On the exponential generating function of labelled trees

Sur la série génératrice des arbres étiquetés

Alin Bostan ${ }^{a}$ and Antonio Jiménez-Pastor ${ }^{*, b}$
${ }^{a}$ Inria, 1 rue Honoré d'Estienne d'Orves 91120 Palaiseau, France
${ }^{b}$ Johannes Kepler University Linz, Doctoral Program Computational Mathematics, DK15.
E-mails: Alin.Bostan@inria.fr (A. Bostan), ajpastor@risc.uni-linz.ac.at
(A. Jiménez-Pastor).

Abstract

We show that the generating function of labelled trees is not D^{∞}-finite. Résumé. Nous montrons que la série génératrice des arbres étiquetés n'est pas D^{∞}-finie. Keywords. Combinatorics, generating functions, differential equations. 2020 Mathematics Subject Classification. 05A15,12H05,34A34. Funding. This research was partially funded by the Austrian Science Fund (FWF): W1214-N15, project DK15. It was also supported in part by the ANR DeRerumNatura project, grant ANR-19-CE40-0018 of the French Agence Nationale de la Recherche.

Electronic supplementary material. Supplementary material for this article is supplied as a separate archive available from the journal's website under article's URL or from the author.

This article is a draft (not yet accepted!)

Version française abrégée

Nous montrons que la série génératrice exponentielle des arbres étiquetés, $T(x)=\sum_{n \geq 1} \frac{n^{n-1}}{n!} x^{n}$, n'est pas D^{∞}-finie. En particulier, cela implique que, bien que $T(x)$ vérifie des équations différentielles non-linéaires, ces dernières ne peuvent pas être «trop simples». En particulier, $T(x)$ n'est pas un quotient de deux fonctions D-finies (vérifiant des équations différentielles à coefficients polynomiaux), et plus généralement, $T(x)$ ne vérifie aucune équation différentielle linéaire à coefficients des fonctions D-finies. La preuve repose ultimement sur un résultat de théorie de Galois différentielle. Plusieurs questions ouvertes sont proposées, dont une sur la nature de la série génératrice ordinaire des arbres étiquetés, $\sum_{n \geq 1} n^{n-1} x^{n}$.

[^0]
1. Context and main result

A formal power series $f(x)=\sum_{n \geq 0} a_{n} x^{n}$ in $\mathbb{C}[[x]]$ is called differentially finite, or simply Dfinite [22], if it satisfies a linear differential equation with polynomial coefficients in $\mathbb{C}[x]$. Many generating functions in combinatorics and many special functions in mathematical physics are D-finite [2,9].

DD-finite series and more generally D^{n}-finite series are larger classes of power series, recently introduced in [12]. DD-finite power series satisfy linear differential equations, whose coefficients are themselves D-finite power series. One of the simplest examples is $\tan (x)$, which is DD-finite (because it satisfies $\cos (x) f(x)-\sin (x)=0$), but is not D -finite (because it has an infinite number of complex singularities, a property which is incompatible with D-finiteness). Another basic example is the exponential generating function of the Bell numbers B_{n}, which count partitions of $\{1,2, \ldots, n\}$, namely:

$$
\begin{equation*}
B(x):=\sum_{n \geq 0} \frac{B_{n}}{n!} x^{n} . \tag{1}
\end{equation*}
$$

Indeed, it is classical [9, p .109] that $B(x)=e^{e^{x}-1}$, therefore $B(x)$ is DD-finite. On the other hand, $B(x)$ is not D -finite: this can be proved either analytically (using the too fast growth of $B(x)$ as $x \rightarrow \infty$), or purely algebraically (using [21], and the fact that the power series e^{x} is not algebraic).

More generally, given a differential ring R, the set of differentially definable functions over R, denoted by $\mathrm{D}(R)$, is the differential ring of formal power series satisfying linear differential equations with coefficients in R. In particular, $\mathrm{D}(\mathbb{C}[x])$ is the ring of D -finite power series, $\mathrm{D}^{2}(\mathbb{C}[x]):=\mathrm{D}(\mathrm{D}(\mathbb{C}[x]))$ is the ring of DD-finite power series, and $\mathrm{D}^{n}(\mathbb{C}[x]):=\mathrm{D}\left(\mathrm{D}^{n-1}(\mathbb{C}[x])\right)$ is the ring of D^{n}-finite power series. We say that a power series $f(x) \in \mathbb{C}[[x]]$ is D^{∞}-finite if there exists an n such that $f(x)$ is D^{n}-finite.

It is known [13] that D^{n}-finite power series form a strictly increasing sequence of sets and that any D^{∞}-finite power series is differentially algebraic, in short D-algebraic, that is, it satisfies a differential equation, possibly non-linear, with polynomial coefficients in $\mathbb{C}[x]$. This class, as well as its complement (of D-transcendental series), are quite well studied [20,23].

Let now $\left(t_{n}\right)_{n \geq 0}=(0,1,2,9,64,625,7776, \ldots)$ be the sequence whose general term t_{n} counts labelled rooted trees with n nodes. It is well known that $t_{n}=n^{n-1}$, for any n. This beautiful and non-trivial result is usually attributed to Cayley [6], although an equivalent result had been proved earlier by Borchardt [4], and even earlier by Sylvester, see [3, Chapter 4]. Due to the importance of the combinatorial class of trees, and to the simplicity of the formula, Cayley's result has attracted a lot of interest over the time, and it admits several different proofs, see e.g., [15, §4] and $[1, \S 30]$. One of the more conceptual proofs goes along the following lines (see [9, §II. 5.1] for details). Let

$$
\begin{equation*}
T(x):=\sum_{n \geq 0} \frac{t_{n}}{n!} x^{n} \tag{2}
\end{equation*}
$$

be the exponential generating function of the sequence $\left(t_{n}\right)_{n}$. The class \mathscr{T} of all rooted labelled trees is definable by a symbolic equation $\mathscr{T}=\mathfrak{Z} \star \operatorname{SET}(\mathscr{T})$ reflecting their recursive definition, where \mathfrak{Z} represents the atomic class consisting of a single labelled node, and \star denotes the labelled product on combinatorial classes. This symbolic equation provides, by syntactic translation, an implicit equation on the level of exponential generating functions:

$$
\begin{equation*}
T(x)=x \mathrm{e}^{T(x)}, \tag{3}
\end{equation*}
$$

which can be solved using Lagrange inversion

$$
\begin{equation*}
t_{n}=n!\cdot\left[x^{n}\right] T(x)=n!\cdot\left(\frac{1}{n}\left[z^{n-1}\right]\left(e^{z}\right)^{n}\right)=n^{n-1} . \tag{4}
\end{equation*}
$$

From (3), it follows easily that $T(x)$ is D-algebraic and satisfies the non-linear equation

$$
x(1-T(x)) T^{\prime}(x)=T(x)
$$

and from there, that the sequence $\left(t_{n}\right)_{n \geq 0}$ satisfies the non-linear recurrence relation

$$
t_{n+1}=\frac{n+1}{n} \cdot \sum_{i=1}^{n}\binom{n}{i} t_{i} t_{n-i+1}, \quad \text { for all } n \geq 1
$$

This recurrence can also be proved using (4), by taking $y=n, x=w=1$ in Abel's identity [11]

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x(x+w k)^{k-1}(y-w k)^{n-k}
$$

and then by isolating the term $k=n$ in the resulting equality.
On the other hand, it is known that the power series $T(x)$ is not D-finite, see [10, Theorem 7], or [8, Theorem 2]. This raises the natural question whether $T(x)$ is DD-finite, or D^{n}-finite for some $n \geq 2$. Our main result is that this is not the case:
Theorem 1. The power series $T(x)=\sum_{n \geq 1} \frac{n^{n-1}}{n!} x^{n}$ in (2) is not D^{∞}-finite.
To our knowledge, this is the first explicit example of a natural combinatorial generating function which is provably D -algebraic but not D^{∞}-finite. In particular, Theorem 1 implies that $T(x)$ is not equal to the quotient of two D -finite functions, and more generally, that it does not satisfy any linear differential equation with D-finite coefficients.

2. Proof of the main result

Our proof of Theorem 1 builds upon the following recent result by Noordman, van der Put and Top.

Theorem 2 ([17]). Assume that $u(x) \in \mathbb{C}[[x]] \backslash \mathbb{C}$ is a solution of $u^{\prime}=u^{3}-u^{2}$. Then u is not D^{∞} finite.

The proof of Theorem 2 is based on two ingredients. The first one is a result by Rosenlicht [19] stating that any set of non-constant solutions (in any differential field) of the differential equation $u^{\prime}=u^{3}-u^{2}$ is algebraically independent over \mathbb{C} (see also [17, Prop. 7.1]); the proof is elementary. The second one [17, Prop. 7.1] is that any non-constant power series solution of an autonomous first-order differential equation with this independence property cannot be D^{∞}-finite; the proof is based on differential Galois theory.

Proof of Theorem 1. We will use Theorem 2 and a few facts about the (principal branch of the) Lambert W function, satisfying $W(x) \cdot e^{W(x)}=x$ for all $x \in \mathbb{C}$.

Recall [7] that the Taylor series of W around 0 is given by

$$
W(x)=\sum_{n=1}^{\infty} \frac{(-n)^{n-1}}{n!} x^{n}=x-x^{2}+\frac{3}{2} x^{3}-\frac{8}{3} x^{4}+\frac{125}{24} x^{5}-\cdots
$$

In other words, our $T(x)$ and $W(x)$ are simply related by $W(x)=-T(-x)$.
The function defined by this series can be extended to a holomorphic function defined on all complex numbers with a branch cut along the interval $\left(-\infty,-\frac{1}{e}\right.$]; this holomorphic function defines the principal branch of the Lambert W function.

We can substitute $x \mapsto e^{x+1}$ in the functional equation for $W(x)$ obtaining then

$$
W\left(e^{x+1}\right) e^{W\left(e^{x+1}\right)}=e^{x+1}
$$

or, renaming $Y(x)=W\left(e^{x+1}\right)$, we have a new functional equation: $Y(x) e^{Y(x)-1}=e^{x}$. From this equality it follows by logarithmic differentiation that $Y^{\prime}(x) \cdot(1+Y(x))=Y(x)$.

Take now $U(x):=\frac{1}{1+Y(x)}=\frac{1}{2}-\frac{1}{8} x+\frac{1}{64} x^{2}+\frac{1}{768} x^{3}+\cdots$. We have that

$$
U^{\prime}(x)=\frac{-Y^{\prime}(x)}{(1+Y(x))^{2}}=\frac{-Y(x)}{(1+Y(x))^{3}}=U(x)^{3}-U(x)^{2} .
$$

By Theorem 2, $U(x)$ is not D^{∞}-finite. By closure properties of D^{∞}-finite functions (see [13, Theorem 4] and [12, §3]), it follows that $Y(x)$ is not D^{∞}-finite either.

To conclude, note that by definition, for real x in the neighborhood of 0 , we have $W(x)=$ $Y(\log (x)-1)$, and by Theorem 10 in [13], it follows that $W(x)$ and $T(x)$ are not D^{∞}-finite either, proving Theorem 1.

3. Open questions

The class of D-finite power series is closed under Hadamard (term-wise) product. This is false for D^{∞}-finite power series; for instance, Klazar showed in [14] that the ordinary generating function $\sum_{n \geq 0} B_{n} x^{n}$ of the Bell numbers is not differentially algebraic, contrary to its exponential generating function (1), which is DD-finite.

Moreover, it was conjectured by Pak and Yeliussizov [18, Open Problem 2.4] that this is an instance of a more general phenomenon.

Conjecture 3 ([18, Open Problem 2.4]). If for a sequence $\left(a_{n}\right)_{n \geq 0}$ both ordinary and exponential generating functions $\sum_{n \geq 0} a_{n} x^{n}$ and $\sum_{n \geq 0} a_{n} \frac{x^{n}}{n!}$ are D-algebraic, then both are D-finite. (Equivalently, $\left(a_{n}\right)_{n \geq 0}$ satisfies a linear recurrence with polynomial coefficients in n.)

This conjecture has been recently proven for large (infinite) classes of generating functions [5]. However, the very natural example of the generating function for labelled trees escapes the method in [5].

We therefore leave the following as an open question.
Open question 1. Is the power series $\sum_{n \geq 1} n^{n-1} x^{n} \mathrm{D}^{\infty}$-finite? Is it at least differentially algebraic?
According to Conjecture 3, the answer should be "no" for both questions in Open question 1.

Another natural question concerns the generating function for partition numbers:

$$
\sum_{n \geq 0} p_{n} x^{n}:=\prod_{n \geq 1} \frac{1}{1-x^{n}}=1+x+2 x^{2}+3 x^{3}+5 x^{4}+7 x^{5}+11 x^{6}+\cdots,
$$

which is known to be differentially algebraic [16].
Open question 2. Is it true that $\sum_{n \geq 0} p_{n} x^{n}$ is not $\mathrm{D}^{\infty}{ }_{-}$-finite?
One may also ask for the nature of the exponential variant of the generating function for partition numbers.

Open question 3. Is the power series $\sum_{n \geq 0} \frac{p_{n}}{n!} x^{n} \mathrm{D}^{\infty}$-finite, or at least differentially algebraic?
Acknowledgements We would like to warmly thank the referees for their careful reading and for their constructive remarks.

References

[1] M. Aigner and G. M. Ziegler. Proofs from The Book. Springer-Verlag, Berlin, fourth edition, 2010.
[2] G. E. Andrews, R. Askey, and R. Roy. Special functions, volume 71 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 1999.
[3] N. L. Biggs, E. K. Lloyd, and R. J. Wilson. Graph theory. 1736-1936. The Clarendon Press, Oxford University Press, New York, second edition, 1986.
[4] C. W. Borchardt. Ueber eine der Interpolation entsprechende Darstellung der Eliminations-Resultante. J. Reine Angew. Math., 57:111-121, 1860.
[5] A. Bostan, L. Di Vizio, and K. Raschel. Differential transcendence of Bell numbers and relatives - a Galois theoretic approach, 2020. In preparation.
[6] A. Cayley. A theorem on trees. Q. J. Math., 23:376-378, 1889
[7] R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth. On the Lambert W function. Adv. Comput. Math., 5(4):329-359, 1996.
[8] P. Flajolet, S. Gerhold, and B. Salvy. On the non-holonomic character of logarithms, powers, and the nth prime function. Electron. J. Combin., 11(2):Article 2, 16, 2004/06.
[9] P. Flajolet and R. Sedgewick. Analytic combinatorics. Cambridge University Press, Cambridge, 2009.
[10] S. Gerhold. On some non-holonomic sequences. Electron. J. Combin., 11(1):Research Paper 87, 8, 2004.
[11] J. L. W. V. Jensen. Sur une identité d'Abel et sur d'autres formules analogues. Acta Math., 26(1):307-318, 1902.
[12] A. Jiménez-Pastor and V. Pillwein. A computable extension for D-finite functions: DD-finite functions. J. Symbolic Comput., 94:90-104, 2019.
[13] A. Jiménez-Pastor, V. Pillwein, and M. F. Singer. Some structural results on D^{n}-finite functions. Adv. in Appl. Math., 117:102027, 29, 2020.
[14] M. Klazar. Bell numbers, their relatives, and algebraic differential equations. J. Combin. Theory Ser. A, 102(1):63-87, 2003.
[15] L. Lovász. Combinatorial problems and exercises. North-Holland Publishing Co., Amsterdam, second edition, 1993.
[16] A. M. Mian and S. Chowla. The differential equations satisfied by certain functions. J. Indian Math. Soc. (N.S.), 8:2728, 1944.
[17] M. P. Noordman, M. van der Put, and J. Top. Combinatorial autonomous first order differential equations, 2019. Preprint, https://arxiv.org/abs/1904.08152vl.
[18] I. Pak. Complexity problems in enumerative combinatorics. In Proceedings of the International Congress of Mathematicians—Rio de Janeiro 2018. Vol. IV. Invited lectures, pages 3153-3180. World Sci. Publ., Hackensack, NJ, 2018.
[19] M. Rosenlicht. The nonminimality of the differential closure. Pacific J. Math., 52:529-537, 1974.
[20] L. A. Rubel. A survey of transcendentally transcendental functions. Amer. Math. Monthly, 96(9):777-788, 1989.
[21] M. F. Singer. Algebraic relations among solutions of linear differential equations. Trans. Amer. Math. Soc., 295(2):753763, 1986.
[22] R. P. Stanley. Differentiably finite power series. European J. Combin., 1(2):175-188, 1980.
[23] J. van der Hoeven. Computing with D-algebraic power series. Appl. Algebra Engrg. Comm. Comput., 30(1):17-49, 2019.

[^0]: * Corresponding author.

