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The square root of a parabolic operator

El Maati Ouhabaz

Abstract

Let L(t) = −div (A(x, t)∇x) for t ∈ (0, τ) be a uniformly elliptic operator with
boundary conditions on a domain Ω of Rd and ∂ = ∂

∂t . Define the parabolic operator
L = ∂ + L on L2(0, τ, L2(Ω)) by (Lu)(t) := ∂u(t)

∂t + L(t)u(t). We assume a very little
of regularity for the boundary of Ω and we assume that the coefficients A(x, t) are
measurable in x and piecewise Cα in t (uniformly in x ∈ Ω) for some α > 1

2 . We
prove the Kato square root property for

√
L and the estimate

‖
√
Lu‖L2(0,τ,L2(Ω)) ≈ ‖∇xu‖L2(0,τ,L2(Ω)) +‖u‖

H
1
2 (0,τ,L2(Ω))

+

(∫ τ

0
‖u(t)‖2L2(Ω)

dt

t

)1/2

.

We also prove Lp-versions of this result.

Keywords: elliptic and parabolic operators, the Kato square root property, maximal
regularity, the holomorphic functional calculus, non-autonomous evolution equations.

Home institution:
Institut de Mathématiques de Bordeaux
Université de Bordeaux, CNRS, UMR 5251,
351, Cours de la Libération. 33405 Talence, France.
Elmaati.Ouhabaz@math.u-bordeaux.fr
ORCID: 0000-0003-0849-3957.

1 Introduction and the main results
Consider on L2(Rd) the differential operator L(t) = −div (A(x, t)∇x) where the matrix
A(x, t) = (akl(x, t))1≤k,l≤d has complex measurable entries and satisfies the usual ellipticity
condition

Re〈A(x, t)ξ, ξ〉 ≥ κ|ξ|2, |〈A(x, t)ξ, ζ〉| ≤ C|ξ||ζ| (1.1)
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for all ξ, ζ ∈ Cd, where κ,C are positive constants independent of (x, t) ∈ Rd×R and 〈., .〉
denotes the scalar product of Cd. We consider the first order differential operator ∂u = ∂u(t)

∂t

for all u in the Sobolev space H1(R, L2(Rd)). One defines the half-order derivative ∂1/2 by

∂1/2u(t) = − 1

2
√

2π

∫
R

1

|t− s|3/2
(u(t)− u(s)) ds.

The following theorem is a parabolic version of the Kato square root property. It is proved
by P. Auscher, M. Egert and K. Nyström [5].

Theorem 1.1. Suppose (1.1). There exists a realization of the parabolic operator L := ∂+L
which is maximal accretive on L2(Rd+1), the domain of its square root

√
L coincides with

H
1
2 (R, L2(Rd)) ∩ L2(R, H1(Rd)) and

‖
√
Lu‖L2(Rd+1) ≈ ‖∇xu‖L2(Rd+1) + ‖∂1/2u‖L2(Rd+1)

for all u ∈ D(
√
L).

A similar result was proved by K. Nyström [20] in the case where A(x, t) = A(x).
The aim of the present short paper is twofold. We consider the above parabolic Kato

square root problem for operators on domains with boundary conditions. Secondly, we
investigate the problem on Lp(0, τ, Lr(Ω)) and not only on L2(0, τ, L2(Ω)). We consider
the time variable t in an interval (0, τ) which is usual for evolution equations rather than
the whole set R. In order to give the precise statements of our results we need some
preparation.

Let Ω be an open subset of Rd with boundary Γ. Consider a closed subspace V of
H1(Ω) which contains H1

0 (Ω) and define the sesquilinear form

a(t, u, v) =

∫
Ω

A(x, t)∇xu.∇xv dx

with domain V . We assume that the matrix A(x, t) = (akl(x, t))1≤k,l≤d satisfies the ellip-
ticity condition (1.1) with constants independent of (x, t) ∈ Ω × (0, τ). The associated
operator is formally given by L(t) = −div (A(x, t)∇x) and subject to the boundary condi-
tions fixed by V . We say that a is Cα for some α > 0 if there exists a positive constant M
such that for all u, v ∈ V

|a(t, u, v)− a(s, u, v)| ≤M |t− s|α‖u‖V ‖v‖V .

We say that a is piecewise Cα for some α > 0 if there exist τ1 = 0 < τ2 < · · · < τN = τ
such that on each sub-interval (τj, τj+1), a is the restriction of a Cα form on [τj, τj+1].

We make the following two assumptions. Suppose that a is piecewise Cα for some
α > 1

2
. Observe that this is satisfied if the coefficients akl, 1 ≤ k, l ≤ d, are piecewise Cα

in the t-variable, uniformly in the x-variable, for some α > 1
2
.

Next, we assume that for each fixed t, the operator L(t) satisfies the following Kato square
root property

V ⊆ D
(√

L(t)
)

and
∥∥∥√L(t) f

∥∥∥
L2(Ω)

≤ C
[
‖∇xf‖L2(Ω) + ‖f‖L2(Ω)

]
, f ∈ V. (1.2)
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The constant C is independent of t. By a well known duality argument, (1.2) implies that
D
(√

L(t)
)

= V and the norms
∥∥∥√L(t) f

∥∥∥
L2(Ω)

+ ‖f‖L2(Ω) and ‖∇xf‖L2(Ω) + ‖f‖L2(Ω) are

equivalent. In many cases, the homogeneous estimate

D
(√

L(t)
)

= V and
∥∥∥√L(t) f

∥∥∥
L2(Ω)

≈ ‖∇xf‖L2(Ω) (1.3)

holds. The implicit constants in the equivalence ≈ are independent of t since they depend
only on the ellipticity constants.
The square root property (1.3) is always satisfied if A(x, t) is symmetric. It is satisfied if
Ω = Rd by the solution of the Kato square root problem (see P. Auscher et al. [4]). The
non-homogeneous estimate (1.2) is satisfied if one has in addition terms of lower order.
On domains, (1.2) is satisfied if the boundary of Ω has a little of regularity (for example
Lipschitz is enough) for Dirichlet boundary conditions (V = H1

0 (Ω)), Neumann boundary
conditions (V = H1(Ω)) or even for mixed boundary conditions. For this we refer to M.
Egert, R. Haller-Dintelmann and P. Tolksdorf [13], the recent paper of S. Bechtel, M. Egert
and R. Haller-Dintelmann [8] and the references therein.

Now we state our first main result.

Theorem 1.2. Suppose that the ellipticity condition (1.1) holds on Ω. Suppose also (1.2)
and that a is piecewise Cα for some α > 1

2
. Then there exists a realization of the parabolic

operator L := ∂ + L that is maximal accretive on L2(0, τ, L2(Ω)) and satisfies the Kato
square root property

D
(√
L
)

=

{
u ∈ H

1
2 (0, τ, L2(Ω)) ∩ L2(0, τ, V ),

∫ τ

0

‖u(t)‖2
L2(Ω)

dt

t
<∞

}
and∥∥∥√Lu∥∥∥

L2(0,τ,L2(Ω))
≈ ‖∇xu‖L2(0,τ,L2(Ω)) + ‖u‖

H
1
2 (0,τ,L2(Ω))

+

(∫ τ

0

‖u(t)‖2
L2(Ω)

dt

t

)1/2

for all u ∈ D
(√
L
)
.

Here and throughout this paper, H
1
2 (0, τ, L2(Ω)) is the usual fractional Sobolev space of

order 1
2
. It is defined as the complex interpolation space [H1(0, τ, L2(Ω)), L2(0, τ, L2(Ω))] 1

2
.

Every function in H
1
2 (0, τ, L2(Ω)) is the restriction to (0, τ) of a function in H

1
2 (R, L2(Ω)).

The later space is defined as usual by using the Fourier transform. For all this we refer to
J.L. Lions and E. Magenes [19], Chapter 3, Section 5.

Our main idea for the proof of the above result is to make use of the maximal regularity
of the non-autonomous evolution equation{

∂u(t)
∂t

+ L(t)u(t) = f(t), t ∈ (0, τ ]
u(0) = u0.

(P)

This maximal regularity was proved in an abstract setting by B. Haak and E.M. Ouhabaz
[14] under the assumption that the form a is piecewise Cα for some α > 1

2
. It is also
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proved there that the maximal Lp-regularity holds if there exists a non-decreasing function
ω : [0, τ ]→ [0,∞) such that for u, v ∈ V

|a(t, u, v)− a(s, u, v)| ≤ ω(|t−s|) ‖u‖V ‖v‖V
with ∫ τ

0

ω(t)

t
3
2

dt <∞. (1.4)

See also M. Achache and E.M. Ouhabaz [1] and the references there for an account on
recent development on this topic.

The idea of using the maximal regularity in the proof of Theorem 1.2 lies in the fact
that we have a relatively precise description of the domain of the maximal accretive oper-
ator L. Then, with the help of imaginary powers (or a holomorphic functional calculus)
of L we can appeal to results on interpolation spaces which in turn give the description of
D
(√
L
)
. Note that the proof of Theorem 1.1 in [5] is very different and it is based on the

first order approach initiated by A. McIntosh and his collaborators (see e.g., A. Axelsson,
S. Keith and A. McIntosh [6]). One may wonder whether the (piecewise) regularity in t
which we require in Theorem 1.2 can be removed. The first strategy to do this is to try
to adapt the proof in [5] to parabolic operators on domains. This is not known and seems
to be a difficult problem. The second strategy is to prove the maximal regularity for (P)
when the coefficients are merely bounded measurable in t (and x). This is a challenging
open problem which was mentioned by J.L. Lions in 1961 and remains open. Note that
an example of a family of forms b(t, ·, ·) such that t 7→ b(t, u, v) is C

1
2 in (0, τ) but the

corresponding family of operators does not have the maximal regularity is given by Fackler
[16]. Note however that these are not differential operators.

Our approach is quite flexible and applies without any additional effort to other situa-
tions such as operators with lower order terms, degenerate operators, systems and operators
on weighted spaces. For clarity of exposition we do not search for generality and we keep
the setting described above. Instead, we consider another problem which was not studied
before in the literature. We study the problem of the square root of L on Lp(0, τ, L2(Ω))
for p 6= 2. For this we shall need the following slightly stronger condition than (1.4)∫ τ

0

ω(t)

t1+β
dt <∞ (1.5)

for some β > 1
2
. Clearly, (1.5) is satisfied if the coefficients akl are Cα in t (uniformly in x)

for some α > 1
2
.

We prove the following result.

Theorem 1.3. Suppose the ellipticity condition (1.1) on Ω. Suppose (1.2) and (1.5) and
let p ∈ (1,∞) with p 6= 2. There exists a realization of the parabolic operator L := ∂ + L
that is maximal accretive on Lp(0, τ, L2(Ω)) and satisfies the Kato square root property

‖
√
Lu‖Lp(0,τ,L2(Ω)) ≈ ‖u‖W 1

2 ,p(0,τ,L2(Ω))
+ ‖∇xu‖Lp(0,τ,L2(Ω)).

If p ∈ (1, 2), the domain of
√
L coincides with W

1
2
,p(0, τ, L2(Ω))∩Lp(0, τ, V ). If p ∈ (2,∞)

this domain coincides with {u ∈ W 1
2
,p(0, τ, L2(Ω)) ∩ Lp(0, τ, V ), u(0) = 0}.
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The ideas in the proof are similar to the case of p = 2 in the sense that we use the
maximal regularity of (P) and estimates for imaginary powers ∂is, Lis and (ν + L)is for
some constant ν ≥ 0. While for p = 2, the boundedness of Lis follows from the accretivity
of the operator L on the Hilbert space L2(0, τ, L2(Ω)), the situation for p 6= 2 requires some
additional work. In order to prove the boundedness of (ν + L)is we use a perturbation
result for the holomorphic functional calculus due to J. Prüss and G. Simonett [24]. The
regularity condition (1.5) will be used both to ensure the maximal Lp-regularity and to
prove a commutator estimate in order to apply the perturbation theorem in [24]. As a
result, we prove that the maximal accretive operator ν + L has a bounded holomorphic
functional calculus on Lp(0, τ, L2(Ω)) for all p ∈ (1,∞). This latter result uses only the
maximal regularity through the condition (1.5) and not the square root property (1.2).
Theorem 1.3 shows that the Kato square root property for the parabolic operator L holds
beyond the Hilbert space setting L2(0, τ, L2(Ω)). A natural question arises whether one
might prove a similar result on Lp(0, τ, Lr(Ω)) for some (or all) r 6= 2. We prove such a
result for time independent coefficients. The general case is more complicate and remains
open unless the coefficients are smooth with respect to the space variable. See the last
section of the paper.

Throughout the paper we use ‖.‖E to denote the norm of a given Banach space E. All
inessential constants are often denoted by C,C ′..., the notation A ≈ B means that there
exists a constant C > 0 such that 1

C
A ≤ B ≤ CA.

Acknowledgements. The author would like to thank Sebastian Bechtel for several in-
teresting remarks and comments on an earlier version of this paper and Moritz Egert and
Sylvie Monniaux for stimulating discussions. Thanks are due also to the reviewer for
his/her comments on the paper.
This research is partly supported by the ANR project RAGE, ANR-18-CE-0012-01.

2 Proof of Theorem 1.2
We start by recalling the following maximal regularity result from [14] (Theorem 2 and
Corollary 4). It is proved there in an abstract setting of time dependent forms having
the same domain. We state it here for the case of elliptic operators as defined in the
introduction, so we assume throughout this section that the ellipticity condition (1.1) is
satisfied on Ω.

Theorem 2.1. 1) Suppose that a is piecewise Cα for some α > 1
2
and that (1.2) holds.

Then the Cauchy problem (P) has maximal L2–regularity in L2(Ω) for any given u0 ∈ V .
In addition, there exists a positive constant C such that

‖u‖2 + ‖∂u
∂t
‖2 + ‖L(·)u(·)‖2 ≤ C [‖f‖2 + ‖u0‖V ] . (2.1)

2) Suppose (1.4). Then (P), with u0 = 0, has maximal Lp–regularity in L2(Ω) for all
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p ∈ (1,∞). If in addition ω satisfies the p–Dini condition∫ τ

0

(
ω(t)

t

)p
dt <∞, (2.2)

then (P) has maximal Lp–regularity for all u0 ∈ (L2(Ω), D(L(0)))1− 1
p
,p.

There exists a positive constant C such that

‖u‖p + ‖∂u
∂t
‖p + ‖L(·)u(·)‖p ≤ C

[
‖f‖p + ‖u0‖(L2(Ω),D(L(0)))

1− 1
p ,p

]
. (2.3)

Recall that (P) has maximal Lp–regularity in L2(Ω) if for every f ∈ Lp(0, τ, L2(Ω))
there exists a unique u ∈ W 1,p(0, τ, L2(Ω)), u(t) ∈ D(L(t)) for a.e. t ∈ (0, τ) and u satisfies
(P) for a.e. t ∈ (0, τ). We recall that (L2(Ω), D(L(0)))1− 1

p
,p is the real interpolation space

and the Lp-norm in the apriori estimates (2.1) and (2.3) is the norm of Lp(0, τ, L2(Ω)).
Let us also mention that the maximal L2–regularity holds under the slightly weaker

regularity property that the map t 7→ L(t) is piecewise in H
1
2 (0, τ,B(V, V ′)) (V ′ is the

dual space of V ) together with a minimal Dini condition. This is proved in [1] in an
abstract setting. As we mentioned in the introduction, it is not known whether the maximal
regularity holds for elliptic operators with measurable coefficients in the t-variable (and in
the x-variable as we do here). The counter-example given in [16] is not a differential
operator.

We shall apply the previous theorem in the case where u(0) = 0. In this case, we have
maximal Lp–regularity for every p ∈ (1,∞) provided a satisfies (1.4). If a is discontinuous,
we assume that it is piecewise Cα for some α > 1

2
and in addition (1.2) holds. For general

forms, the condition D
(√

L(t)
)

= V cannot be removed if a has (at least) one jump, see
[11].

Set H = L2(0, τ, L2(Ω)) and define ∂ = ∂
∂t

with domain

D(∂) = 0H
1 := {u ∈ H1(0, τ, L2(Ω)), u(0) = 0}.

Define also the operator L by (Lu)(t) = L(t)u(t) with domain

D(L) =
{
u ∈ L2(0, τ, L2(Ω)), u(t) ∈ D(L(t)) a.e. t and L(·)u(·) ∈ H

}
.

Lemma 2.2. Suppose either (1.4) or a is piecewise Cα for some α > 1
2
and (1.2) holds.

Define the parabolic operator

L = ∂ + L with domain D(L) = 0H
1 ∩D(L).

Then L is invertible, maximal accretive and has dense domain. The operators ∂L−1 and
LL−1 are bounded on H.

Proof. Integration by parts shows that ∂ is accretive. Then L is accretive as the sum of
two accretive operators. It is invertible on H by Theorem 2.1. The fact that ∂L−1 and
LL−1 are bounded operators on H is a consequence of the a priori estimate (2.1) (or (2.3)).
A standard duality argument shows that L is densely defined.

6



Next, for a given f ∈ H, u(t) :=
∫ t

0
f(s) ds satisfies u ∈ D(∂) and ∂u = f . Therefore ∂

is invertible and it is maximal accretive. In particular, this allows us to define its square
root

√
∂ as a maximal accretive operator. Similarly, L is maximal accretive since one

checks that ((I + L)−1u)(t) = (I + L(t))−1u(t). Therefore,
√
L is also well defined.

Lemma 2.3. Suppose either (1.4) or a is piecewise Cα for some α > 1
2
and (1.2) holds.

We have
‖
√
∂ u‖H + ‖

√
Lu‖H ≤ C‖

√
Lu‖H (2.4)

for all u ∈ D(
√
L). In particular, D

(√
L
)
⊂ D

(√
∂
)
∩D

(√
L
)
.

Proof. Since ∂ and L are maximal accretive it is well known (see e.g. [17]) that they have
bounded imaginary powers

‖∂is‖B(H) ≤ e
π
2
|s| and ‖Lis‖B(H) ≤ e

π
2
|s|, s ∈ R. (2.5)

For the same reason, L also satisfies

‖Lis‖B(H) ≤ e
π
2
|s|, s ∈ R. (2.6)

Define T (z) := ∂zL−z. Then for z = is with s ∈ R, it follows from (2.5) and (2.6) that
T (is) is bounded on H with norm bounded by eπ|s|. Using Lemma 2.2, (2.5) and (2.6) we
see that T (1 + is) is also bounded on H with norm bounded by C eπ|s|. This implies that
∂1/2L−1/2 is a bounded operator on H. Applying the same reasoning with L in place of ∂
shows that L1/2L−1/2 is also bounded on H. This proves the lemma.

Lemma 2.4. Suppose either (1.4) or a is piecewise Cα for some α > 1
2
and (1.2) holds.

Then there exists a constant c > 0 such that

c‖
√
Lu‖H ≤ ‖

√
∂ u‖H + ‖

√
Lu‖H (2.7)

for all u ∈ D(
√
L) ∩D(

√
∂). In particular, D

(√
∂
)
∩D

(√
L
)
⊂ D

(√
L
)
.

Proof. The proof uses a duality argument.
Firstly, one checks easily that the adjoint of ∂ is given by

∂∗v(t) = −∂v(t)

∂t
, D(∂∗) = {v ∈ H1(0, τ, L2(Ω)), v(τ) = 0}.

The adjoint operator L∗ is defined similarly to L with L(t) replaced by L(t)∗, i.e., A(x, t) is
replaced by its adjoint A∗(x, t). On the other hand it is clear that the maximal regularity
given by Theorem 2.1 holds for the retrograde problem{

−∂v(t)
∂t

+ L(t)∗ v(t) = f(t), t ∈ (0, τ ]
v(τ) = 0.

Using this we see as above that the operator ∂∗ + L∗, defined on the intersection of the
corresponding domains, is invertible and it is maximal accretive. It turns out that this
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operator is the adjoint of L. Using the same proof as before, Lemma 2.3 applied to L∗
gives

‖
√
∂∗ v‖H + ‖

√
L∗ v‖H ≤ C‖

√
L∗ v‖H (2.8)

for all v ∈ D(
√
L∗).

Let u ∈ D(
√
L) ∩D(

√
∂) and v ∈ D(

√
L∗). Then,∣∣∣(u,√L∗ v)H

∣∣∣ =
∣∣(u,L∗(L∗)−1/2 v)H

∣∣
=

∣∣(u, (∂∗ + L∗)(L∗)−1/2 v)H
∣∣

=
∣∣∣(√∂ u,√∂∗ (L∗)−1/2 v)H + (

√
Lu,
√
L∗ (L∗)−1/2 v)H

∣∣∣
≤

(
‖
√
∂ u‖H + ‖

√
Lu‖H

)(
‖
√
∂∗ (L∗)−1/2 v‖H + ‖

√
L∗ (L∗)−1/2 v‖H

)
≤ 2C

(
‖
√
∂ u‖H + ‖

√
Lu‖H

)
‖v‖H ,

where we use (2.8) to have the final inequality. Hence, v 7→ (u,
√
L∗ v)H extends to a

continuous linear functional on H. This implies that u ∈ D
(√
L
)
as well as (2.7).

Proof of Theorem 1.2. Under the sole assumption (1.4) or if a is piecewise Cα for some
α > 1

2
and (1.2) holds we obtain from the previous lemmas that

‖
√
Lu‖H ≈ ‖

√
∂ u‖H + ‖

√
Lu‖H (2.9)

for all u ∈ D(
√
L) = D(

√
L) ∩ D(

√
∂). On the other hand since the operator ∂ has

bounded imaginary powers it follows that D(
√
∂) coincides with the complex interpolation

space [0H
1,H] 1

2
. By [19], p. 68 or p. 257, this interpolation space coincides with

{u ∈ H
1
2 (0, τ, L2(Ω)),

∫ τ

0

‖u(t)‖2
L2(Ω)

dt

t
<∞}.

In addition, ‖
√
∂ u‖H is equivalent to ‖u‖

H
1
2 (0,τ,L2(Ω))

+
(∫ τ

0
‖u(t)‖2

L2(Ω)
dt
t

)1/2

.1 As men-

tioned in the introduction, (1.2) implies that the quantities ‖
√
L(t)u(t)‖L2(Ω) +‖u(t)‖L2(Ω)

and ‖∇xu(t)‖L2(Ω) + ‖u(t)‖L2(Ω) are equivalent with constants independent of t ∈ (0, τ).
Therefore, ‖

√
Lu‖H + ‖u‖H and ‖∇xu‖H + ‖u‖H are equivalent. We use this in (2.9) to

obtain
‖
√
Lu‖H + ‖u‖H ≈ ‖

√
∂ u‖H + ‖∇xu‖H + ‖u‖H.

From this and the fact that the operators ∂ and
√
L are invertible (cf. Lemma 2.2) we

obtain the theorem.

Remark 2.5. 1- In Theorem 1.2 we could remove the (piecewise) regularity assumption
in the t-variable by assuming that the Cauchy problem (P) has maximal L2-regularity in
L2(Ω). However, as we already mentioned in the introduction, it is not known whether this
maximal regularity is satisfied when the coefficients akl are merely measurable in t.

1Remember that ∂ is invertible, hence the graph norm of
√
∂ equivalent to ‖

√
∂ u‖H.

8



2-The proofs of Lemmas 2.3 and 2.4 do not use any specific property of the differential
operators L(t). These lemmas are valid in an abstract setting of operators L(t) which are
associated with a family of sesquilinear forms

a : (0, τ)× V × V → C

which are quasi-coercive and bounded with uniform constants in t. Here V is a Hilbert space
that is densely and continuously embedded into another given Hilbert space H. We define
∂, L and L as before. Under the sole assumption (1.4) we obtain D(

√
L) = D(

√
L)∩D(

√
∂)

and
‖
√
Lu‖L2(0,τ,H) ≈ ‖

√
∂ u‖L2(0,τ,H) + ‖

√
Lu‖L2(0,τ,H).

If a is piecewise Cα for some α > 1
2
, we assume in addition that (1.2) holds and we obtain

the same conclusion.
3- The ideas used in this section (as well as the next one) can also be used to describe the
domain of any fractional power D (Lα) for α ∈ (0, 1).

3 Lp(L2)-estimates
In the proofs of the previous section we used the maximal L2-regularity given by Theorem
2.1. We take advantage that this latter theorem gives also maximal Lp-regularity for every
p ∈ (1,∞). We use this in the proof of the Lp(L2)-estimate of Theorem 1.3.
Throughout this section we take the assumptions of Theorem 1.3, that is, we assume (1.1),
(1.2) and (1.5).

Fix p ∈ (1,∞) with p 6= 2. Define on Lp(0, τ, L2(Ω)) the operator ∂ = ∂
∂t

with domain

D(∂) = 0W
1,p := {u ∈ W 1,p(0, τ, L2(Ω)), u(0) = 0}.

It is well known that ∂ has bounded imaginary powers on Lp(0, τ, L2(Ω)) (see e.g. [12]). It
is not difficult to prove that ∂ is accretive and invertible. Hence, ∂ is maximal accretive.
As in the previous section, we define L by (Lu)(t) := L(t)u(t) with domain

D(L) =
{
u ∈ Lp(0, τ, L2(Ω)), u(t) ∈ D(L(t)) a.e. t and L(·)u(·) ∈ Lp(0, τ, L2(Ω))

}
.

Then L is maximal accretive. Since for fixed t ∈ (0, τ),

‖L(t)is‖B(L2(Ω)) ≤ e
π
2
|s|

and (Lisu)(t) = L(t)isu(t),2 it follows that the operator L has bounded imaginary powers
on Lp(0, τ, L2(Ω)). We define L = ∂+L on the intersection of the domains. It follows from
Theorem 2.1 that the operator L is invertible. In particular, it is maximal accretive. In
contrast to the Hilbert space setting of Theorem 1.2, the boundedness of imaginary powers
of L is not a consequence of maximal accretivity. So we have to use a different argument.

2one starts from the resolvent formula ((λI + L)−1u)(t) = (λI + L(t))−1u(t) and then by integration
along an appropriate contour to define the holomorphic functional calculus one obtains such a formula.
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Proposition 3.1. There exists a ν ≥ 0 such that the operator L + ν has a bounded holo-
morphic functional calculus on Lp(0, τ, L2(Ω)). In particular, L+ν has bounded imaginary
powers.

The proof is based on the following perturbation theorem (see Corollary 3.2 in [24]).

Theorem 3.2. Let A and B be two operators having holomorphic functional calculi with
angles φA and φB on a Banach space X. Suppose that 0 ∈ ρ(A), B is R-sectorial and
φA + φB < π. Suppose in addition that for some 0 ≤ α < β < 1 the Labbas-Terreni
commutator estimate∥∥A(λ+ A)−1

[
A−1(µ+B)−1 − (µ+B)−1A−1

]∥∥
B(X)
≤ C|λ|α−1|µ|−β−1 (3.1)

holds for all λ and µ with | arg(λ)| < π − φA and | arg(µ)| < π − φB. Then there exists a
ν ≥ 0 such that ν + A+B has a bounded holomorphic functional calculus on X.

Proof of Proposition 3.1. The operator L+ε is the sum of (non-commuting) operators B =
∂ and A = L+ ε. Each of these operators has a bounded holomorphic functional calculus
on Lp(0, τ, L2(Ω)) with angles φ∂ = π

2
+ε′ (for any ε′ > 0, see [12]) and φL < π

2
, respectively.

Hence, φ∂+φL < π. Next, the functional calculus isR−bounded (for holomorphic functions
with modulus ≤ 1). This follows from [15], Theorem 10.3.4 (3) in combination with
Proposition 7.5.3 (which shows that Lp(0, τ, L2(Ω) has Pisier’s contraction principle since
this is the case for the Hilbert space L2(Ω)). The role of ε > 0 above is only to guarantee
that L + ε is invertible. For simplicity we forget ε and keep in mind that L has to be
replaced by L + ε in the sequel. We claim that (3.1) is satisfied with α = 1

2
and β as in

(1.5). Once this is proved we can apply Theorem 3.2 to obtain the proposition.
Let f ∈ Lp(0, τ, L2(Ω)) and set

I(t) :=
∥∥L(t)(λ+ L(t))−1

[
L(t)−1(µ+ ∂)−1 − (µ+ ∂)−1L(t)−1f(t)

]∥∥
L2(Ω)

.

Since

(µ+ ∂)−1f(t) =

∫ t

0

e−µ(t−s)f(s) ds (3.2)

and Re(µ) ≈ |µ|, we have

I(t) =

∥∥∥∥∫ t

0

e−µ(t−s)L(t)(λ+ L(t))−1
[
L(t)−1 − L(s)−1

]
f(s) ds

∥∥∥∥
L2(Ω)

≤
∫ t

0

e−c|µ|(t−s)
∥∥L(t)(λ+ L(t))−1

[
L(t)−1 − L(s)−1

]
f(s)

∥∥
L2(Ω)

ds

for some constant c > 0. Now we argue exactly as in [22], p. 1675 to obtain∥∥L(t)(λ+ L(t))−1
[
L(t)−1 − L(s)−1

]
f(s)

∥∥
L2(Ω)

≤ C

|λ|1/2
ω(|t− s|)‖f(s)‖L2(Ω).

This gives

I(t) ≤ C

|λ|1/2

∫ t

0

e−c|µ|(t−s)ω(|t− s|)‖f(s)‖L2(Ω) ds. (3.3)
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The term
∫ t

0
e−c|µ|(t−s)ω(|t−s|)‖f(s)‖L2(Ω) ds can be seen as an operator (acting on ‖f(s)‖L2(Ω))

with kernel
K(t, s) = χ(0,t)(s)e

−c|µ|(t−s)ω(t− s).
Using the assumption (1.5) we have for all t ∈ (0, τ)∫ τ

0

K(t, s) ds =
1

|µ|β+1

∫ t

0

e−c|µ|(t−s)(|µ|(t− s))β+1 ω(t− s)
(t− s)β+1

ds

≤ C

|µ|β+1

∫ τ

0

ω(r)

r1+β
dr ≤ C ′

|µ|β+1
.

Similarly, ∫ τ

0

K(t, s) dt ≤ C ′

|µ|β+1
,

uniformly in s ∈ (0, τ). This implies that the operator with kernel K(t, s) is bounded
on Lp(0, τ) with norm bounded by C′

|µ|β+1 . It follows from (3.3) that the operator L(λ +

L)−1 [L−1(µ+ ∂)−1 − (µ+ ∂)−1L−1] is bounded on Lp(0, τ, L2(Ω)) with norm bounded by
C

|λ|1/2|µ|1+β . This is exactly the condition (3.1).

We go back to the proof of Theorem 1.3. Since ∂ has imaginary powers, we have
D(
√
∂) = [0W

1,p, Lp(0, τ, L2(Ω))] 1
2
with equivalent norms. It follows from [2], Theorem

4.7.1 or [10], p. 41 that [0W
1,p, Lp(0, τ, L2(Ω))] 1

2
coincides with W

1
2
,p(0, τ, L2(Ω)) if p < 2

and with 0W
1
2
,p(0, τ, L2(Ω)) if p > 2.3 Hence

‖
√
∂ u‖Lp(0,τ,L2(Ω)) ≈ ‖u‖W 1

2 ,p(0,τ,L2(Ω))
. (3.4)

By Proposition 3.1, (L+ ν)is is bounded on Lp(0, τ, L2(Ω)), thus we can repeat the proof
of Lemma 2.3 and obtain

‖
√
∂ u‖Lp(0,τ,L2(Ω)) + ‖

√
Lu‖Lp(0,τ,L2(Ω)) ≤ C‖

√
L+ ν u‖Lp(0,τ,L2(Ω)).

On the other hand since the operator L is invertible by Theorem 2.1, we can remove the
constant ν in the previous inequality and obtain

‖
√
∂ u‖Lp(0,τ,L2(Ω)) + ‖

√
Lu‖Lp(0,τ,L2(Ω)) ≤ C ′‖

√
Lu‖Lp(0,τ,L2(Ω)).

Using the same estimate for the adjoint operator on Lp′(0, τ, L2(Ω)) we argue by duality
as in Lemma 2.4 and obtain the reverse inequality. Therefore,

‖
√
Lu‖Lp(0,τ,L2(Ω)) ≈ ‖

√
∂ u‖Lp(0,τ,L2(Ω)) + ‖

√
Lu‖Lp(0,τ,L2(Ω)) (3.5)

for all u ∈ D(
√
L) = D(

√
∂) ∩D(

√
L). Using (3.4) it follows that

‖
√
Lu‖Lp(0,τ,L2(Ω)) ≈ ‖u‖W 1

2 ,p(0,τ,L2(Ω))
+ ‖
√
Lu‖Lp(0,τ,L2(Ω)) (3.6)

3This is stated in [2] and [10] on the interval (0,∞) instead of (0, τ). One either uses a similar retraction
and coretraction argument used their to deal directly with (0, τ) or use a cut-off argument around the point
τ . See also [7] for interpolation results in the scalar case.
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for all u ∈ D(
√
L) = [0W

1,p(0, τ, L2(Ω)), Lp(0, τ, L2(Ω))] 1
2
∩D(

√
L).

Thus we have proved Theorem 1.3.

As we already mentioned before, the method we employed in this paper can be used
in other circumstances. For example, the above Lp(L2)-estimate can be proved for elliptic
operators with lower order terms, some degenerate operators as well as parabolic systems.
We do not write the details since they are essentially a simple repetition of what is presented
above.

4 Lp(Lr)-estimates
In this section we address the question whether the previous results can be extended to
Lp(0, τ, Lr(Ω)) for r 6= 2. When reproducing the arguments of the previous sections we
face two problems. The first is to have maximal Lp-regularity in Lr(Ω) since Theorem 2.1
is specific to the L2(Ω) case. The second one is to have boundedness of imaginary powers
of L (or ν + L for some constant ν ≥ 0). The arguments in the proof of Proposition
3.1 use the sesquilinear form setting in order to check (3.1). Note that there are results
on maximal regularity outside the Hilbert space (and hence the sesquilinear form) setting.
However these results assume the domains of L(t) to be constant. See [3] and the references
there. In order to guarantee that the operators L(t) have the same domain on Lr(Ω) the
natural thing to do is to compute this domain and show that it coincides with some Sobolev
space. In order to do so one needs some regularity in the x-variable for A(x, t) and also
some regularity of Ω. In order to stay with non-smooth coefficients in the x-variable we
shall concentrate on the case A(x, t) = A(x). We also assume that our elliptic operator is
subject to the Dirichlet boundary conditions. With the same notation as before, we have

Theorem 4.1. Suppose (1.1) on Ω, (1.2) and (1.5). Suppose that A(x, t) = A(x) has
real-valued coefficients. Let p ∈ (1,∞) and denote by p′ its conjugate. Then for r ∈
[min(p, p′),max(p, p′)],

‖
√
∂ u‖Lp(0,τ,Lr(Ω)) + ‖

√
Lu‖Lp(0,τ,Lr(Ω)) ≈ ‖

√
Lu‖Lp(0,τ,Lr(Ω)) (4.1)

for all u ∈ D(
√
L). In addition, for r ∈ [min(p, p′), 2], there exists a constant C such

‖
√
∂ u‖Lp(0,τ,Lr(Ω)) + ‖∇u‖Lp(0,τ,Lr(Ω)) ≤ C‖

√
Lu‖Lp(0,τ,Lr(Ω)). (4.2)

Proof. Firstly, since L has real-coefficients and is subject to the Dirichlet boundary condi-
tions, the semigroup e−tL is sub-Markovian (cf. [21], Chapter 4). Therefore, by [18], L has
maximal Lp-regularity on Lr(Ω) for all p, r ∈ (1,∞). In particular, the operator L = ∂+L
defined on the intersection 0W

1,2(0, τ, Lr(Ω))∩D(L) is maximal accretive (note that both
∂ and L are accretive on Lp(0, τ, Lr(Ω))). On the other hand, the two maximal accretive
operators ∂ and L are generators of positive semigroups. For positivity of e−tL see [21],
Chapter 4 and for e−t∂ this follows readily from the positivity of its resolvent (see (3.2)).
This and the Trotter product formula give the positivity of the contraction semigroup
e−tL on Lp(0, τ, Lr(Ω)). Since for r = p, Lp(0, τ, Lp(Ω)) ' Lp(Ω × (0, τ)) we may use the
transference method [9] to obtain that L has a bounded holomorphic functional calculus on
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Lp(0, τ, Lp(Ω)) (with angle φ > π
2
). This is also true for ν+L for any ν ≥ 0. Using this and

Proposition 3.1 it follows by interpolation that ν+L has a bounded holomorphic functional
calculus on Lp(0, τ, Lr(Ω)) for r ∈ [p, 2] or [2, p]. What we did here for L is also valid for
L∗ = ∂∗ + L∗ by the same arguments. This gives that ν + L has a bounded holomorphic
functional calculus on Lp(0, τ, Lr(Ω)) for all p ∈ (1,∞) and r ∈ [min(p, p′),max(p, p′)]. In
particular, the imaginary powers (ν + L)is are bounded on these spaces. The rest of the
proof of (4.1) is exactly the same as for Theorem 1.3.

Suppose now that r ∈ [min(p, p′), 2]. Then the Riesz transform ∇L− 1
2 is bounded on

Lr(Ω) (see [21], Section 7.7). This gives ‖∇f‖Lr(Ω) ≤ C‖
√
Lf‖Lr(Ω). Thus, (4.2) follows

from (4.1).

Remark 4.2. The idea of using the transference method on Lp(0, τ, Lp(Ω)) was already
used in [23] in the context of parabolic Schrödinger operators.

References
[1] M. Achache and E.M. Ouhabaz, Lions’ maximal regularity problem withH

1
2 -regularity

in time. J. Differential Equations 266 (2019), no. 6, 3654-3678.

[2] H. Amann, Anisotropic Function spaces and Maximal Regularity for Parabolic Prob-
lems. Part 1. Function spaces. Jindrich Necas Center for Mathematical Modeling
Lecture Notes, 6. Matfyzpress, Prague, 2009. vi+141 pp. ISBN: 978-80-7378-089-0.

[3] W. Arendt, R. Chill, S. Fornaro and C. Poupaud, Lp-maximal regularity for non-
autonomous evolution equations. J. Differential Equations 237 no 1 (2007) 1-26.

[4] P. Auscher, S. Hofmann, M. Lacey, A. McIntosh and Ph. Tchamitchian, The solution
of the Kato square root problem for second order elliptic operators on Rn. Ann. of
Math. (2) 156 (2002), no. 2, 633-654.

[5] P. Auscher, M. Egert and K. Nyström, Boundary value problems for parabolic systems
via first order approach. J. Eur. Math. Soc. (JEMS) 22 (2020), no. 9, 2943-3058.

[6] A. Axelsson, S. Keith and A. McIntosh, Quadratic estimates and functional calculi of
perturbed Dirac operators. Invent. Math. 163 (2006), no. 3, 455-497.

[7] S. Bechtel and M. Egert, Interpolation theory for Sobolev functions with partially
vanishing trace on irregular open sets. J. Fourier Anal. Appl. 25 (2019), no. 5, 2733-
2781.

[8] S. Bechtel, M. Egert and R. Haller-Dintelmann, The Kato square root problem on
locally uniform domains. Adv. Math. 375 (2020), 107410, 37 pp.

[9] R.R. Coifman, G. Weiss, Transference Methods in Analysis, Conference Board of the
Mathematical Sciences, Regional Conference Series in Mathematics 31, AMS, Provi-
dence (1977).

13



[10] R. Denk and M. Kaip, General Parabolic Mixed Order Systems in Lp and Applications.
Operator Theory: Advances and Applications, 239. Birkhäuser/Springer, Cham, 2013.
viii+250 pp. ISBN: 978-3-319-01999-4.

[11] D. Dier, Non-autonomous Cauchy Problems Governed by Forms: Maximal Regularity
and Invariance. PhD Thesis. Universität Ulm, 2014.

[12] G. Dore and A. Venni, On the closedness of the sum of two closed operators. Math.
Z. 196 (1987), no. 2, 189-201.

[13] M. Egert, R. Haller-Dintelmann and P. Tolksdorf, The Kato square root problem for
mixed boundary conditions. J. Funct. Anal. 267 (2014), no. 5, 1419-1461.

[14] B. Haak and E.M. Ouhabaz, Maximal regularity for non-autonomous evolution equa-
tions. Math. Ann. 363 (2015), no. 3-4, 1117-1145.

[15] T. Hytönen, J. van Neerven, M. Veraar and L. Weis, Analysis in Banach Spaces.
Vol. II. Probabilistic Methods and Operator Theory. Ergebnisse der Mathematik und
ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics 67. Springer,
Cham, 2017.

[16] S. Fackler, J.-L. Lions’ problem concerning maximal regularity of equations governed
by non-autonomous forms. Ann. Inst. H. Poincaré Anal. Non Linéaire 34 (2017), no.
3, 699-709.

[17] T. Kato, Fractional powers of dissipative operators II. J. Math. Soc. Japan 14 (1962)
242-248.

[18] D. Lamberton, Equations d’évolution linéaires associées à des semi-groupes de con-
tractions dans les espaces Lp. J. Funct. Anal. 72 (1987), no. 2, 252-262.

[19] J. L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Ap-
plications: Vol. I. Die Grundlehren der mathematischen Wissenschaften, Band 181.
Springer-Verlag, New York-Heidelberg, 1972.

[20] K. Nyström, Square functions estimates and the Kato problem for second order
parabolic operators in Rn+1. Advances in Mathematics 293 (2016), 1-36.

[21] E. M. Ouhabaz, Analysis of Heat Equations on Domains, London Math. Soc Mono-
graphs 31, Princeton University Press 2005.

[22] E.M. Ouhabaz and C. Spina, Maximal regularity for non-autonomous Schrödinger
type equations. J. Differential Equations 248 (2010), no. 7, 1668-1683.

[23] E.M. Ouhabaz and C. Spina, Riesz transforms of some parabolic operators. AMSI
International Conference on Harmonic Analysis and Applications, 115-123, Proc.
Centre Math. Appl. Austral. Nat. Univ., 45, Austral. Nat. Univ., Canberra, 2013.

[24] J. Prüss and G. Simonett, H∞-calculus for the sum of non-commuting operators.
Trans. Amer. Math. Soc. 359 (2007), no. 8, 3549-3565.

14


	Introduction and the main results
	Proof of Theorem ??
	Lp(L2)-estimates
	Lp(Lr)-estimates

