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A short proof of a non-vanishing result by
Conca, Krattenthaler and Watanabe

Alin Bostan (∗)
In their paper Regular sequences of symmetric polynomials [CKW09],

Aldo Conca, Christian Krattenthaler and Junzo Watanabe needed to prove,
as an intermediate result, the fact that for any h ≥ 1, the rational number
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is non-zero, except for h = 3. The proof in [CKW09, Appendix, pp. 190–199]
performs a (quite intricate) 3-adic analysis. In this note, we propose a shorter
and elementary proof, based on the following observation.
Theorem 1. For any h ≥ 1, consider the polynomials

ah :=
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)
U b ∈ Q[U ]

and sh := h · ah. Then, the sequence (sh)h≥1 satisfies the linear recurrence

(1) sn+3 + 2 sn+2 + sn+1 = U · sn, for all n ≥ 1.

Proof. Using h/(h− b) = 1 + b/(h− b) and 2b ·
(h−b
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)
yields the additive decomposition sh = ph + qh, where
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It is thus enough to prove that both (ph)h≥1 and (qh)h≥1 satisfy recurrence (1).
We prove this for (ph)h≥1, the proof for (qh)h≥1 being similar. Extracting the
coefficient of Un on both sides of (1) with (sh) replaced by (ph) is equivalent to(
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)
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)
=
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)
and this identity is an immediate consequence of the Pascal triangle rule. �
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Corollary 2. For any h ≥ 1, the rational number
bh/3c∑
b=0
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is non-zero, except for h = 3.

Proof. With previous notation, we need to prove that ah(2/3) = 0 if and
only if h = 3. By Theorem 1, the sequence

(uh)h≥1 :=
(

3h−1 · h · ah(2/3)
)

h≥1
= (−1, 3, 0,−45, 324, . . .)

satisfies the linear recurrence relation

(2) un+3 + 6 un+2 + 9 un+1 = 18 un, for all n ≥ 1.

It is clearly enough to prove that uh = 0 if and only if h = 3. First, the terms
un are all integers, by induction. Recurrence (2) shows that un+3 and un+1
have the same parity for all n ≥ 1; since u2 = 3, this implies that u2n is an odd
integer, and in particular it is nonzero, for all n ≥ 1. It remains to consider
the odd subsequence (vh)h≥1 := (u2h−1)h≥1 = (−1, 0, 324, 5508, 2916, . . .).
From (2) it follows that the sequence (vh)h≥1 satisfies the recurrence relation

(3) vn+3 − 18 vn+2 + 297 vn+1 = 324 vn for all n ≥ 1.

The same recurrence is also satisfied with (vh)h≥1 replaced by the sequence
(wh)h≥1 := (vh/4)h≥3 = (81, 1377, 729,−369603, . . .). In particular, wn+3 and
wn+1 have the same parity for all n ≥ 1, hence wh is odd for any h ≥ 1. It
follows that vh is nonzero for all h ≥ 3, which concludes the proof. �

Remark 3. An equivalent, equally simple, but slightly more “conceptual” proof
of Theorem 1 is expressed in terms of generating functions. One starts with
the Pascal triangle rule in the equivalent form

∑
a,b

(a
b

)
U bza = 1/(1−(1+U)z),

then extracts odd and even parts from it,

∑
a,b

(
a
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)
U bza = 1− z

(1− z)2 − Uz2 ,
∑
a,b

(
a− 1
2b− 1

)
U bza = Uz2

(1− z)2 − Uz2 ,

and finally substitutes successively a← h− b, z ← −z, U ← Uz; this yields∑
h≥1

shzh =
(

z + 1
(1 + z)2 − Uz3 − 1

)
+ 1

2 ·
Uz3

(1 + z)2 − Uz3 = z + 1 + Uz3/2
(1 + z)2 − Uz3 −1.

Recurrence (1) is now read off the denominator of the last rational function.
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Remark 4. We leave it as an open problem to prove that the polynomials
ah(U) and sh(U) are irreducible in Q[U ] for all h ≥ 1. (We checked this for
h ≤ 5000.) If true, this would imply a generalization of Corollary 2.
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