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Abstract: Different types of ordering phenomena may occur during phase transitions, described 

within the universal framework of the Landau theory through the evolution of one, or several, 

symmetry-breaking order parameter . In addition, many systems undergo phase transitions 

related to an electronic instability, in the absence of a symmetry-breaking and eventually 

described through the evolution of a totally symmetric order parameter q linearly coupled to 

volume change. Analyzing the coupling of a non-symmetry-breaking electronic instability, 

responsible for volume strain, to symmetry-breaking phenomena is of importance for many 

systems in nature and here we show that the symmetry-allowed q2 coupling plays a central role. 

We use as case study the rubidium manganese hexacyanoferrate Prussian blue analogue, 

exhibiting phase transitions with hysteresis that may exceed 100 K, and based on intermetallic 

charge transfer (CT). During the phase transition, the intermetallic CT described through the 

evolution of q is coupled to cubic-tetragonal ferroelastic symmetry-breaking described through 

the evolution of . In this system, the symmetry-breaking and non-symmetry breaking 

deformations have similar amplitudes but the large volume strain is mainly due to CT. We analyze 

both the ferroelastic and the CT features of the phase transition within the frame of the Landau 

theory, taking into account the q2 coupling, stabilizing concomitant CT and Jahn-Teller 

distortion. The results show that the phase transition and its wide thermal hysteresis originate 

from the coupling between both processes and that the elastic coupling of each order parameter 

with the volume strain is responsible for the q2 coupling. The phase diagrams obtained with this 

model are in good qualitative agreement with various experimental findings and apply to diverse 

families of materials undergoing Mott transition, spin-crossover, neutral-ionic transition…, for 

which isostructural electronic instability driving volume strain can couple to symmetry-breaking 

or not, create phase transition lines and drive cooperative phenomena.  

 

PACS: 64.60.-I, 62.20.D-, 61.50.Ks,  64.70.K- 

 



I. Introduction 

Phase transitions in materials are responsible for the emergence of physical properties, which is 

one of the main topics in condensed matter physics, and understanding their origin is of central 

interest for material science. The Landau theory of phase transitions1 is a universal concept 

describing, through the evolution of a symmetry-breaking order parameter (OP) , various types 

of ordering phenomena like ferromagnetic, ferroelectric, ferroelastic or other types of structural 

and/or electronic orders. In addition, many systems do not fit in this scheme as they may undergo 

phase transitions related to an electronic instability in the absence of symmetry-breaking. For 

example, this is the case of some charge-transfer (CT) systems, spin-crossover materials, Mott or 

insulator-metal transitions systems.2-13  These non-symmetry-breaking phase transitions may be 

described through the evolution of an order parameter q, related to an electronic instability, which 

transforms as the identity representation and is consequently responsible for a volume strain 𝑣𝑠 

due to the relative change of the bonding or antibonding nature of the electronic distribution. 

Different types of instabilities may couple during phase transitions. In addition to multiferroic 

materials, where different types of orders compete,14 there are other systems for which the non-

symmetry-breaking change of electronic state may couple to a symmetry-breaking structural 

distortion. In this case, the symmetry-allowed q2 coupling term of lowest order plays a central 

role, as experimentally or theoretically explained in few cases.15-21 In this paper, we use the Landau 

theory approach to underline the key role of the volume strain related to a non-symmetry-breaking 

electronic instability q, which may couple to a symmetry-breaking instability . We show that the 

q2 coupling of elastic nature increases the hysteresis regime of bistability. The variety of phase 

diagrams obtained with this model can apply to diverse systems undergoing non-symmetry-

breaking and symmetry-breaking instabilities that may occur simultaneously or sequentially.  

As a case study, we investigate the phase transition in rubidium manganese hexacyanoferrate 

(RbMnFe) Prussian blue analogue (PBA). The materials belong to the family of cyano-bridged 

metal complexes exhibiting switching of physical properties controlled by various external 

parameters including temperature, pressure, light or electric fields,9, 22-26 resulting from coupled 

intermetallic CT and structural reorganizations. These bistable PBA, with general composition 

RbxMn[Fe(CN)6](x+2)/3·zH2O, undergo a CT-based thermal phase transition27, 28 between a high-

temperature (HT) cubic phase FeIII(S = 1/2)–CN–MnII(S = 5/2) and a low-temperature (LT) 

tetragonal phase FeII(S = 0)–CN–MnIII(S = 2) (Fig. 1). The associated thermal hysteresis, probed 

by magnetic measurements (Fig. 2), may reach up to 138 K for some systems. This phase transition 

involves two types of instabilities: the non-symmetry-breaking CT and the ferroelastic distortion. 



One the one hand, the CT bistability was theoretically described in terms of the Slichter-Drickamer 

or Ising models,29, 30 which did not account for the ferroelastic symmetry-breaking. On the other 

hand, the cubic-tetragonal ferroelastic distortion was deeply investigated in many systems,31-36 and 

especially the associated volume and tetragonal distortion strains. For RbMnFe, periodic DFT 

methods provided also correct description of the equilibrium structures of the different electronic 

configurations.37 However, there are several properties of RbMnFe like the change of magnetic 

susceptibility or the ferromagnetic order at low temperature,38 that can only be explained by taking 

into account both the ferroelastic distortion, responsible for magnetic anisotropy, and the CT, 

responsible for the change of spin state. The CT process induces an important volume strain (10%), 

mediated by the cyano-bridges through the lattice, responsible for cooperative phase transitions, 

also observed for non-symmetry-breaking CT-based phase transitions.4-10, 39 Our analysis sheds a 

new light on the interpretation of experimental data on the sample RbMn[Fe(CN)6],
27, 40-42 and 

shows that both the non-symmetry-breaking CT (q) and ferroelastic symmetry-breaking distortion 

() must be considered on an equal footing.  

The paper is organized as follows. In Sec. II we discuss experimental fingerprints of the phase 

transition in RbMnFe in terms of the symmetry-breaking structural distortion and the non-

symmetry-breaking CT process. In Sec. III we present the Landau theory of the ferroelastic and 

the CT instabilities, and their symmetry-allowed q2 coupling, with a comprehensive analysis of 

the phase diagrams, and show that this coupling opens a phase transition line and broadens the 

thermal hysteresis. In Sec. IV we discuss both theoretical and experimental results and the 

important role of the elastic coupling for RbMnFe materials. In Sec. V we conclude on the work 

and the interest of our generic phase diagram, which can apply for describing various types of 

systems, for which the coupling between non-symmetry-breaking electronic instability and 

symmetry-breaking structural order is the key for explaining the emergence of functions. 

 

II Experimental study of the RbMnFe PBA 

RbxMn[Fe(CN)6](x+2)/3·zH2O, exhibits bistability between two phases with different structural and 

electronic configurations (Fig. 1).28 The high temperature (HT) phase with a high entropy forms a 

FCC lattice with metals in Oh ligand fields and an electronic configuration MnII(S=5/2)FeIII(S=½). 

The low temperature (LT) phase is tetragonal, as Jahn-Teller (JT) distortion stabilizes the 

MnIII(S=2)FeII(S=0) state with empty Mn(dx2-y2) orbital, with metals being in D4h ligand fields.43 

Various techniques described the occurrence of Fe-to-Mn CT-based phase transition from LT to 

HT phases at thermal equilibrium, or under light irradiation.23, 44, 45  

 



 

FIG. 1. Structures of the MnIIFeIII HT phase (F4̅3m), and MnIIIFeII LT phase (F4̅2m). Mn, N, C, 

Fe and Rb are shown in green, light blue, black, orange and purple respectively. The conventional 

I4̅m2 LT space group is equivalent to the F4̅2m for which the (aLT,bLT,cLT) cell corresponds to the 

HT one. The representation of the electronic configurations in the LT and HT phases show that 

the Oh ligand field stabilizes the MnII state, while the MnIII state is stabilized by JT distortion 

splitting occupied dz2 and unoccupied dx2-y2 orbitals.  

 

As a case study, we discuss the experimental fingerprints of the phase transition for the 

RbMn[Fe(CN)6] system. The thermal dependence of its MT product (molar magnetic 

susceptibility M and temperature T) is shown in Fig. 2.27, 40-42 Upon warming, the MT value 

characteristic of the MnIII(S=2)FeII(S=0) LT state increases around Tu= 304 K to reach a value 

characteristic of the MnII(S=5/2)FeIII(S=½) state. Upon cooling from the HT phase the MT value 

suddenly drops around Td= 231 K, resulting in a wide thermal hysteresis loop (Tu─Td = 73 K).  

Similar first-order phase transitions were observed for various chemical compositions, and the Rb 

concentration acts as a chemical control of the hysteresis width, which reaches up to 138 K for 

Rb0.64Mn [Fe(CN)6]0.881.7H2O. The MT evolution is usually described through the thermal 

population of the fraction  of MnIIFeIII HT state or the order parameter q: 

𝛾 =
𝑁

𝑀𝑛𝐼𝐼𝐹𝑒𝐼𝐼𝐼

𝑁
𝑀𝑛𝐼𝐼𝐹𝑒𝐼𝐼𝐼+𝑁

𝑀𝑛𝐼𝐼𝐼𝐹𝑒𝐼𝐼
 and 𝑞 =

𝑁
𝑀𝑛𝐼𝐼𝐹𝑒𝐼𝐼𝐼−𝑁

𝑀𝑛𝐼𝐼𝐼𝐹𝑒𝐼𝐼

𝑁
𝑀𝑛𝐼𝐼𝐹𝑒𝐼𝐼𝐼+𝑁

𝑀𝑛𝐼𝐼𝐼𝐹𝑒𝐼𝐼
 

𝑁𝑀𝑛𝐼𝐼𝐹𝑒𝐼𝐼𝐼  and 𝑁𝑀𝑛𝐼𝐼𝐼𝐹𝑒𝐼𝐼  denote the number of sites in each CT states and 𝛾 =
𝑞+1

2
. In the fully 

MnIIFeIII phase 𝑞 = 1, while in the fully MnIIIFeII phase 𝑞 = −1 (Fig. 2). 



 

  

 

 

 

 

FIG. 2.  MT vs T plot characterizing the CT-based phase transition between the 

MnIII(S=2)FeII(S=0) LT phase and the HT MnII(S=5/2)FeIII(S=½) phase, revealing a ≈73 K wide 

thermal hysteresis. 

 

 

X-ray and neutron diffraction studies revealed important structural changes of the 3D polymeric 

network during the CT-based phase transition.40, 46 The space group of the HT cubic phase is 𝐹4̅3𝑚 

(Z=4) with a lattice parameter aHT≈10.56 Å. A symmetry-breaking occurs in the LT phase, with a 

tetragonal cell usually described in the conventional space group 𝐼4̅𝑚2 (Z=2 aLT
'=bLT

'≈7.09 Å and 

cLT≈10.52 Å). Here, we use the equivalent and non-conventional 𝐹4̅2𝑚 cell, for which the lattice 

vectors corresponds to the ones of the HT lattice. The lattice vectors (Fig. 1) of the 𝐹4̅2𝑚 (Z=4) 

and 𝐼4̅𝑚2 space groups are related by: aLT=(aLT
’-bLT

’) and aLT=(aLT
'+bLT

'), with aLT≈10.02 Å. Fig. 3 

shows the evolution of the lattice parameters for RbMn[Fe(CN)6].
40 The ferroelastic distortion 

from cubic F4̅3m to tetragonal F4̅2m space groups results in a splitting of the lattice parameter 

aHT into aLT and cLT. The structural instability occurs at the  point of the Brillouin zone and the 

symmetry-breaking OP  belongs to the unique bidimensional E representation of the 4̅3𝑚 point 

group. These nano-crystals are single domain, as in the low temperature phase there is not splitting 

of the Bragg peak measured on an oriented film46. 



 

FIG. 3. (a) Thermal evolution of the lattice parameters between HT and LT phases. The solid lines 

mark the average values in each phase. The vertical arrows refer to structural changes 

corresponding to non-symmetry-breaking (nsb≡q) and the symmetry-breaking (sb≡) 

components. (b) Volume change scaled to 
1−𝑞

2
 (right axis). (c) Thermal evolution of the ferroelastic 

distortion 
2

√3
(𝑒𝑧𝑧 − 𝑒𝑥𝑥) ∝  (arbitrarily scaled to 1). 

 

For cubic-tetragonal phase transitions,33, 36, 47 two strain parameters are involved:  

i) the ferroelastic cubic-tetragonal distortion strain corresponding to the symmetry-breaking OP 

 ∝
1

√3
(2𝑒𝑧𝑧 − 𝑒𝑥𝑥 − 𝑒𝑦𝑦) =

2

√3
(𝑒𝑧𝑧 − 𝑒𝑥𝑥), monitoring deviation from the cubic symmetry 

(Fig. 3a) of the LT lattice35, 48, with the total deformations measured during the phase transition 

𝑒𝑥𝑥 =
𝑎𝐿𝑇−𝑎𝐻𝑇

𝑎𝐻𝑇
, 𝑒𝑧𝑧 =

𝑐𝐿𝑇−𝑎𝐻𝑇

𝑎𝐻𝑇
, 

ii) the volume strain  𝑣𝑠(𝑇) =
𝑉𝐿𝑇(𝑇)−𝑉𝐻𝑇(𝑇)

𝑉𝐻𝑇(𝑇)
,  

The indexes "HT” refer to the value of the HT parameters extrapolated at low temperature by a 

linear fit as suggested by the thermal evolution. For purely ferroelastic phase transitions, the single 

symmetry-breaking does not contribute to 𝑣𝑠 in a first approximation, as the first order components 

of the spontaneous strain tensors distortion correspond to 𝑣𝑠 = 𝑒𝑥𝑥 + 𝑒𝑦𝑦 + 𝑒𝑧𝑧 = 0. Fig. 3b 

shows the large volume jump (𝑣𝑠 ≈ 0.1) during the phase transition between the HT and LT 



phases. It corresponds to an average variation of the lattice parameter Δa=aHT─ac=0.37 Å, with 

𝑎𝑐 = (2𝑎𝐿𝑇 + 𝑐𝐿𝑇)/3. The amplitude of this non-symmetry-breaking distortion is similar to the 

symmetry-breaking ferroelastic distortion, splitting of the lattice parameters with cLT─aLT=0.54 Å. 

Therefore, both symmetry-breaking and non-symmetry-breaking deformations must be considered 

on an equal footing. This deformation of the lattice translates in the structural deformations within 

the unit cell, as observed upon warming for example (Fig. 4). The structural analysis evidenced 

the splitting of the six Mn-N bonds, equivalent in the HT phase, into four shorter (ds≈1.89 Å along 

x and y) and two longer ones (dl≈2.29 Å along z) in the LT phase due to the JT distortion.27, 40-42, 

45 In addition, the average bond length <Mn-N> decreases from HT to LT due to the less bonding 

nature of the HT MnII state with two electrons on the eg orbitals. Here again, the amplitude of the 

splitting of the Mn-N bond lengths scales with the symmetry-breaking components (), while 

the average bond length change ∆< 𝑀𝑛 − 𝑁 > corresponds to non-symmetry breaking 

components q (). Similar changes occurs on the Fe-C bonds, with a weaker splitting.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG. 4. The structural deformations at the atomic scale within the unit cell. In the HT phase the six 

Mn-N bonds are equivalent, while in the LT phase there are four short (ds≈1.89 Å along x and y) 

and two long (dl≈2.29 Å along z) bonds. The splitting Mn-N of the bond lengths relates to 

symmetry-breaking components ( ) and the jump Mn-N> of the average bond length to non-

symmetry-breaking components q ( ). 



 

FIG. 5. Temperature dependence of the C-N stretching mode of the IR spectrum. At HT the 6 C-

N bonds are equivalent, corresponding to a single stretching mode observed around 2150 cm-1. In 

the LT phase the band shifts around 2090 cm-1 is due to the non-symmetry-breaking change of 

electronic state q ( ) and it broadens due to the splitting of the CN modes related to the 

symmetry-breaking ( ).  

 

The coupled symmetry-breaking and change of electronic state also translate in IR data. Fig. 5 

shows the temperature dependence of the C-N stretching mode in the cooling mode.27 In the HT 

phase, the six C-N bonds are equivalent with a single stretching mode observed at ≈2150 cm-1. In 

the LT phase, the band shifts around 2090 cm-1 as CT increases the bonding strength, and splits as 

symmetry-breaking generates inequivalent C-N bonds. The broad LT band includes then several 

modes due to degeneracy lifting.  Here again, the splitting of the CN modes broadening the LT IR 

band is due to the symmetry-breaking component () and the average frequency jump is due to 

the non-symmetry-breaking component related to the change of electronic state q (). 

To summarize, various experimental results reveal that the changes observed during the phase 

transition include symmetry-breaking and non-symmetry-breaking components, which 

simultaneously change during the phase transition, with similar amplitudes.  Hereafter, we develop 

a theoretical model based on the Landau theory to describe the phase transition, by taking into 

account both aspects to understand the origin of the large thermal hysteresis domain of bistability.  



III. Landau analysis of the phase transition 

 

A. Landau development for the purely ferroelastic phase transition 

The cubic-tetragonal ferroelastic transition corresponds to the symmetry change from the cubic 

space group 𝐹4̅3𝑚 to the non-conventional tetragonal space group 𝐹4̅2𝑚 (Fig. 1). Since the 

structural instability occurs at the  point of the Brillouin zone, the phase transition is described 

by considering the group-subgroup relationship between the 4̅3𝑚 and 4̅2𝑚 point groups. As 

noticed above, the symmetry-breaking OP  belongs then to the bidimensional E representation 

of the 4̅3𝑚 point group, the basis of which is built with two distortion strains: the orthorhombic 

strain (𝑒𝑜) and the tetragonal strain (). In the case of the cubic-tetragonal ferroelastic transition, 

the orthorhombic strain 𝑒𝑜 = 𝑒𝑥𝑥 − 𝑒𝑦𝑦 = 0. The bidimensional symmetry-breaking OP  obeys 

to the transformation properties (2z2-x2-y2) of the JT mode,33, 36, 47, 49 with an anisotropic elongation 

along c and contraction along a and b (Fig. 3). We use the scalar  defined above as 

  (2𝑒𝑧𝑧 − 𝑒𝑥𝑥 − 𝑒𝑦𝑦) in the simplest Landau development of the thermodynamic potential for 

the cubic-tetragonal transformation36, 48-51 truncated to the 4th order in : 

𝐹 =
1

2
𝑎𝜂2 +

1

3
𝑏𝜂3 +

1

4
𝑐𝜂4  

with a=a0(T-TF) (a0>0). We use b<0 for stabilizing the JT elongation, while c>0 stabilizes the 

tetragonal orientation along the principal directions,36, 49 resulting in 3 equivalent domains 

elongated along c, a or b. The stability of the different phases is found from 
𝑑𝐹

𝑑𝜂
= 0 and 

𝑑𝐹2

𝑑𝜂2 > 0. 

 = 0 is stable for a>0 (T>TF), while 𝜂 =
(−𝑏+√(𝑏2−4𝑎𝑐))

2𝑐
  is stable below 𝑇2 = 𝑇𝐹 +

𝑏2

4𝑐𝑎0
. Both the 

analytical and numerical (Fig. 6a) studies from this model illustrate common trends of cubic-

tetragonal ferroelastic transitions: the phases coexist in the [TF-T2] range and the amplitude of  

changes discontinuously, as the symmetry-allowed 3 term in the development of the Landau 

potential is responsible for the first-order nature of the phase transition.48  

Figs. 7 shows the strongly first-order nature of the transition. However, the thermal evolution of  

(and 𝑣𝑠), remaining almost constant in the LT phase, cannot be represented by the standard 

solutions of the potential for first-order phase transitions. In addition, 𝑒𝑥𝑥 ≈ −0.0511 and 𝑒𝑍𝑍 ≈

−0.0038 do not obey the conditions for cubic-tetragonal distortion, 2𝑒𝑥𝑥 = 2𝑒𝑦𝑦 = −𝑒𝑧𝑧,33, 36, 47 

which merits closer inspection. The volume of the LT phase is 𝑉𝐿𝑇 = 𝑎𝐿𝑇
2 𝑐𝐿𝑇 ≈ 1054.9 Å3, while 

the average “cubic” LT lattice with parameter ac corresponds to the volume  𝑉𝑐 = 𝑎𝑐
3 ≈ 1055.7 Å3. 

Therefore, the volume difference (𝑉𝐿𝑇 − 𝑉𝑐 ≈ −0.8 Å3) due to the ferroelastic symmetry-breaking 

only is much smaller than the volume change (𝑉𝐻𝑇 − 𝑉𝐿𝑇 ≈ −121 Å3) between the HT and LT 



phases. Therefore, the conventional Landau theory of cubic-tetragonal phase transition with a 

single ferroelastic order parameter is not sufficient for understanding the phase transition and the 

large 𝑣𝑠 in RbMnFe, and the contribution from another order parameter must be questioned. 

 

FIG. 6. Temperature dependence along A of uncoupled (D=0) order parameters  and q. a) 

Thermal evolution of the equilibrium value of the symmetry-breaking order parameter  for 

a1=─5, 0 and +5. The width of the coexistence region between η>0 and η=0 is ΔAF. b) The 

equilibrium evolution of q describes the CT transition curve and the width of the coexistence 

region between q>0 and q<0 is ΔACT. When D=0, the behavior of q is unchanged with a1, which 

only shifts the relative position of TF with respect to TCT. ΔACT and ΔAF are similar with the 

parameters used (a0=0.1, TF=200, 
𝑏

3
= −2, 

𝑐

4
= 3, 

𝐵

2
= −1, 

𝐶

4
= 3, TCT= 200). 

 

In the family of cyanide-bridged bimetallic systems, including non-symmetry-breaking CT-based 

phase transitions, the volume change is known to be due to the CT process, which modifies the 

population of antibonding eg-like orbitals,4-10, 46 but which does not break symmetry. As explained 

by Carpenter,52 in such a case it is necessary to express the total strain due to the phase transition 

as the sum of two tensors: [𝑒] = [𝑒𝑠𝑏] + [𝑒𝑛𝑠𝑏]. [𝑒𝑠𝑏] is the strain related to symmetry-breaking 

deformations, and [𝑒𝑛𝑠𝑏] is the strain related to non-symmetry-breaking deformations proportional 

to a unity matrix. Since [𝑒𝑠𝑏] transforms as the irreducible representation E of the HT 4̅3m point 

group and [𝑒𝑛𝑠𝑏] transforms as the identity representation, we must consider the following 

relationships between the components of the tensors:  

[
𝑒𝑥𝑥 0 0
0 𝑒𝑥𝑥 0
0 0 𝑒𝑧𝑧

] = [

𝑒𝑥𝑥,𝑠𝑏 0 0

0 𝑒𝑥𝑥,𝑠𝑏 0

0 0 −2𝑒𝑥𝑥,𝑠𝑏

] + [

𝑒𝑥𝑥,𝑛𝑠𝑏 0 0

0 𝑒𝑥𝑥,𝑛𝑠𝑏 0

0 0 𝑒𝑥𝑥,𝑛𝑠𝑏

] 

With 𝑒𝑥𝑥,𝑛𝑠𝑏 =
1

3
(2𝑒𝑥𝑥 + 𝑒𝑧𝑧) and 𝑒𝑥𝑥,𝑠𝑏 =

1

3
(𝑒𝑥𝑥 − 𝑒𝑧𝑧).  

Typical values  𝑎𝐻𝑇 = 10.56 Å, 𝑎𝐿𝑇 = 10.02 Å, 𝑐𝐿𝑇 = 10.52 Å correspond to 𝑒𝑥𝑥 = −0.0511,

𝑒𝑧𝑧 = −0.0038, 𝑒𝑥𝑥,𝑛𝑠𝑏 = 𝑒𝑧𝑧,𝑛𝑠𝑏 = −0.0353, 𝑒𝑥𝑥,𝑠𝑏 = −0.0158 𝑒𝑧𝑧,𝑠𝑏 = 0.0315. 



 

FIG. 7. Symmetry-adapted strains calculated 

from the lattice parameters shown in Fig. 3. 

The cubic-tetragonal distortion strain 

2  𝑒𝑥𝑥,𝑠𝑏
2  (a), the total volume strain 𝑣𝑠 (b) 

and the symmetry-breaking volume strain 𝑣𝜂 

(c). (d) The strain–strain relationship 

between 𝑣𝑠 and 𝑒𝑥𝑥,𝑠𝑏
2  (d) has an affine nature 

and is mainly due to nsb deformations. 

 

 

 

 

 

 

 

 

 

As shown in Fig. 3a, 𝑒𝑥𝑥,𝑛𝑠𝑏 describes the average lattice parameter change from 𝑎𝐻𝑇 to 𝑎𝑐 , while 

𝑒𝑥𝑥,𝑠𝑏 describes the lattice parameter change from 𝑎𝑐 to 𝑎𝐿𝑇.  

The ferroelastic distortion strain is 
𝑐(𝑇)−𝑎(𝑇)

𝑎𝐻𝑇(𝑇)
=

2

√3
(𝑒𝑧𝑧,𝑠𝑏 − 𝑒𝑥𝑥,𝑠𝑏) = −

6

√3
(𝑒𝑥𝑥,𝑠𝑏)  , with 

𝑒𝑥𝑥,𝑠𝑏 = 𝑒𝑦𝑦,𝑠𝑏 =
𝑎(𝑇)−𝑎𝑐(𝑇)

𝑎𝐻𝑇(𝑇)
, 𝑒𝑧𝑧,𝑠𝑏 =

𝑐(𝑇)−𝑎𝑐(𝑇)

𝑎𝐻𝑇(𝑇)
= −2𝑒𝑥𝑥,𝑠𝑏. 

We decompose the total volume strain 𝑣𝑠 in sb and nsb components, as done for the symmetrically-

similar cases of leucite and D3C-THF,35, 53 with 𝑣𝑠 =
𝑉𝐿𝑇−𝑉𝐻𝑇

𝑉𝐻𝑇
=

𝑉𝐿𝑇−𝑉𝑐

𝑉𝐻𝑇
+

𝑉𝑐−𝑉𝐻𝑇

𝑉𝐻𝑇
.  

Since 𝑣𝑠 is more than a few percent, it is necessary to use second order sb and nsb terms:  

i) the symmetry breaking volume strain 

 𝑣𝜂 =
𝑉𝐿𝑇−𝑉𝑐

𝑉𝐻𝑇
= (1 + 𝑒𝑥𝑥,𝑠𝑏)(1 + 𝑒𝑥𝑥,𝑠𝑏)(1 + 𝑒𝑧𝑧,𝑠𝑏) − 1 ≈ −3𝑒𝑥𝑥,𝑠𝑏

2   

ii) the non-symmetry-breaking volume strain: 

𝑣𝐶𝑇 =
𝑉𝑐−𝑉𝐻𝑇

𝑉𝐻𝑇
= (1 + 𝑒𝑥𝑥,𝑛𝑠𝑏)(1 + 𝑒𝑥𝑥,𝑛𝑠𝑏)(1 + 𝑒𝑧𝑧,𝑛𝑠𝑏) − 1 ≈ 3𝑒𝑥𝑥,𝑛𝑠𝑏 + 3𝑒𝑥𝑥,𝑛𝑠𝑏

2   

𝑣𝑠 = 𝑣𝐶𝑇 + 𝑣𝜂 = 3𝑒𝑥𝑥,𝑛𝑠𝑏 + 3𝑒𝑥𝑥,𝑛𝑠𝑏
2 − 3𝑒𝑥𝑥,𝑠𝑏

2 = 𝑣𝐶𝑇 − 3𝑒𝑥𝑥,𝑠𝑏
2           (1) 

The typical values are 𝑣𝜂 = −0.0008, 𝑣𝐶𝑇 = −0.1022 and 𝑣𝑠 = −0.103.  

The ferroelastic strain 𝑐hanges the shape of the unit cell, while an additional strain 𝑣𝐶𝑇 alters the 

volume. Some symmetry-breaking deformation related to 2 may contribute to 𝑒𝑥𝑥,𝑛𝑠𝑏 in (1). 

However, the contribution to the volume strain 𝑣𝑠 of the nsb component reaches 𝑣𝐶𝑇 = −0.102 for 



 = 0, which is similar to the value reported for non-symmetry breaking CT24 including the 

Rb0.73MnFe compound.39Therefore the contribution of 2 to 𝑣𝑠 is mainly limited to 𝑣 (Fig. 7c), 

which provides the affine relationship (1) between 𝑣𝑠 and 𝑒𝑥𝑥,𝑠𝑏
2 shown in Fig. 7d. However, since 

𝑣𝜂<< 𝑣𝑠 , 𝑣𝑠 ≈ 𝑣𝐶𝑇, and 𝑣𝑠 is therefore mainly driven by the evolution of q, i.e. the fraction of CT 

state MnIIIFeII, transforming as the identity representation. Consequently, and the volume strain 

can be scaled to 𝑣𝑠 ∝ (1 − 𝛾) ∝ (
1−𝑞

2
) as shown in Fig. 3b. The non-symmetry-breaking 

components play therefore an important role in the modification of various physical quantities, 

and we analyze hereafter the CT aspect responsible for the large 𝑣𝑠 . It is well-known that such a 

simple Landau development is virtually never the correct potential in ferroelastics, as coupling to 

other degrees of freedom are often involved54. 

 

B. Landau development for the purely CT phase transition  

We describe the CT transition, accounting for the transformation from MnIIIFeII to MnIIFeIII states, 

similar to CT-based transitions in CoFe or CoW systems.4-10, 46 These isostructural phase 

transitions are often of first order nature, due to the elastic cooperativity related to large volume 

change, as monitored through the fraction  of MnIIIFeII state (Fig. 2) and the OP 𝑞 describes the 

electronic instability and transforms as the identity representation of the 4̅3𝑚 point group. For 

isostructural transitions associated with a totally symmetrical OP x, all powers of scalar x are 

allowed by symmetry in the thermodynamic potential, truncated here at the fourth-order term 

𝐹 = 𝐴′𝑥 +
1

2
𝐵′𝑥2 +

1

3
𝐶′𝑥3 +

1

4
𝐷′𝑥4 

Substituting 𝑞 = 𝑥 −
1

4
𝐶′ eliminates the third-order term, which limits the number of parameters 

in the potential, and allows for describing the symmetric evolution of q during the CT phase 

transition. Therefore, we use a potential similar to the one introduced by Chernyshov16 for 

describing non-symmetry-breaking spin-transition phenomena17, 55-57:  

𝐹 = 𝐴𝑞 +
1

2
𝐵𝑞2 +

1

4
𝐶𝑞4       (2) 

with 𝐴 = −𝑎0(𝑇 − 𝑇𝐶𝑇), to stabilize the MnIIIFeII state (q<0) below the CT transition temperature 

TCT, C>0 for stability and B<0 to promote cooperativity. The stability of the different phases is 

found from 
𝑑𝐹

𝑑𝑞
= 0 and 

𝑑𝐹2

𝑑𝑞2 > 0. At T=TCT (A=0) q=0 is unstable, while the two symmetric stable 

solutions are 𝑞 = ±
𝐵

𝐶
. The evolution of the thermal equilibrium value of q with A provides the CT 

transition curve in Fig. 6b, from predominantly MnIIFeIII (q>0, HT) to predominantly MnIIIFeII 

(q<0 LT) phases. Due to B<0, the thermal evolution of q has a characteristic "S shape", 



corresponding to a thermal hysteresis inherent to first order CT-based phase transitions. The width 

of the coexistence region between the phases is ∆𝐴𝐶𝑇 = 4𝐶(
−𝐵

3𝐶
)

3

2.  

In the potentials used above, we considered independently the ferroelastic transition occurring at 

TF, and the CT transition occurring at TCT. These phase transitions may then occur simultaneously 

only at a single point of the phase diagram, where TF=TCT. This case does not correspond to a 

phase transition line between the MnIIFeIII high symmetry and the MnIIIFeII low symmetry phase, 

and for describing the phase transition, it is then necessary to consider the coupling between the 

order parameters q and .   

 

C. Linear quadratic coupling between q and η  

For analyzing the evolution of the thermodynamic potential with 𝑞 and 𝜂, we add to their 

individual contributions the coupling term of lowest order 𝐷𝑞𝜂2 always allowed by symmetry: 

𝐹 =
1

2
𝑎𝜂2 +

1

3
𝑏𝜂3 +

1

4
𝑐𝜂4 + 𝐴𝑞 +

1

2
𝐵𝑞2 +

1

4
𝐶𝑞4 + 𝐷𝑞𝜂2 (3) 

with 𝐴 = −𝑎0(𝑇 − 𝑇𝐶𝑇) and 𝑎 = −𝐴 − 𝑎1. 𝑎1 = ─𝑎0(𝑇𝐶𝑇 − 𝑇𝐹) measures the difference of 

temperature instability between the CT phase transition and the ferroelastic phase transition. Here 

again we consider the OP 𝜂 as scalar, keeping in mind the 3 fold symmetry corresponding to the 

three domains elongated along z, y or x. We calculate, with the parameters of the potentials 

previously used for the purely ferroelastic and CT phase transitions, the evolution of this potential 

with A and a1 and for different couplings D. The different phases that appear for different (a1,A) 

are characterized by the equilibrium values of the OP corresponding to a minimum of the potential 

in the (𝑞, 𝜂) space (Fig. 8) with 
𝑑𝐹

𝜂
= 0,  

𝑑𝐹

𝑑𝑞
= 0, 

𝑑𝐹2

𝑑𝜂2
> 0, 

𝑑𝐹2

𝑑𝑞2
> 0 and     

𝑑𝐹2

𝑑𝑞𝑑𝜂
> 0. 

The phase space to explore with the parameters in Eq. (3) is limited and their values or ranges used 

for simulations are given in Table 1. As explained above, b<0 is used for stabilizing the JT 

elongation, B<0 to promote CT cooperativity, c>0 and C>0 for stability. D>0 is also required to 

stabilize the LT and low symmetry phase (𝑞 < 0, 𝜂 > 0). The relative change of parameters 

modifies the cooperative nature of the phase transitions but the qualitative features remain similar. 

 

 

Parameter a, a1 𝑏/3 𝑐/4 𝐵/2 𝐶/4 D 

value ─6 - 6 ─2 3 ─2, 2 3 0, 1, 2, 4 

TAB. 1. Values and ranges of the parameters of the potential. 



 

FIG. 8. Contour map of the potential (3) 

showing the evolution of the equilibrium 

positions indicated by the red dot in the 

(𝑞, 𝜂) space and corresponding to phase 

I (HT), phase II, phase III (LT) and phase 

VI. 

  



Phase I (𝑞 > 0, 𝜂 = 0) corresponds to the HT and high symmetry MnIIFeIII phase. With respect to 

phase I, phase II (𝑞 < 0, 𝜂 = 0)  corresponds to a non-symmetry-breaking CT phase transition, 

phase III (𝑞 < 0, 𝜂 > 0) corresponds to the LT MnIIIFeII phase with CT and ferroelastic distortion, 

and phase IV (𝑞 > 0, 𝜂 > 0) corresponds to a purely ferroelastic distortion without CT. Without 

coupling (D=0), the stability conditions of the phases combine the results for the ferroelastic and 

CT transitions, which are presented in the (a1,A) space (Fig. 9). The thermal evolution corresponds 

to a vertical line along A, with T increasing from A>0 to A<0. For the CT aspect, the phase 

transition line between the phases q>0 (I & IV) and q<0 (II & III) is centered at A=0 and a 

coexistence region ΔACT. For the ferroelastic aspect, the limit of stability of the high symmetry 

phase (𝜂 = 0) corresponds to 𝐴 = −𝑎1, while the coexistence region is ΔAF. For D=0, the four 

phases appear in the phase diagram (Fig. 9a) and coexist around (a1=0, A=0). However, the 

transition between phases I and III, corresponding to the HT and LT phases of RbMnFe, occurs 

only at this single point of the phase diagram (a1=0,A=0), which does not correspond to a phase 

transition line between phases I and III. The state (𝑞 = 0, 𝜂 = 0)  is always unstable with B<0. 

By introducing in (3) a coupling term D≠0, the equilibrium 𝜂 = 0 is found for: 𝑎 + 2𝐷𝑞 > 0 and  

𝑞2 >
−𝐵

3𝐶
. For 𝜂 = 0 the potential (3) corresponds to (2) for the isostructural CT transition from 

phase I to phase II, with a width of bistability ΔACT (Fig. 9b-e).   

The non-zero solution is:  =
(−𝑏+√(𝑏2−4(2𝐷𝑞+𝑎)𝑐)

2𝑐
 for 𝐴 > −𝑎1 −

𝑏2

4𝑐
+ 2𝐷𝑞.  

Writing (3): 𝐹 =
1

2
(𝑎 + 2𝐷𝑞)𝜂2 +

1

3
𝑏𝜂3 +

1

4
𝑐𝜂4 + 𝐴𝑞 +

1

2
𝐵𝑞2 +

1

4
𝐶𝑞4 highlights that D 

renormalizes the 𝜂2 coefficient, shifting 𝑇𝐹 between phases II and III to 𝑇𝐹′ = 𝑇𝐹 −
2𝐷𝑞

𝑎0
. 𝜂 ≠ 0 is 

then stable for −𝑎1 > 𝐴 + 2𝐷𝑞. Compared to the case without coupling, Fig. 9b shows that the 

coupling terms i) shifts the stability region along A between phases III and II for which q<0 by 

−|2𝐷𝑞|, ii) shifts the stability region between phases I and  IV for which q>0 by +|2𝐷𝑞|. These 

transition lines are distorted because q is not constant in the phase diagram.  

Writing (3): 𝐹 =
1

2
𝑎𝜂2 +

1

3
𝑏𝜂3 +

1

4
𝑐𝜂4 + (𝐴 + 𝐷𝜂2)𝑞 +

1

2
𝐵𝑞2 +

1

4
𝐶𝑞4 highlights that D shifts 

the III-IV transition temperature to 𝑇𝐶𝑇′ = 𝑇𝐶𝑇 +
𝐷𝜂2

𝑎0
. As shown in Fig. 9b, this CT transition line 

is bent since  is not constant along the transition line. The I-III phase transition line is also affected 

by the coupling. For phase I the stability condition is 𝐴 < −𝑎1 and for phase III it is 𝐴 > −𝑎1 −

𝑏2

4𝑐
+ 2𝐷𝑞  with q<0. The I-III hysteresis width increases then with the coupling strength D: 

∆𝐴 =
𝑏2

4𝑐
+  |2𝐷𝑞|        (4) 



It is therefore the coupling term, which opens the I-III phase transition line and enlarges the 

bistability region of the phases. Except for the non-symmetry-breaking phase transition line I-II, 

which is unaffected, calculating the exact shifts of the phase transition lines is complex and without 

analytical solution, as the amplitude of both q and  depend on (A,a1). However, it is possible to 

compute the evolution of the potential and to find for each (A,a1) the stable and metastable (,q) 

values characterizing the different phases. The phase diagrams obtained in this way for different 

couplings D= 0, 1, 2, 4 are shown in Fig. 9. Phases II and IV are destabilized by the coupling term, 

while phases I and III are stabilized over broader regions of the phase diagram. For discussing the 

phase diagram with a potential truncated at fourth order, it is sufficient to consider the 𝑞𝜂2 term 

of lowest order. Indeed, due to symmetry, including the 𝑞2𝜂2 coupling term would simply balance 

the relative stability between phases where =0 or ≠0 and shift the transition lines in one way or 

another depending on the sign of the coupling, while the 𝑞3𝜂 term is not allowed by symmetry. It 

is therefore the 𝑞𝜂2 term, which is responsible for the main features.  

Fig. 6 shows the thermal evolutions of q and  for D=0 and a1 = ─5, 0, +5. The behavior of q is 

unchanged as the CT transition is centered at a1=0. The thermal evolution of  shifts with 𝑎1 =

𝑎0(𝑇𝐶𝑇 − 𝑇𝐹), but since the OP are uncoupled, there is no discontinuous change of one OP when 

the other one changes during the transition. The hysteresis widths ΔACT and ΔAF are chosen similar 

with the parameters used for pedagogical purpose. Fig. 10 shows at a1=0 the effect of the coupling 

strengths D on the thermal evolution of the OP q and . Due to the coupling, they change 

simultaneously and discontinuously during the phase transition. As indicated in equation (4), the 

width of the I-III hysteresis increases with the coupling strength D, as shown in the phase diagrams 

with the dark green area (Fig. 9) and becomes larger than ΔACT and ΔAF. Fig. 11 shows the thermal 

evolution for D=4 and a1=0-6. The width of the thermal hysteresis remains similar, but the 

hysteresis loops are shifted towards higher temperature when a1=a0(TCT─TF) increases.  

Fig. 12 compares the role of the degree of cooperativity of the CT aspect by showing the evolution 

with A at a1=0 of the OP q and  when D=2 for B=±2. The hysteresis is much larger for B<0 

(cooperative CT transition) while for B>0 it is similar to the region of coexistence of the purely 

ferroelastic transition for D=0, even for large coupling. Indeed, B<0 constrains a discontinuous 

change between q<0 and q>0, with 𝑞2 >
|𝐵|

3𝐶
, which increases the hysteresis width between phases 

I-III as ∆𝐴 =
𝑏2

4𝑐
+  |2𝐷𝑞| (4). For B>0, q can approach 0 at the transition, which reduces ∆𝐴. This 

key role of the cooperative nature of the CT agrees with the fact that many CT PBA, like CoFe or 

CoW systems, 9, 10, 58, 59 exhibit first-order CT transition, without symmetry change. Using B<0 is 

more relevant in the model and corresponds to experimental observations like the broad thermal 

hysteresis. 

 



FIG. 9. Phase diagrams in the in (a1,A) space. 

(a) D=0: the CT transition occurs at A=0 

(dotted line), with an hysteresis width ΔACT. 

The ferroelastic transition occurs at A=-a1 

(thick line) with an hysteresis width ΔAF. (b) 

shows the shift of the transition lines due to 

the coupling D=1, (c) for D=2 and (d) for D=4. 

The colors show the regions of stability and 

coexistence of the different phases. The dark 

green area marks the region of coexistence of 

the phases I and III. The parameters of the 

potential are those used in Figs. 6. For each 

panel the dotted lines correspond to A=0 and 

A=─a1. 

 

 

  



 

FIG. 10. Evolution of q and  with A for a1=0. The hysteresis broadens with coupling strength D. 

 

 

FIG. 11. Evolution of q and  with A for D=4. The hysteresis shifts with a1, keeping similar width. 

 

FIG. 12. Evolution with A for a1=2 of q and  with D and B. The hysteresis is broader for 

cooperative CT transition (B<0). For B>0 the hysteresis is due to the ferroelastic transition, as q 

undergoes a crossover (blue). 

 



IV. Discussion for RbMnFe systems 

The experimental data reveal two types of changes in physical parameters, transforming like the 

non-symmetry-breaking OP q (or ) or the symmetry-breaking OP . The temperature 

dependences of the order parameters are summarized in Fig. 13a. The evolution of the (
1−𝑞

2
) is 

obtained from the volume strain 𝑣𝑠 , which is mainly driven by the CT (Fig. 3b), and the intensity 

of the IR band at 2150 cm-1 (Fig. 5), which provides an apparent tilt of the hysteresis branches 

during the phase nucleation due to the local nature of the probe. The relative evolution of 𝜂 can be 

extracted from the width of the IR band in the LT phase (Fig. 5), the splitting of the lattice 

parameters (Fig. 3a) and the splitting of the Mn-N bond lengths (Fig. 5). 

The results from the Landau model in equation (3) shown in Fig. 13b are in qualitative agreement 

and highlight the role of the coupling term in the broadening of the thermal hysteresis, as well as 

the coupled and discontinuous evolution of the order parameters (q,) during the phase transition. 

However, contrary to experiments, the model exhibits some temperature dependence of the OP. 

This shortcoming may be due to developing the expansion of the thermodynamic potential in 

minimal form and up to 4th order terms only. For the same reason, the non-symmetry-breaking 

transition does not exhibit Heaviside step-like change of CT observed in many systems from HT 

phase where 𝑞 = 1 to LT phase where 𝑞 = −1.9, 10, 58, 59 Instead, our model provides some pre-

transitional variations, also obtained with other models describing the CT transition.29, 30 Our 

theoretical model can mimic various experimental observations, and it is the symmetry-allowed 

lowest-order coupling, Dqη2, which is responsible for key features in the phase diagram i) opening 

a phase transition line between phases I (HT) and III (LT), ii) broadening the width of the thermal 

hysteresis, iii) driving simultaneous changes of the OP.  

For a deeper understanding of the processes coming into play, the nature of the coupling D 

introduced phenomenologically, and stabilizing a ferroelastic distortion in the MnIIIFeII LT phase, 

should be discussed. Compared to the cubic MnIIFeIII state with 2 electrons in the eg orbitals, the 

LT MnIIIFeII state is more bonding as there is a single electron on the eg-like anti-bonding orbitals, 

which results in an average shortening of the Mn-N and Fe-C bonds and a decrease of the volume 

of the MnN6 and FeC6 octahedra. The change of electronic state from MnIIFeIII to MnIIIFeII results 

in a non-symmetry-breaking change q of the population of the eg orbitals. However, the MnIIIFeII 

state is stabilized by a symmetry-breaking structural reorganization, which lifts the degeneracy 

between the Mn(dx2-y2) and Mn(dz2) states, stabilizing the occupied dz2
 orbital. The corresponding 

JT distortion, leading to shorter Mn-N bonds along x and y compared to z, transforms like the 

bidimensional E representation of the HT point group 4̅3𝑚. 



 
 

FIG. 13. Thermal evolution of (
1−𝑞

2
) or  (right axis), and η2. (a) Experimental data. (b) Theoretical 

results from the potentials (3) for D=4 scaled to temperature. The elastic couplings broaden the 

hysteresis and limit the thermal dependence of the order parameters ( is normalized to 1 for 

clarity). 

 

 

This strong coupling between electronic and structural reorganization is the microscopic origin of 

the q2 coupling as the CT (q) is stabilized by the JT distortion ().43 The changes of q and   

occur in a cooperative way within the 3D polymeric lattice, mainly due to the elastic cost, and are 

responsible for lattice strains. Like the chicken or the egg causality dilemma, the relative role of 

non-symmetry-breaking (q) and the symmetry-breaking () changes may be questioned. However, 

the fact that the isostructural compounds Rb0.73MnFe undergoes the MnIIFeIII to MnIIIFeII CT phase 

transition without symmetry-breaking,39 like many others cyano-bridged CT metal complexes,9, 10, 

58, 59 suggests that the ferroelastic strain may be regarded as driven by the CT rather than driving. 

In these volume-changing phase transitions, where molecular-based deformations propagate at the 

macroscopic scale, elastic energy terms must be considered. In the case of conventional cubic-

tetragonal ferroelastic distortions elastic terms due to symmetry-breaking (𝑣𝜂) contribute to the 

potential. On the other hand, in the case of the non-symmetry-breaking CT phase transition, only 



q, or 𝑣𝐶𝑇, are considered due to the change in the bonding nature of the lattice accompanying the 

change of electronic state.3, 60, 61 For RbMnFe, during the phase transition between LT and HT 

phases, both instabilities related to structural deformations of different symmetries contribute to 

then to the total volume strain (𝑣𝑠 = 𝑣 + 𝑣𝐶𝑇). Since 𝑣𝑠 and q transform as the identity 

representation A1 and 𝜂  as the representation E, we add the symmetry-allowed elastic terms to the 

ferroelastic and CT potentials: 

𝐹 =
1

2
𝑎𝜂2 +

1

3
𝑏𝜂3 +

1

4
𝑐𝜂4 + 𝐴𝑞 +

1

2
𝐵𝑞2 +

1

4
𝐶𝑞4 + 𝜆𝜂𝑣𝑠𝜂2 + 𝜆𝑞𝑣𝑠(

1−𝑞

2
) +

1

2
𝐶𝑠

0𝑣𝑠
2   (5) 

1

2
𝐶𝑠

0𝑣𝑠
2 is the elastic energy related the total volume strain 𝑣𝑠, 𝜆𝑣𝑠𝜂2 is the elastic coupling to 𝑣𝑠 

of the ferroelastic OP and is zero in the HT phase, 𝜆𝑞𝑣𝑠(
1−𝑞

2
) is the elastic coupling to 𝑣𝑠 of the 

CT conversion scaling as (
1−𝑞

2
) to be zero in the HT phase and similar to the elastic energy 

introduced for volume-changing spin-crossover materials.62  

Equation (5) provides the well-known relationship between elastic energy and coupling energy:  

𝜆𝜂𝑣𝑠𝜂2 + 𝜆𝑞𝑣𝑠 (
1−𝑞

2
) = −𝐶𝑠

0𝑣𝑠
2 = −2 (

1

2
𝐶𝑠

0𝑣𝑠
2)  

where the energy gain due to the elastic coupling is twice larger than the elastic energy cost.32 

The equilibrium value of 𝑣𝑆 minimizing the potential (5) is:  

𝑣𝑠 = −
[𝜆𝑞(

1−𝑞

2
)+𝜆𝜂2]

𝐶𝑠
0 = −

𝜆𝑞

𝐶𝑠
0 (

1−𝑞

2
) − 𝐾𝑒𝑥𝑥,𝑠𝑏

2   (6) 

This affine relationship between 𝑒𝑥𝑥,𝑠𝑏
2  (or 𝜂2) and 𝑣𝑠 agrees with equation (1) found from the non-

symmetry-breaking and symmetry-breaking components of the deformations (see Fig. 7d).  

Substituting 𝑣𝑠 in equation (5) renormalizes some coefficients of the Landau expansion:  

𝐹 =
1

2
(𝑎 −

𝜆𝜂𝜆𝑞

𝐶𝑠
0 )𝜂2 +

1

3
𝑏𝜂3 +

1

4
(𝑐 −

𝜆𝜂
2

2𝐶𝑠
0)𝜂4 + (𝐴 +

𝜆𝑞
2

4𝐶𝑠
0)𝑞 +

1

2
(𝐵 −

𝜆𝑞
2

8𝐶𝑠
0)𝑞2 +

1

4
𝐶𝑞4 + (

𝜆𝜂𝜆𝑞

2𝐶𝑠
0 )𝑞𝜂2  (7)  

It appears then that it is the elastic couplings of each OP to the volume strain, which lead to an 

effective linear-quadratic coupling strength D between the order parameters, related to the elastic 

constant 𝐶𝑠
0, with 𝐷 =

𝜆𝜂𝜆𝑞

2𝐶𝑠
0 . The renormalization shifts the temperatures TCT and TF.  

Regarding the family of RbxMn [Fe(CN)6](x+2)/3·zH2O materials, our model is sufficiently flexible 

to map several scenarios found experimentally. In the case of the RbMnFe system The linear 

coupling of (
1−𝑞

2
) to 𝑣𝑠 also affect the CT instability, making the 𝑞2 coefficient (𝐵 −

𝜆𝑞
2

8𝐶𝑠
0) more 

negative and broadening the CT hysteresis width ∆𝐴𝐶𝑇. This explains why the thermal hysteresis 



is of similar order for the Rb0.73MnFe compound undergoing non-symmetry breaking CT-based 

phase transition.39 The broadening of the thermal hysteresis with the coupling strength due to the 

elastic coupling (Fig. 10) is similar to the broadening observed under chemical pressure. Indeed, 

when  the fraction x of Rb alkali changes from 1 to 0.64, the hysteresis width expands from 73 K 

to 138 K.27 The Rb concentration x allows then for a chemical control of the coupling strength, 

since the Rb acts as a spacer within the lattice. On the other hand, the thermal shift of the hysteresis, 

on the order of 0.026 K/bar63 under hydrostatic pressure, is similar to the shift with a1=a0(TCT─TF) 

shown in Fig. 11. Indeed, pressure stabilizes lower volume states towards higher temperature, but 

the volume strain 𝑣𝐶𝑇 due to CT is much larger than the volume strain 𝑣𝜂 due to the ferroelastic 

transition. Consequently, TCT increases more with increasing pressure than TF and a1 is then 

analogous to pressure. Our theoretical model can also be used to describe I-II non-symmetry-

breaking CT transitions observed in various materials belonging to the family of cyano-bridged 

CT metal complexes,9, 10, 58, 59  which may be of first-order (B<0) or crossover (B>0) nature. The 

model also describes ferroelastic phase transitions in PBA,4 without CT, analogous to the I-IV or 

II-III phase transitions, and it also predicts sequences of CT and symmetry-breaking phase 

transitions (I-II-III or I-IV-III) not reported yet experimentally to our knowledge in PBA.  

 

V. Generalization of the model to other systems 

The Landau model discussed here, where a non-symmetry-breaking electronic instability related 

to an OP q may couple to a symmetry-breaking instability 𝜂 in a linear-quadratic way, applies to 

various systems. For example, it can describe the phase transition reported in few spin-crossover 

materials, for which the non-symmetry-breaking change of spin state (q) couples to a ferroelastic 

distortions () and result in a broad thermal hysteresis.21, 64-66 The model also account for totally 

symmetric changes of electronic state in one-dimensional organic conductors coupled to 

ferroelastic distortion.67 The phase diagram in Fig. 9d is also similar to the one of V2O3, exhibiting 

a non-symmetry-breaking phase transition I-II between the metal trigonal phase and the Mott 

insulator trigonal phase, and symmetry-breaking transition lines I-III or II-III between these phases 

and the monoclinic Mott insulator phase.2 This phase diagram is also similar to the one of TTF-

CA undergoing a neutral-ionic transition,15, 68 where a non-symmetry-breaking CT between 

electron donor and acceptor molecules and a ferroelectric symmetry-breaking phase transition can 

be concomitant (I-III) or sequential (I-II and II-III). The Ti3O5 material is another type of system, 

which undergoes a sequence of phase transitions with an orthorhombic (Cmcm) to monoclinic 

(C2/m) ferroelastic transition around 500 K between two metallic phases and a non-symmetry-

breaking phase transition around 450 K towards a semiconducting phase (C2/m).69 This 



corresponds to the sequence of phases I-IV-III in our model. The non-symmetry-breaking IV-III 

semiconducting-to-metallic phase transition is associated with a wide domain of bistability due to 

large volume strain, allowing for reversible photoswitching within the hysteresis.13  

These phase diagrams or sequences of phases are also similar to the gas-liquid-solid one, with 

three transition lines meeting at a triple point. The phase transition I-II is the non-symmetry 

breaking one (gas-liquid-like) related to a discontinuous change of q, equivalent to density. The 

phase transition II-III is the symmetry-breaking one (liquid-solid-like) related to a change from 

=0 to ≠0. During the phase transition I-III (gas-solid-like) q and  change in a coupled way. It 

is important to underline that for the different examples mentioned above, the non-symmetry 

breaking electronic instability (Mott transition, semiconducting-metallic, neutral-ionic transition, 

spin transition, CT…) originates from a relative change of the occupation (q) of anti-bonding 

electronic states, which, by coupling linearly to 𝑣𝑠, drives elastically cooperative phase transition 

with spectacular changes of various types of physical properties. When symmetry-breaking 

components come into play, the volume strain may also couple to the symmetry-breaking OP 

through the 𝑞𝜂2 term and the non-symmetry-breaking and symmetry-breaking phase transitions 

may be concomitant or sequential.  

 

VI. Conclusion 

We used the Landau theory to study phase transitions where an electronic instability, related to a 

non-symmetry-breaking OP q, and a symmetry-breaking instability, related to an OP  may occur 

simultaneously due to their elastic coupling 𝑞𝜂2. The phase diagrams obtained highlight the 

importance of non-symmetry-breaking changes related to electronic instabilities, strongly 

changing the bonding nature of the lattice, and responsible for large volume strain that may drive 

cooperative phase transitions. This general model, taking into account the coupling between 

symmetry-breaking and non-symmetry-breaking components is sufficiently flexible to describe 

phase diagrams in various types of materials. 
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