the derivation of (127), we used Ap1, (122) and
approximation E

�
(

v�k
"+pk,n

)2
 
⇡ v̄2↵k,n

. According to the first-
order Taylor series expansion, we have:

↵k,nf`(↵k,n) ⇡ ↵̄k,nf`(↵̄k,n)+⇥
f`(↵̄k,n) + ↵̄k,nf

0
`(↵̄k,n)

⇤
(↵k,n � ↵̄k,n)

(128)

and

f`(↵k,n)fm(↵k,n) ⇡ f`(↵̄k,n)fm(↵̄k,n)+⇥
f 0
`(↵̄k,n)fm(↵̄k,n)+f`(↵̄k,n)f

0
m(↵̄k,n)

⇤
(↵k,n�↵̄k,n).

(129)

Using (128), (129) and approximation Ap5 yields:

E
�
↵k,n⇣`f`(↵k,n)

 
⇡ ↵̄k,nf`(↵̄k,n)E

�
⇣`
 
, 8` = 1, 2, 3

(130)
E
�
↵k,n⇣4f4(↵k,n)

 
= 0, (131)

E
�
f`(↵k,n)fm(↵k,n)⇣`⇣m

 
⇡

f`(↵̄k,n)fm(↵̄k,n)E
�
⇣`⇣m

 
8`,m = 1, 2, 3, 4. (132)

Substituting (130)–(132) into (127) leads to:

E{↵2
k,n+1}⇡E{↵2

k,n}+2v̄↵k,n

3X

`=1

↵̄k,nf`(↵̄k,n)E{⇣`}+v̄2↵k,n

 3X

`=1

3X

m=1

f`(̄↵k,n)fm(̄↵k,n)E{⇣`⇣m}+f4(̄↵k,n)f4(̄↵k,n)E{⇣24}
�

(133)

Under approximation Ap6 and substituting (115)–(118) into
(133), we obtain the explicit expression of E{↵2

k,n+1}. Now,
by taking the truncation operation of ↵k,n into consideration
and using the non-negative property of �2

↵k,n
in (126), we

obtain that E{↵2
k,n} is constrained to be in the interval⇥

(E{↵k,n})2, (↵+)2
⇤
. Then by using (125), (126) and (133)

together, we evaluate the mean-square value E{�2
k,n}. Besides,

the steady-state value E{�2
k,1} is approximated by:

E{�2
k,1} ⇡

⇥
E{�k,1}

⇤2
. (134)

Transient value E{�2
k,n} of (125) and steady-state value

E{�k,1}2 of (134) are used in evaluating the transient
and steady-state mean-square behavior of the convex power-
normalized scheme, respectively.

REFERENCES

[1] D. Jin, J. Chen, and J. Chen, “Convex combination of diffusion strategies
over distributed networks,” in Proc. Asia-Pacific Signal Inf. Process.

Association, Hawaii, USA, Nov. 2018, pp. 224–228.
[2] J. Arenas-Garcia, A. R. Figueiras-Vidal, and A. H. Sayed, “Mean-square

performance of a convex combination of two adaptive filters,” IEEE

Trans. Signal Process., vol. 54, no. 3, pp. 1078–1090, Mar. 2006.
[3] J. Arenas-Garcia, M. Martinez-Ramon, A. Navia-Vazquez, and A. R.

Figueiras-Vidal, “Plant identification via adaptive combination of
transversal filters,” Signal Process., vol. 86, no. 9, pp. 2430 – 2438,
2006.

[4] R. Alain, B. Francis, C. Stephane, and G. Yves, “Simple MKL,” Journal

of Mach. Learn. Research, vol. 9, no. 3, pp. 2491–2521, 2008.
[5] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,

V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in Proc. of CVPR, Boston, MA, USA, June 2015, pp. 1–9.

[6] C. G. Lopes and A. H. Sayed, “Diffusion least-mean squares over
adaptive networks: Formulation and performance analysis,” IEEE Trans.

Signal Process., vol. 56, no. 7, pp. 3122–3136, Jul. 2008.
[7] F. S. Cattivelli and A. H. Sayed, “Diffusion LMS strategies for

distributed estimation,” IEEE Trans. Signal Process., vol. 58, no. 3,
pp. 1035–1048, Mar. 2010.

[8] L. Li and J. Chambers, “Distributed adaptive estimation based on the
APA algorithm over diffusion networks with changing topology,” in
Proc. IEEE SSP, 2009, pp. 757–760.

Page 15 of 16

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



16

[9] F. Cattivelli and A. H. Sayed, “Diffusion strategies for distributed
Kalman filtering and smoothing,” IEEE Trans. Autom. Control, vol.
55, no. 9, pp. 2069–2084, 2010.

[10] F. Cattivelli, C. G. Lopes, and A. H. Sayed, “Diffusion recursive least-
squares for distributed estimation over adaptive networks,” IEEE Trans.

Signal Process., vol. 56, no. 5, pp. 1865–1877, May 2008.
[11] Y. Liu, C. Li, and Z. Zhang, “Diffusion sparse least-mean squares over

networks,” IEEE Trans. Signal Process., vol. 60, no. 8, pp. 4480–4485,
Aug. 2012.

[12] S. Vlaski, L. Vandenberghe, and A. H. Sayed, “Diffusion stochastic
optimization with non-smooth regularizers,” in Proc. IEEE Int. Conf.

Acoust., Speech, Signal Process., Mar. 2016, pp. 4149–4153.
[13] R. Nassif, C. Richard, A. Ferrari, and A. H. Sayed, “Proximal multitask

learning over networks with sparsity-inducing coregularization,” IEEE

Trans. Signal Process., vol. 64, no. 23, pp. 6329–6344, Dec. 2016.
[14] J. Chen, C. Richard, and A. H. Sayed, “Multitask diffusion adaptation

over networks,” IEEE Trans. Signal Process., vol. 62, no. 16, pp. 4129–
4144, Aug. 2014.

[15] J. Chen, C. Richard, and A. H. Sayed, “Diffusion LMS over multitask
networks,” IEEE Trans. Signal Process., vol. 63, no. 11, pp. 2733–2748,
Jun. 2015.

[16] J. Chen, C. Richard, and A. H. Sayed, “Multitask diffusion adaptation
over networks with common latent representations,” IEEE J. Sel. Topics

Signal Process., vol. 11, no. 3, pp. 563–579, 2017.
[17] X. Zhao and A. H. Sayed, “Distributed clustering and learning over

networks,” IEEE Trans. Signal Process., vol. 63, no. 13, pp. 3285–
3300, Jul. 2015.

[18] V. C. Gogineni and M. Chakraborty, “Diffusion affine projection
algorithm for multitask networks,” in Proc. Asia-Pacific Signal Inf.

Process. Assoc., 2018, pp. 201–206.
[19] V. C. Gogineni and M. Chakraborty, “Improving the performance of

multitask diffusion APA via controlled inter-cluster cooperation,” IEEE

Trans. Circuits Syst. I, Reg. Papers, vol. 67, no. 3, pp. 903–912, 2020.
[20] V. C. Gogineni and M. Chakraborty, “Partial diffusion affine projection

algorithm over clustered multitask networks,” in Proc. IEEE ISCAS,
2019, pp. 1–5.

[21] R. Nassif, C. Richard, A. Ferrari, and A. H. Sayed, “Multitask diffusion
LMS with sparsity-based regularization,” in Proc. IEEE Int. Conf.

Acoust., Speech, Signal Process., Apr. 2015, pp. 3516–3520.
[22] R. Nassif, C. Richard, A. Ferrari, and A. H. Sayed, “Multitask diffusion

adaptation over asynchronous networks,” IEEE Trans. Signal Process.,
vol. 64, no. 11, pp. 2835–2850, 2016.

[23] D. Jin, J. Chen, C. Richard, and J. Chen, “Online proximal learning
over jointly sparse multitask networks with `1,1 regularization,” IEEE

Trans. Signal Process., to appear.
[24] R. Nassif, C. Richard, A. Ferrari, and A. H. Sayed, “Diffusion LMS for

multitask problems with local linear equality constraints,” IEEE Trans.

Signal Process., vol. 65, no. 19, pp. 4979–4993, Oct. 2017.
[25] J. Chen, C. Richard, S. K. Ting, and A. H. Sayed, “Chapter # -

Multitask learning over adaptive networks with grouping strategies,” in
Cooperative and Graph Signal Processing, pp. 107 – 129. Academic
Press, 2018.

[26] M. Martinez-Ramon, J. Arenas-Garcia, A. Navia-Vazquez, and A. R.
Figueiras-Vidal, “An adaptive combination of adaptive filters for plant
identification,” in Proc. Int. Conf. on Digital Signal Process., 2002,
vol. 2, pp. 1195–1198.

[27] N. J. Bershad, J. C. M. Bermudez, and J. Y. Tourneret, “An affine com-
bination of two LMS adaptive filters—transient mean-square analysis,”
IEEE Trans. Signal Process., vol. 56, no. 5, pp. 1853–1864, May 2008.

[28] L. A. Azpicueta-Ruiz, A. R. Figueiras-Vidal, and J. Arenas-Garcia,
“A normalized adaptation scheme for the convex combination of two
adaptive filters,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal

Process., Mar. 2008, pp. 3301–3304.
[29] R. Candido, M. T. M. Silva, and V. H. Nascimento, “Transient and

steady-state analysis of the affine combination of two adaptive filters,”
IEEE Trans. Signal Process., vol. 58, no. 8, pp. 4064–4078, Aug. 2010.

[30] S. S. Kozat, A. T. Erdogan, A. C. Singer, and A. H. Sayed, “Steady-state
MSE performance analysis of mixture approaches to adaptive filtering,”
IEEE Trans. Signal Process., vol. 58, no. 8, pp. 4050–4063, Aug. 2010.

[31] J. Arenas-Garcia, L. A. Azpicueta-Ruiz, M. T. M. Silva, V. H. Nasci-
mento, and A. H. Sayed, “Combinations of adaptive filters: Performance
and convergence properties,” IEEE Signal Process. Mag., vol. 33, no.
1, pp. 120–140, Jan. 2016.

[32] B. K. Das and M. Chakraborty, “Sparse adaptive filtering by an adaptive
convex combination of the LMS and the ZA-LMS algorithms,” IEEE

Trans. Circuits Syst. I, Reg. Papers, vol. 61, no. 5, pp. 1499–1507, 2014.

[33] B. K. Das, G. V. Chakravarthi, and M. Chakraborty, “A convex
combination of NLMS and ZA-NLMS for identifying systems with
variable sparsity,” IEEE Trans. Circuits Syst. II, Express Briefs, vol.
64, no. 9, pp. 1112–1116, 2017.

[34] V. C. Gogineni, B. K. Das, and M. Chakraborty, “An adaptive convex
combination of APA and ZA-APA for identifying systems having
variable sparsity and correlated input,” Digital Signal Process., vol.
82, pp. 118 – 132, 2018.

[35] B. K. Das and M. Chakraborty, “A block-based convex combination
of NLMS and ZA-NLMS for identifying sparse systems with variable
sparsity,” in Proc. IEEE ISCAS, 2017, pp. 1–4.

[36] D. Jin, J. Chen, C. Richard, J. Chen, and A. H. Sayed, “Affine
combination of diffusion strategies over networks,” IEEE Trans. Signal

Process., vol. 68, no. 1, pp. 2087–2104, Dec. 2020.
[37] A. H. Sayed, “Diffusion adaptation over networks,” in Academic Press

Libraray in Signal Processing, R. Chellapa and S. Theodoridis, Eds.,
vol. 3, pp. 322–454. Elsevier, 2014.

[38] A. H. Sayed, “Adaptive networks,” Proc. of the IEEE, vol. 102, no. 4,
pp. 460–497, Apr. 2014.

[39] A. H. Sayed, Adaptation, Learning, and Optimization over Networks,
vol. 7, Now Publishers Inc., Hanover, MA, USA, Jul. 2014.

[40] A. Papoulis and S. U. Pillai, Probability, Random Variables, and

Stochastic Processes, McGraw-Hill Higher Education, 4 edition, 2002.
[41] A. H. Sayed, Adaptive Filters, John Wiley & Sons, Inc., 2008.
[42] V. H. Nascimento, M. T. M. Silva, R. Candido, and J. Arenas-Garcia,

“A transient analysis for the convex combination of adaptive filters,” in
Proc. IEEE SSP, Aug. 2009, pp. 53–56.

[43] M. T. M. Silva, V. H. Nascimento, and J. Arenas-Garcia, “A transient
analysis for the convex combination of two adaptive filters with transfer
of coefficients,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal

Process., Mar. 2010, pp. 3842–3845.
[44] B. Widrow and S. D. Stearns, Adaptive Signal Processing, Prentice-Hall,

Inc., Upper Saddle River, NJ, USA, 1985.
[45] S. Haykin, Adaptive Filter Theory, Pearson Education India, 4th edition,

2005.
[46] V. H. Nascimento and R. C. de Lamare, “A low-complexity strategy

for speeding up the convergence of convex combinations of adaptive
filters,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., Mar.
2012, pp. 3553–3556.

[47] L. F. O. Chamon, W. B. Lopes, and C. G. Lopes, “Combination of
adaptive filters with coefficients feedback,” in Proc. IEEE Int. Conf.

Acoust., Speech, Signal Process., Mar. 2012, pp. 3785–3788.
[48] N. Shlezinger, M. Chen, Y. C. Eldar, H. V. Poor, and S. Cui, “Federated

learning with quantization constraints,” in Proc. IEEE Int. Conf. Acoust.,

Speech, Signal Process., 2020, pp. 8851–8855.
[49] I. E. K. Harrane, R. Flamary, and C. Richard, “On reducing the

communication cost of the diffusion LMS algorithm,” IEEE Trans.

Signal Inf. Process. Networ., vol. 5, no. 1, pp. 100–112, 2019.
[50] X. Zhao and A. H. Sayed, “Clustering via diffusion adaptation over

networks,” in Proc. Int. Workshop Cognitive Inf. Process., May. 2012,
pp. 1–6.

[51] M. Fiedler, “Algebraic connectivity of graphs,” Czechoslovak Mathe-

matical Journal, vol. 23, no. 2, pp. 298–305, 1973.
[52] A. Simões and J. Xavier, “FADE: Fast and asymptotically efficient

distributed estimator for dynamic networks,” IEEE Trans. Signal

Process., vol. 67, no. 8, pp. 2080–2092, Apr. 2019.
[53] S. Das and J. M. F. Moura, “Distributed state estimation in multi-agent

networks,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process.,
Vancouver, BC, Canada, May 2013, pp. 4246–4250.

Page 16 of 16

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


