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HYDRODYNAMIC LIMIT FOR A CHAIN WITH THERMAL
AND MECHANICAL BOUNDARY FORCES

TOMASZ KOMOROWSKI, STEFANO OLLA, AND MARIELLE SIMON

ABSTRACT. We prove the hydrodynamic limit for a one dimensional harmonic
chain with a random flip of the momentum sign. The system is open and
subject to two thermostats at the boundaries and to an external tension at one
of the endpoints. Under a diffusive scaling of space-time, we prove that the
empirical profiles of the two locally conserved quantities, the volume stretch
and the energy, converge to the solution of a non-linear diffusive system of
conservative partial differential equations.

1. INTRODUCTION

The mathematical derivation of the macroscopic evolution of the conserved
quantities of a physical system, from its microscopic dynamics, through a rescal-
ing of space and time (so called hydrodynamic limit) has been the subject of much
research in the last 40 years (cf. [9] and references within). Although heuristic
assumptions like local equilibrium and linear response permit to formally derive
the macroscopic equations [14], mathematical proofs are very difficult and most of
the techniques used are based on relative entropy methods (cf. [9] and references
within). Unfortunately, in the diffusive scaling when energy is one of the con-
served quantities, relative entropy methods cannot be used. In some situations a
different approach, based on Wigner distributions, is effective in controlling the
macroscopic evolution of energy. This is the case for a chain of harmonic springs
with a random flip of sign of the velocities, provided with periodic boundary con-
ditions, for which the total energy and the total length of the system are the two
conserved quantities, and where the hydrodynamic limit has been proven in [10].

The purpose of the present article is to deal with the case when microscopic
mechanical forces and thermal heat baths acting on the boundaries, are present,
and to determine macroscopic boundary conditions for the hydrodynamic dif-
fusive equations. In the scaling limit the presence of boundary conditions is
challenging, as the action of the forces and thermostats become singular. In [3]
the authors prove the existence and uniqueness of the non-equilibrium stationary
state, even in the anharmonic case. The existence of the Green-Kubo formula
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for the thermal conductivity is also proven in [3]. However, it turns out very
difficult to control the limit properties as the size of the system becomes infinite
(i.e. macroscopic). In particular the rigorous proof of the Fourier law, which states
that the average energy current is inversely proportional to the size of the system
and proportional to the negative temperature difference of the thermostats, is
still an open problem. One of the main difficulties of this open dynamics is to
prove that energy inside the system remains proportional to its size (a trivial fact
for the periodic case where energy is globally conserved). In fact the random
flip of the velocity signs does not move the energy in the system and the energy
transport is entirely due to the hamiltonian part of the dynamics, that is very
hard to control.

This difficulty forced us to consider a different energy conserving random dy-
namics, where kinetic energy is exchanged between nearest neighbor particles in
a continuous random mechanism, see [11]. In this case the stochastic dynamics
is also responsible for energy transport. The non-equilibrium stationary state
(NESS) for this dynamics was already considered in [2], where the Fourier law
was proven without external force, i.e. in mechanical (but not thermal) equilib-
rium. In [11] the validity of the Fourier law for the NESS is extended also to the
situation when an external tension force is present (then the system is in both
mechanical and thermal non-equilibrium). Furthermore, the existence of both
stationary macroscopic profiles for the temperature and volume stretch, at least
in some situations, are established in [11]. In particular, the temperature profile
has the interesting feature that the stationary temperatures in the bulk can be
higher than at the boundaries, a general behavior conjectured in the NESS for
many systems [13]. Furthermore, because of the presence of other conservation
laws, the stationary energy current can have the same sign as the gradient of
the temperature — the phenomenon called uphill diffusion phenomenon in the
literature.

Concerning the hydrodynamic limit, in the appendix section of [11] we have
formulated a heuristic argument, based on entropy production estimates, that
have not been proved there, and that substantiated the validity of the macroscopic
equations governing the dynamics in the case of a random momentum exchange
microscopic model, see Section 2.2 of [11]. Besides the aforementioned entropy
production estimates, in order to obtain the hydrodynamic limit, one needs to
establish also the property of equipartition of the random fluctuations of the
mechanical and thermal components of the microscopic energy density, which
was postulated in [11, identity (A.46)]. As we have pointed out in [11] this
property seems to be out of reach of the relative entropy method and some other
approach to resolve the difficulty is needed. In the present work we employ the
Wigner distribution method to give a rigorous prove of the hydrodynamic limit,
for an open system with a random flip of momenta, see Section 2 below for its
precise formulation.



A crucial observation is the identity (8.9) that holds for the L? norm of the
covariances of random fluctuations of momenta and stretches, which we obtain
by careful analysis of time evolution of the Fourier-Wigner functions defined in
Section 8.1. The last two terms in the right hand side of (8.9) correspond to the
dissipation, due to the stochastic dynamics in the bulk. The remaining two terms
describe the interaction between the fluctuation of the thermal and mechanical
components of the kinetic energy at the boundary points and in the bulk of the
system, respectively. In order to control these terms we need to control the rate
of damping of the mechanical energy, which is done in Lemma 5.4. These controls
allow us to prove that the L? norm of the covariances of random fluctuations of
momenta and stretches, at the given time, grows with the logarithm of the size
of the system: this is the content of Proposition 8.1. This in turn enables us to
show, using again the properties of the Fourier-Wigner function dynamics, the
already mentioned equipartition property, which is stated in Proposition 4.6 and
proved in Section 8.3.

The next ingredient that is important in the hydrodynamic limit argument
is the linear bound, in the system size, for the relative entropy of the chain,
with respect to both the thermal equilibrium and local equilibrium probability
measures. We establish this bound, together with some of its consequences, in
Section 7 (see Proposition 7.1). A crucial property that allows us to control the
entropy production, coming from the action of the external force, is the estimate
of the damping rate of the time average of the momentum expectation at the
respective endpoint of the system obtained in Proposition 4.2.

As we have already mentioned the model we consider in the present work,
with the random flip of the sign of momenta, is more difficult to handle than
the random momentum exchange one investigated in [11], due to the fact that
the energy is not transported by the stochastic part of the dynamics. We believe
that the method used in the present paper can be also applied to that model. In
addition, the assumption that the forcing acting at the boundary is constant in
time, is only made here to simplify the already complicated arguments for the
entropy bound of Section 7.1 and the momentum damping estimates formulated
in Proposition 4.2 and Lemma 5.4. At the expense of increasing the volume of
the calculations, with some additional effort, one could extend the results of the
present paper to the case when the tension is a C'!' smooth function of time.

A proof of the Fourier law in the stationary state remains an open problem
for the random flip model. We hope that in the future we will also be able to
extend the results of the present paper to the more challenging case of the chain
of anharmonic springs.

Finally, concerning the organization of the paper. The description of the model
and basic notation is presented in Section 2. The formulation of the main result,
together with the auxiliary facts needed to carry out the proof are done in Sec-
tion 3. For a reader convenience we sketch the structure of the main argument
in Section 4. The proof of the hydrodynamic limit is carried out in Section 5.



It is contingent on a number of auxiliary results that are shown throughout the
remainder of the paper. Namely, the estimates of the momentum and stretch
averages are done in Section 6, the energy production bounds are obtained in
Section 7, while Section 8 is devoted to showing the equipartition property. Fi-
nally, in the appendix sections we give the proofs of quite technical estimates
used throughout Section 6.

2. PRELIMINARIES

2.1. Open chain of oscillators. For n > 1 an integer we let I, := {0,1,...,n}
and T2 := {1,...,n—1}. The points 0 and n are the extremities of the chain.
Let I:=[0,1] be the continuous counterpart. We suppose that the position and
momentum of a harmonic oscillator at site x € I, are denoted by (q.,p.) € R2.
The interaction between two particles situated at x — 1,z € I, is described by the
quadratic potential energy

V(s = qo-1) = 5(¢x — ¢o-1)*.

At the boundaries the system is connected to two Langevin heat baths at tem-
peratures Ty :=T_ and T,, := T,. We also assume that a force (tension) of constant
value 7, € R is acting on the utmost right point = = n. Since the system is un-
pinned, the absolute positions ¢, do not have precise meaning, and the dynamics
depends only on the interparticle stretch

Ty =4z = 4z-1, forle,...,n,

and by convention throughout the paper we set ry := 0. The configurations are
then described by

(r,p)=(r1,. ., "0y P05 - -, Pn) € 2y = R" x R, (2.1)

The total energy of the chain is defined by the Hamiltonian:
Ho(r,p) = Y. E(r,p), (2.2)

xel,

where the microscopic energy density is given by
2
E(r,p) = % +V(rg) = Pe To pe L,. (2.3)

Finally, we assume that for each x € I, the momentum p, can be flipped, at a
random exponential time with intensity yn?, to —p,, with v > 0.

Therefore, the microscopic dynamics of the process {(r(¢), p(t)) }+s0 describing
the total chain is given in the bulk by

dr,(t) = n? (pa(t) — pa_1(t)) dt, xe{l,...,n},
dp,(t) = n? (re1 () = re(t)) dt = 2p.(t7) AN (yn?t), el

4
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and at the boundaries by

ro(t) =0,
dpo(t) = n2ry () dt — 2po (™) ANG(yn2t) = Fn2py dt + na/23T_dwy(t), (2.5)
dpn(t) = —n?r,(t) dt + n?7, dt - 2p,(t7) AN, (yn?t) = Fn?p, dt + n\/Ti—Terwn(t),

where wq(t) and w,(t) are independent standard Wiener processes and N, (¢),
x €I, are independent of them i.i.d. Poisson processes of intensity 1. Besides,
7 > 0 regulates the intensity of the Langevin thermostats. All processes are given
over some probability space (X, F,P). The factor n? appearing in the temporal
scaling comes from the fact that ¢, used in the equations above, is the macroscopic
time, and the microscopic time scale is the diffusive one.

We assume that the initial data is random, distributed according to the prob-
ability distribution u,, over €2,,. We denote by P, := i, ® P (resp. E,) the product
probability distribution over ,, x X (resp. its expectation).

Equivalently, the generator of this dynamics is given by

L:=n*(A+~S+75), (2.6)
where
n n—1
A= Z(px = De-1)0p, + Z(r“l =72 )0p, +T10p, + (T4 (t) = 70) Op, (2.7)
x=1 x=1
and
SF(r,p):= ) (F(r,p") - F(r,p)) (2.8)
=0

for any C?—class smooth function F. Here p* is the momentum configuration
obtained from p with p, replaced by —p,. Finally, the generator of the Langevin
heat bath at the boundary points equals:

S= Y (1402 -p.0,),  with Ty=T, T,:=T.. (2.9)

z=0,n

2.2. Notations. We collect here notations and conventions that we use through-
out the paper.
e Given an integrable function G : I - C, its Fourier transform is defined by

FG(n) = f G(w)e ™ qu,  nel. (2.10)
I
If G € L2(I), then the inverse Fourier transform reads as
G(u) = > e*™1FG(n), wel, (2.11)
nez

where the sum converges in the L? sense.
e Given a sequence {f,, = €1,}, its Fourier transform is given by

k)= fee?mk kel ={0,2,..., ). (2.12)

xel,
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Reciprocally, for any f/]fn — C, the inverse Fourier transform reads

—_—

fo = Z f"\(k)emﬂxk’ zel, (213)

kel,,

where we use the following short notation

Z\ = D (2.14)

for the averaged summation over frequencies k €T,. The Parseval identity can be
then expressed as follows

—_—

SN FR)g (k) =Y fu5,  fog:L,~C. (2.15)

kel, xel,

For a given function f we adopt the convention

(k)= f(k) and f(k):=f*(-k), keT,. (2.16)

According to our notation, given a configuration
(rap) = (rlv -y Pos - - apn) € Qn = R™ x Rn+1

we let, for any k €T,

?(k)) = Z Tme_mek, ﬁ(k’) = Z pxe—Qm'xk"

xel, zel,

recalling the convention ry := 0. Since the configuration components are real
valued, the corresponding Fourier transforms have the property:

P (k) =p(-k), 7™ (k) =7(-k). (2.17)

e For a function G : I - C, we define three discrete approximations: of the
function itself, of its gradient and Laplacian, respectively by

G,=G(2), zel,,
(VoG)y = n(G(%l)—G(%)), re{0,...,n-1}, (2.18)
(AG)y =n?(G(EL) + G(EL) -2G(2)), wel.

e Having two families of functions f;,g;: A - R, i € I, where I, A are some sets
we write f; < g;, @ € I if there exists C' > 0 such that

fila) < Cgi(a), for any i€ I, a € A.

If both f; $g;,iel and g; S fi,7 € I, then we shall write f; ~ g;,1 € .



3. HYDRODYNAMIC LIMITS: STATEMENTS OF THE MAIN RESULTS

In this section we state our main results, given below in Theorem 3.2, Theorem
3.3 and Theorem 3.5. Before that, let us give our first assumption on the initial
probability distribution of the configurations.

Suppose that 7" > 0. Let us denote by vr(dr, dp) the product Gaussian measure
on 2, of null average and variance 7" > 0 given by

e—&o/T n o o=&/T
VT(dr7 dp) =

dp
V2 ’ H 1V 27T
Let u,(t) be the probability law on Qn of the configurations (r(¢),p(t)) and let
fn(t,r,p) be the density of the measure u,(t) with respect to vr.

We now define the linear interpolation between the inverse boundary temper-
atures T-! and T7! by

Bu):= (T -T ) u+T, wel (3.2)

Recall the definition of its discrete approximation: S, := 5(x/n), z €L,. Let 7 be
the corresponding inhomogeneous product measure with tension 7,:

¢-Fop
dpo [Texp{ - 8 (€ -7ur) - G(Bo 70) Yradp,,  (3.3)

\/ 50 z=1

where the Gibbs potential is

——dp,dr,. (3.1)

7(dr,dp) :=

G(B,7) :=log fR ) e~ 3 (PP BTr e = %@# + %log (27871), (3.4)
for >0, 7 € R. Consider then the density
Tt = ()52 35
and define the relative entropy
L (t) = fQ Fulog Ty (3.6)
In the whole paper we assume
fn(0)€C?(Q,) and  H,(0)sn, n>1. (3.7)

3.1. Empirical distributions of the averages. We are interested in the evo-
lution of the microscopic profiles of stretch, momentum, and energy, which we
now define. For any n>1,¢t >0 and z €1, let

T =B ()] B0 =Efpe(0] &) =E[E0)] (35)

Moreover, we denote by /F\(n)(t, k), }T\(n)(t, k), with k € T,, the Fourier transforms
of the first two fields defined in (3.8). We shall make the following hypothesis:



Assumption 3.1. We assume
(1) an energy bound on the initial data:

supL > Ein)(O) < 400 ; (3.9)

n>l 1+ xel,

(2) a uniform bound satisfied by the spectrum of the initial averages:

sup(sup (ﬁ")(o,kn +sup |§(n)(0,k‘)|) < +00. (3.10)

nzl g, ke,

3.2. Convergence of the average stretch and momentum. In order to state
the convergence results for the profiles, we extend the definition (3.8) to profiles
on I, as follows: for any u €l and z €1, let

F(n) (tu u) =E, [Tz(t)]a
z_i((”))(t,u) =E,[p.(1)], if u e [-2, 2, (3.11)
" (tu) =E,[&(1)],
Let r(t,u) be the solution of the following partial differential equation
or(t, ) = ziagur(t,u), (t,u) €R, x 1L (3.12)
g
with the boundary and initial conditions:
r(t,0) =0, r(t,1) =74,
r(0,u) = ro(u),

for any (¢,u) € R, xI. To guarantee the regularity of the solution of the above
problem we assume that

(3.13)

roe C*(I) and 1o(1)=7,. (3.14)

Let pp € C(I) be an initial momentum profile. Our first result can be formulated
as follows.

Theorem 3.2 (Convergence of the stretch and momentum profiles). Assume
that the initial distribution of the stretch and momentum weakly converges to
ro(+), po(+) introduced above, i.e. for any test function G € C*(I) we have

Jim o S HNO0)C = [ o)
Lo ’ ”_(n) ) (3.15)
Jim —— gﬂ;m (0)G, = fﬂpo(U)G(U)dw
Then, under Assumption 3.1, for any t >0 the following holds:
lim () =r(t,) (3.16)
weakly in L2(L), where r(-) is the solution of (3.12)—(3.13). In addition, we have
tm [ P (5, )y ds = 0. (3.17)
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The proof of this theorem is given in Section 5.2.

It is not difficult to prove (see Section 4 below) that, under the same as-
sumptions as in Theorem 3.2, for each ¢t > 0 the sequence of the squares of the
mean stretches {[7™]2(-)},s1 — the mechanical energy density — is sequentially
x—weakly compact in (L!([0,t];C(I)))". However, in order to characterize its
convergence one needs substantial extra work, and this is why we state it as an
additional important result.

Let C2(I) be the class of C? functions on I such that G(0) = G(1) = 0.

Theorem 3.3 (Convergence of the mechanical energy profile). Assume that As-
sumption 3.1 holds. Then, for any test function G € L'([0,t]; C3(I)) we have

lim tds A(?(”)(s,u))QG(s,u)dUZ/Otds fﬂr2(s,u)G(s,u)du, (3.18)

n—+oo Jo

where r(s,u) is the solution of (3.12)—(3.13).
The proof of this theorem is contained in Section 5.3.

3.3. Convergence of the energy density average. Our last result concerns

the microscopic energy profile. To obtain the convergence of Z’in)(t) for t >0, we
add an assumption on the fluctuating part of the initial data distribution. For
any x €[, let

T (t) = () =T (1),
P (8) = pa () =PV ().
Similarly as before, let 7 (¢, k), pt™ (¢, k) be the Fourier transforms of the fields

defined in (3.19). We shall assume the following hypothesis on the covariance of
the stretch and momentum fluctuations.

(3.19)

Assumption 3.4. The following correlations sums are finite:

1 - 122
E, | (0)p"% (0
sp— = 3 ([0 (0)]) < oo

1
Su
nz? n+1

1
Su
n)Il) n+1

x,x’ely,

(En :ﬁn)(o)?ﬁ)(o): )2 < 400 (3.20)

x,x’ely,

> (B [70F20)]) < +oo.

!
x,x’€ly,

Let e(t,u) be the solution of the initial-boundary value problem for the inho-
mogeneus heat equation

1 1
ore(t,u) = 4—85u {e(t, u) + §r2(t,u)}, (t,u) e Ry x 1T, (3.21)
Y
with the boundary and initial conditions
1
e(t,0) =T, e(t,1) :T++§F3,
e(0,u) = eo(u),

(3.22)



for any (¢,u) e R, xI. Here r(¢,u) is the solution of (3.12)—(3.13), and ey is non-
negative. Our principal result concerning the convergence of the energy functional
is contained in the following:

Theorem 3.5 (Convergence of the total energy profile). Similarly to (3.15),
assume that the initial distribution of the energy converges weakly to some eq €

C(D), i.e. for any G € C>(I) we have:
im —— Y g 0)a, = [eo(w)Gu)du (3.23)

nroo 4 1 5 I

Then, under Assumptions 3.1 and 3.4, for any t >0 and any test function G €
LY([0,t]; C3(1)) we have

lim fotds fﬂz(n)(s,u)G(s,u)duzfotds fﬂe(s,u)G(s,u)du, (3.24)

n—>+00

where e(+) is the solution of (3.21)—(3.22).

The proof of this theorem is presented in Section 5.4.

4. SKETCHES OF PROOF AND EQUIPARTITION OF ENERGY

In this section we present some essential intermediate results which will be used
to prove the convergence theorems, and which are consequences of the various
assumptions made. We have decided to expose them in an independent section
in order to emphasize the main steps of the proofs, and to highlight the role of
our hypotheses.

4.1. Consequences of Assumption 3.1.

4.1.1. The boundary terms. An important feature of our model is the presence
of 7, # 0. A significant part of the work consists in estimating boundary terms.
Let us first state in this section the crucial bounds that we are able to get, under
Assumption 3.1, and which concern the extremity points z = 0 and x =n. One of
the most important result is the following:

Proposition 4.1. Under Assumption 3.1, for any t >0 we have

b _ 2 1
fo [Do(s) =D (s)| ds s 5 nzl (4.1)
and
t
[ o) + Bus) s s lg(n+d) =51 (4.2)
0 n

This result is proved in Section 6.1. Another consequence of Assumption 3.1 is
the following one-point estimate, which uses the previous result (4.1), but allows
us to get a sharper bound:

Proposition 4.2. Under Assumption 3.1, for any t >0 we have

iy 1 ¢
/ Py (s)ds| s = and |f ) (s)ds
0 n 0

1
S -, > 1. 4.3

10



This proposition is proved in Section 6.2.

Remark 4.3. In fact, in the whole paper, only the second estimate in (4.3) will
be used. However, in its proof, the first estimate comes freely.

4.1.2. Estimates in the bulk. Provided with a good control on the boundaries,
one can then obtain several estimates in the bulk of the chain. Two of them are
used several times in the argument, and can be proved independently of each
other. The first one is

Proposition 4.4 (L? bound on average momenta and stretches). Under Assump-
tion 3.1, for any t >0

! sup . {(Fg,”)(s)) + (P4 (s)) }g 1, n2l. (4.4)

N+ 1 se[0,t] zeT,

In addition, for any t >0 we have
ny f p(") ds S, n> 1. (4.5)

The proof of Proposition 4.4 can be found in Section 6.3 below, and makes use
of Proposition 4.2. Here we formulate some of its immediate consequences:

e thanks to (4.4) we conclude that that for each ¢ > 0 the sequence of
the averages {7 (t)}ns1 is bounded in L2(I), thus it is weakly compact.
Therefore, to prove Theorem 3.2 one needs to identify the limit in (3.16),
which is carried out in Section 5.2,

e the second equality (3.17) of Theorem 3.2 simply follows from (4.5).

e finally, the estimate (4.4) implies in particular that

<1, (4.6)

sup sup ([ 5

nzl sef0,t

Therefore, we conclude that, for each ¢ > 0 the sequence {[F™]2(-)},s1 is
sequentially »—weakly compact in (L'([0,t];C(I)))", as claimed. This is
the first step to prove Theorem 3.3.

The second important estimate focuses on the microscopic energy averages and
is formulated as follows:

Proposition 4.5 (Energy bound). Under Assumption 3.1, for any t >0 we have

sup {n+ N 211: 5(n)(s)} < +00. (4.7)

s€[0,t],n>1

This estimate is proved in Section 7.1, using a bound on the entropy produc-
tion, given in Proposition 7.3 below. Thanks to Proposition 4.5 the sequence
{E(n)(-)}nﬂ is sequentially »—weakly compact in (L'([0,¢];C2(I)))* for each
t > 0. Therefore, to prove Theorem 3.5, one needs to identify the limit. This
identification requires the extra Assumption 3.4.

11



4.2. Consequence of Assumption 3.4. The proof of Theorem 3.5 is based on
a mechanical and thermal energy equipartition result given as follows:

Proposition 4.6 (Equipartition of energy). Under Assumptions 3.1 and 3.4, for
any complex valued test function G € C§°([0,+00) x [ x T) we have
) t1 n 2 n 2
nggnwfo =Y GE[ () - (7 () Jas = 0. (4.8)
xel,

The proof of this result is presented in Section 8 (cf. conclusion in Section 8.3),
and uses some of the results above, namely Proposition 4.1 and Proposition 4.5.

5. PROOFS OF THE HYDRODYNAMIC LIMIT THEOREMS

In the present section we show Theorems 3.2, 3.3 and 3.5 announced in Section
3. The proof of the latter is contingent on several intermediate results:

e first of all, to prove the three results we need specific boundary estimates
which will be all stated in Section 5.1 (see Lemma 5.1), and which are
byproducts of Proposition 4.2, Proposition 4.4 and Proposition 4.5 ;

e the proof of Theorem 3.3 requires moreover Lemma 5.2, which is based
on a detailed analysis of the average dynamics (7", p(™),q, (that will be
carried out in Section 6) ;

e finally, to show Theorem 3.5 we need: first, a uniform L? bound on the
averages of momentum, see Lemma 5.4 below. The latter will be proved in
Section 6.4, as a consequence of Proposition 4.1 ; second, the equipartition
result for the fluctuation of the potential and kinetic energy of the chain,
which has already been stated in Section 4, see Proposition 4.6.

5.1. Treatment of boundary terms. First of all, the conservation of the en-
ergy gives the following microscopic identity:

n2LE(t) = jo-1,2(1) = Joor1 (1), zell, (5.1)
where
Jeas1(t) = Jewr1(v(t), P(2)), With jy e (T, P) = —PaTui1, (5.2)
are the microscopic currents. At the boundaries we have
n2LE(t) = —joa (1) +7 (T~ - p3(t)) (5.3)
n2LEN(t) = fuorn(t) + Tapa(t) +7 (T4 - P2(2)) - (5.4)

One can see that boundaries play an important role. Before proving the hy-
drodynamic limit results, one needs to understand very precisely how boundary
variables behave. This is why we start with collecting here all the estimates that
are essential in the following argument. Their proofs require quite some work,
and for the sake of clarity this will be postponed to Section 7.3.
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Lemma 5.1 (Boundary estimates). The following holds: for anyt >0
(i) (Momentum correlations)

gl_)rg E, [‘/Otpo(s)pl(s)ds] =0, 711_{{.’10 E, [fotpn_l(s)pn(s)ds] =0. (5.5)

(7i) (Boundary correlations)

B [ mi)ri(s)as] | % B [ pu(s)ra()as| | 5 % s,
(iii) (Boundary stretches) (5.6)
En[fotn(S)ds] S % En[fot(rn(é‘) T+)d8] S in n>1. (5.7)
(iv) (Boundary temperatures, part I)
B [ (1 - 2i) as] s%, B [ -pe)as| s . ns
(5.8)

(v) (Mechanical energy at the boundaries, part I)

E, [[ﬂt(rf(s)wg(s))ds] <1 nsl (5.9)

(vi) (Boundary currents)

¢ ¢
lim E [/ joyl(s)ds] =0, lim E [f jn_ljn(s)ds] =0. (5.10)

(vit) (Mechanical energy at the boundaries, part II) : at the left boundary point

t 1
2 p— —
E, [[0 (3(5) T_)ds] sz el (5.11)
and at the right boundary point
e =2 1
En [A (Tn(S)—7_+—T+)dS:| S ﬁ, n>1. (512)

(viii) (Boundary temperatures, part II)

t
Y T,E, [f (Tx—pi(s))ds]sl, n> 1. (5.13)
z=0,n 0 n
Provided with all the previous results which have been stated (but not proved
yet), we are ready to prove Theorem 3.2 and 3.5. Before that, in order to make
the presentation unequivocal, let us draw in Figure 1 a diagram with the previous
statements, and the sections where they will be proved into parentheses.

13



Proposition 4.4
- (Section 6.3) -

Proposition42 | Lemma 5.1
(Section 6.2) (Section 7.3)
77

/
.

Proposition 4.1 "~ Proposition 4.5 e //
(Section 6.1) (Section 7.1) K

: ’
I
I
I
I
I
I

-
-
-
A

A4
~"~---___| Proposition 4.6
(Section 8)

FIGURE 1. An arrow from A to B means that A is used to prove
B, but is not necessarily a direct implication.

5.2. Proof of Theorem 3.2. Let us start with the diffusive equation (3.12),
which can be formulated in a weak form as:

fol G(u)(r(t,u) —r(O,u))du

t 1
:if as [ G ()r(s,u)du— —G'()F.t, £30, (5.14)
2y Jo 0 27y

for any test function G € C3(I). Existence and uniqueness of such weak solutions
in an appropriate space of integrable functions are standard.
By the microscopic evolution equations, see (2.4)—(2.5), we have (cf. (2.18))

En[ ! Z Gm (Tx(t) - Tx(o))] = nn—2En |:[0td3 iGm (p:v(s) _pxl(s))]

n+1 ;g +1

_E, Uot ds {-nz_ji(vne)x po(s) = (n + 1)G1p0(s)}] +on(1). (5.15)

As usual, the symbol 0,(1) denotes an expression that vanishes with n — +oo.
The dynamics of the averages (T¥(¢),p(t)) is easy to deduce from the evolution
equations (see also (6.2) where it is detailed). We can therefore rewrite the right

14



hand side of (5.15) as

E, [_ ftds {nz_:l i")/(an)x (rz+1(s) =72(5)) + 1 N(V”G)OTI(S)H

T 1

[ 3 Z(WG) (P2 (t) - pz(O))+( ~) Q(VNG)O(pO(t)_pO(O))]+0n(1)'

(5.16)

Since G is smooth we have lim, ., Sup,q, [(VaG). — G'(z)| = 0. Using this and
Proposition 4.4 one can show that the second expression in (5.16) converges to
0, leaving as the only possible significant the first term. Summing by parts and
recalling that G(0) =0, it can be rewritten as

E, [Ati{ ! nz_:l(AnG)x r2(8) = (VaG)n-1 Tn(s)}dS]

29 |(n+1 72
(27+~(VnG)o— (VnG)l)En[[Oth(s)ds]. (5.17)

Therefore, we need to understand the macroscopic behavior of the boundary
strech variables, which is done thanks to Lemma 5.1: from (5.7) we conclude
that the second term vanishes, as n — +o00. Using again (5.7) but for the right
boundary we infer that (5.17) can be written as

K i ! " =(n) al =
0 2v Jo u)d '
[ ds{ [ 6 (s, uyd G(1)7'+}+0n(t), (5.18)

where lim,, ;0 SUPy[g 4 0n(s) = 0. Thanks to Proposition 4.4 we know that for a
given t, >0

s sup 1705 51 319
The above means, in particular that the sequence {7 (-)},s1 is bounded in the
space L*([0,t.]; L2(I)). As this space is dual to the separable Banach space
LY([0,,]; L2(T)), the sequence {F(™(:)},s; is *-weakly sequentially compact.
Suppose that r € L*([0,¢,]; L2(1)) is its «-weakly limiting point. Any limit-
ing point of the sequence satisfies (5.14), which shows that has to be unique
and as a result {7 (:)},s1 is *-weakly convergent to 7 € L>([0,t,]; L(I)), the
solution to (3.12)—(3.13).

5.3. Proof of Theorem 3.3. The following estimate shall be crucial in our
subsequent argument.

Lemma 5.2. For any t >0 we have
n—-1 t
ny fo T () -7 (s)) ds g1, m> L. (5.20)
z=0

15



The proof of the lemma uses Proposition 4.2, and is postponed to Section 6.5.
Define rl(nt) :[0,+00) x I - R as the function obtained by the piecewise linear
interpolation between the nodal points (z/(n+1),7,), x =0,...,n+ 1. Here we

let 7,,,1 :=7,. As a consequence of Lemma 5.2 above we obtain

Lemma 5.3. For any t >0 we have

n 2
supf Hrfnt)(s, -)HHl(H)ds =h(t) < +oo, (5.21)
where HY(I) is the H' Sobolev norm: HFHH1(H) HFHLz(H) - HF’H%Q(H). Moreover,
lim sup f Tint (s u)ds—f r(s,u)ds| = 0. (5.22)

Proof. 1t is easy to see that

1 n-1

R () =7 () ey = m;(ml(t)—m(t)f, n>l. (5.23)

Thanks to (5.20) we obtain (5.21). Using (5.23) we also get

im [ Hrlm ) =7 (s, ')H;(H) ds =0, t>0. (5.24)

From the proof of Theorem 3.2 given in Section 5.2 we know that the sequence
N 7 (s,u)ds weakly converges in L2(I) to Jir(s,u)ds. From (5.21) and the

compactness of Sobolev embedding into C'(I) in dimension 1 we conclude (5.22).
O

Thanks to (5.21) we know that for any ¢, > 0 we have

85[3?]” w8 ) g s m>L (5.25)

The above implies that the sequence {[T mt] (‘) }ns1 is sequentially x—weakly
compact in (L'([0,t,];C(I)))". One can choose a subsequence, that for con-
venience sake we denote by the same symbol, which is x—weakly convergent in
any (L'([0,t.];C(T1)))", t. > 0. We prove now that for any G € L([0,t.]; C3(I))
we have

[
im [ dt [ (7 (1, 1)) Gt u)du = / dt [rz(t,u)G(t,u)du, (5.26)
0 I

n—+0o

where r() is the solution of (3.12)—(3.13). By a density argument is suffices only
to consider functions of the form G(t,u) = 1o, (t)G(u), where G € C§(I), t. > 0.
To prove (5.26) it suffices therefore to show that

f at ¥ {[¢ P2 (t,2)} G, = 0. (5.27)

zelly,

lim
n—+oo n, +
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Let M > 1 be an integer, that shall be specified later on, and ¢, := ¢t,/M, for
¢=0,...,M. The expression under the limit in (5.27) can be rewritten as B} (M )+
B2(M) + 0,(1), where 0,(1) - 0, as n — +o0, and

1 M-1 tos1 17281
BL(M) - o [ Rt [ ) o]
ty ty

=0 zely,
M-1 t

BX(M) = L Y Y, f 1?;@(15){] i?&”)(s)ds}dt
=0 zel, t, ds

n2

Z S G, f (1) f P (5) - P () ) s, (5.28)

n +1 =0 xely
The last equality follows from (2.4)-(2.5). In what follows we prove that
hm limsup |BZ(M)| = j=12. (5.29)

n—>+00

Summing by parts in the utmost right hand side of (5.28) we obtain B2(M) =
>0 B (M), where

2 M-1n-1 [

LSS [HEA @) - G 0) [ s

(=0 z=1
n2 M-1

> [ Gn r(")(t){f p(”)(s)ds}dt
n“r‘]_ =0 Jte

Bla= g 2 f e Mt){/ pé)(s)ds}dt

2 _ g2 2
We have B; | = B} |, + B;, | 5, where

; n M-1n-1 ( ) —(n)
B - E / 7 () (VaG) s {/ " (s)d }dt
n,1,1 n+1l = =, ( )( o (S) S
n2 M-1n-1 tos1

Gon(F0(0) -7 0) { [ 9 (5)as .

By the Cauchy-Schwarz inequality we can bound |B2 | ,| from above by

el {nZi JRGRICEEI0) dt} " {MZMZI I t{ t;ﬁgm(s)dsrdt}m

< {(n+ 1);1[) ( x+1(t) —(n)(t)) dt}1/2 {nj\jz(:)l Z:: ftz+1 {/ p(n)(s)ds}2 dt}l/Q
o2 8 [ [ (ﬁ;”><s>)2dsdt}/ o T [ ey }/

17
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by virtue of Lemma 5.2. Using Proposition 4.4 (estimate (4.5)), we conclude
B2 15l S 1/M and limp/ o limsup,,,, o, |B? 5| = 0. The argument for |B? || is
analogous As a result we conclude limy,., o lim SUD,, 100 | B 1] =

Concerning B}, we can write

M-1
2 _
Bn,2 -

tov1 t
(VG P (1) { f p;m(s)ds}dt
ty

0=0 Jte

Therefore, we have

M-1 78] t
Bs y [CEOoH{ [ R eds)a
T i e te
t 1/2 1
{[Crroud {e [T Ere)as) s
0 0 n

by virtue of Lemma 5.1-(5.9) and Proposition 4.4 (estimate (4.5)). We conclude
therefore that limps. e limsup,, o [B2o| = 0. An analogous argument shows
that also limpy e limsup,, o, | B2 5| = 0. Thus, (5.29) holds for j = 2.

We have BL(M) = B, ,(M) + B, ,(M), where

1 M-1
Bl (M) = W(u)] r(te 2) - (t 2)] dt,
n+1 420 zd,
1 M-1
B} o (M) =— > ya T(n)(tg)/ (")(t)—r(tg,n )]dt
=0 zel,

where r is the solution of (3.12)—(3.13). By the regularity of the r(¢,u), Lemma
5.3 and estimate (5.25) we can easily conclude that limps e imsup,,,,o |B,, ;| =
0, j =1,2. Thus, (5.29) holds also for j = 1, which ends the proof of Theorem 3.3.

5.4. Proof of Theorem 3.5. Concerning equation (3.21)—(3.22), its weak for-
mulation is as follows: for any test function G € L'([0,+00); CZ(I)) which is
compactly supported, we have

0= fHG(O,u)eo(u)duJr ‘/;+°° /H(asG(s,u) + i&ﬁ(}'(s,u)) e(s,u)dsdu

1 +00

+—/ f&ﬁG(s,u)'rg(s,u)dsdu
8y Jo I
1

" Jo oo(auG(S,l)(T++F3)—T, 0,G(s,0))ds. (5.30)

Given a non-negative initial data ey € L'(I) and the macroscopic stretch r(-,-)
(determined via (5.14)) one can easily show that the respective weak formulation
of the boundary value problem for a linear heat equation, resulting from (5.30),
admits a unique measure valued solution.

18



Recall that the averaged energy density function E(n)(t, u) has been defined in
(3.11). It is easy to see, thanks to Proposition 4.5, that for any ¢, >0 we have

. =(n)
B G I Ol <o

Thus the sequence
t— n
Eo(t) = f £ (s)ds,  n>1,te[0,t.] (5.31)
0

lies in the space C([O,t*],M(E(t*)), where M(E(t,)) is the space of all Borel
measures on I with mass less than, or equal to, E(t.), equipped with the topology
of weak convergence of measures. Since I is compact, the space M(E(t,)) is
compact and metrizable. The sequence (5.31) is equicontinuous in the space
C ([0, t.]; /\/l(E(t*)))7 therefore it is sequentially compact by virtue of the Ascoli-
Arzela Theorem, see e.g. [8, p. 234].

Suppose that E(-) € C([O,t*],M(E(t*))) is the limiting point of {E,},>1, as
n — +o00. We shall show that for any G as in (5.30) we have

[OtdsfHG(s,U)E(s,du):[OtdsfﬂﬁsG(s,u)E(s,du)+[HG(0,u)eo(u)du

t t s
+if dsf&ﬁG(s,u)E(s,du)+i[ ds[du 0“2G(s,u)<[ r2(a,u)d0)
4v Jo I 8y Jo I 0

L Ots(&uG(s,l)(T++ﬁ)—T_&UG(S,O))ds, tef0,t.]. (5.32)

This identifies the limit £ of {E,} as a function £ : [0,+00) x I - R that is the
unique solution of the problem

1 1 t
OBt u) = 132, {E(t,u) s [P u)ds} veo(u), (tu)eR.xI, (5.33)
Y 0
with the boundary conditions
1
E(t,0)=Tt, E(t1) - (ﬂ . fz) N (5.34)

and the initial condition E(0,u) = 0. Here r(t,u) is the solution of (3.12).

Concerning the limit identification for {E(n)}Wl we can write

t e (n t

/ [5( )(s,u)G(s,u)duds = [En(t,u)G(t,u)du—f [En(s,u)ﬁsG(s,u)duds,
0 Jr I o Ji

and, by passing to the limit n — co, we get that the left hand side converges to

t t

fE(t,u)G(t,u)du— f [E(s,u)&sG(s,u)duds = f f@sE(s,u)G(s,u)duds.
I 0 Jr o Ji

Hence, any —weak limiting point e € (L'([0,t.]; C2(I)))* of the sequence {E(n)}n>1

is given by e(t,u) = 0, E(t,u), which in turn satisfies (5.30) and Theorem 3.5 would
then follow. Therefore one is left with proving (5.32).
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Consider now a smooth test function G € C*([0, +o0) x I) such that G(s,0) =
G(s,1)=0, s>20. Then, from (5.1), we get

fHG(t,u)dug(n)(t u) — [G (0,u) 2(")(0 u)du
=— Z E,[G.(t)E(t)] - — Z E, [G.(0)E.(0)] +0,(1)

CEEHTL 936]177,

-2 1f o(Ge()€u(s))]ds + 0n(1) = L + 1L + 0a(1),

where 0,(1) = 0, as n —» +o0 and

fthlE 0, ()€ (9)] ds—f J 6 E™ (s, u)duds + o, (1),
ftnzlE G ()08 (5) | ds.

Thanks to (5.1), and after an integration by parts, we can write

tn—1
f 3E, (G (5) (ot = Jimwer ) (5)] ds = L, + 11,5, (5.35)
with

1L, = fOtEE[(an)m(s) Jear1(s)]ds

1,9 := fOtE[ ~nGpo1(8)Jn-1.n(s) + nGl(s)jO,l(s)]ds

By Lemma 5.1-(5.10), we conclude that II,, 5 = 0,(1).
By a direct calculation we conclude the following fluctuation-dissipation rela-
tion for the microscopic currents:

j:r,aH—l = n_QLgm - (vx+1 - Vr)a HARS H?m (536)
with

1 1
Goi= =it (et ran), Voi= (24 pepe) (5.37)
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Using the notation g, () = gx(r(t) p(t)) (and similarly for other local functions),
this allows us to write II,, ; = Z] 111,15, where

R A A (RO NEIA®)
o= [ 5 3 B[ (7,6).(5) Lo (o) s,

1L, 5= f ds B[ (VaG)noa(5)Vis ()]

I, 4= fo ds B, [(V.G)1(s)Vi(s)].
We have

1n2

1= 5 3 (FaG)a(OE, [0:(0] - = 5T 05, [02(0)]

- [ S mem s

which vanishes, thanks to Proposition 4.5. By Lemma 5.1-(5.5) and (5.11)-
have:

lim 11,1 4 = lim f W[(VG)1 (s)Vl(s)]ds =— hm f 0uG(5,0)E,[ri(s)]ds

- E /O 0,G(5,0)ds, (5.38)
which takes care of the left boundary condition. Concerning the right one:
hos=- [ E[(Va@)aa(5)Vr (5)]ds = Ty + s, (5.39)
where
Jri= [ EJ(Fu@)a() (Vo Vo) ()]s
Jno = —/OtEn[(VnG)n_g(s)Vn(s)]ds.

By virtue of Lemma 5.1-(5.12) we have

lim J,2 =~ lim E, [/Ot(VnG)n_g(s)Vn(s)ds] ;@ fotauG(s,l)ds.

n—+oo

On the other hand, using (5.36) for x = n — 1, the term J, ; equals

Tas = =B | [ (926)0s(9) Lga s (515 |+ [ (00 a(5)E 1))
(5.40)
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From Lemma 5.1-(5.10) we conclude that the second term vanishes, with n — +oo.
By integration by parts the first term equals

B[ (720)n2(0)901(0) = (9,G) o)1 (1))

E, [ A t(Vn(?sG)n_g(s)gn_l(s)ds], (5.41)

which vanishes, thanks to Proposition 4.5. Summarizing, we have shown that

: . t (T, +72) ft
lim 10,5 =— lim E, [ [ (VnG)ng(s)an(s)ds] - [TaG(s s

n—+oo n—+oo 0 ’Y 0
(5.42)

Now, for the bulk expression II,, ; ;, we can write II,, 11 = 51 + Jn,2, Where
1 "= 2
To i= 47[ 3 E[(2,0).(s)2 ()]s
t 17 2
T = [ 5 SEAOppea()]ds

5.4.1. Estimates of J, 2. After a direct calculation, it follows from (2.6) that

n2Lhy = (Wee1 = Wa) = Daba-1, x=2,...,n-2, (5.43)
with
1 /1
hx = a (5(70:1: + rm—1>2 + Pr-1Px — r?g) s
1
Wx = 2_19172(7}71 + T:v)-
Y

Substituting into the expression for J,. we conclude that 7,2 = K1 + K, 2,
where K, ; and K, 5 correspond to (W, —W,) and n=2Lh,, respectively. Using
the summation by parts to deal with K, ;, performing time integration in the
case of K, o and subsequently invoking the energy bound from Proposition 4.5,
we conclude that

Tim J,2 =0, (5.44)
5.4.2. Limit of Jn1. We write Jp1 = Tnig + Tn12 + Tna3, Where

t ] no 2
T = ™ f ZE (ALG)(s)Es (5)]d5

t 1 7= 2
Turo= g [ DA - [P () ),

t1'C 2 n n
Turs=g [ % SE[QG(F@F - (£ ()F) as.
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To deal with the term [, 1,3 we use Proposition 4.6, which allows us to conclude
that lim, e Jn13=0
Concerning the term J,, 1 2 we first note that lim,,_, e (Jp1,2— Tn12) = 0, where

Fonaim ft 1"22(A ). (5) (7 () s

This is a consequence of the following result, proved in Section 6.4 (and which
uses Proposition 4.1).

Lemma 5.4. Under Assumption 3.1, for any t >0 we have

log*(n +1
f sup [p{( 8)‘2(218 g2 (Z+ ), n>l (5.45)
0 n

zel,

Next, using Theorem 3.3, we conclude that

_ ¢
lim Jp12= L / ds /du (O2G) (s, u)r*(s,u), (5.46)
n—+oo T 8y Jo I

where 7(-) is the solution of (3.12).
Summarizing, the results announced above, allow us to conclude that

[H Gt )™ (¢, u)du - fﬂ G(0,)™ (0, u)du
Lot [z (n) 1t )
__ry./o fﬂ(@uG)(s,u)é’ (S’u)dUdS_@./o .A(a“G)(S’u)T (s,u)duds
(T, +72)
4y

t t
+% [ 265, 0)ds - [ 26, 1ds + o),

where limy, o SUPg[o4,]0n(5)] = 0 for a fixed ¢, > 0. Given ¢ >0 we can take, as
test function, G(s,u) := H(t,u), for any s € [0,¢], with an arbitrary compactly

supported H € C([0,+00); C3(I)). Integrating over t € [0,t.] we obtain that
E,(t), cf. (5.31), satisfies

fot* fHH(s,u)En(s,u)dsdu
= fgt* dsfaSH(s,u)En(s,u)dmfH(o,u)z(")(o,u)du
+%f ds [ 02 H(s,u)Ens, u)du+—[ as [0 w( [ r(0,wdo)u
——f (0uH (5,1) (T +72) = T-0,H(s,0) )ds + on(t.),

with o0,(t.) = 0, as n — +oo. This obviously implies (5.32) and ends the proof of
Theorem 3.5.
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6. DYNAMICS OF THE AVERAGES

This part aims at proving previous results which have been left aside:

e (Sections 6.1 and 6.2) Proposition 4.1 and Proposition 4.2, which only
deal with the extremity points z =0 and x =n ;
e (Section 6.3) Proposition 4.4 which gives an L? bound on all the averages
(its proof uses Proposition 4.2) ;
o (Section 6.4) Lemma 5.4, which controls sup, [p™ (s)[?
(its proof uses Proposition 4.1) ;
e (Section 6.5) finally, Lemma 5.2, which gives a bound on the H!'-norm of
the stretch averages
(its proof uses Proposition 4.2, Proposition 4.4 and Proposition 4.5).
All their proofs are based on a refined analysis of the system of equations satisfied
by the averages of momenta and stretches.

To simplify the notation, in the present section we omit writing the superscript
n by the averages p(™ (), 7V (t) defined in (3.11). Their dynamics is given by
the following system of ordinary differential equations

R ORI GRO RO NI B (6.1
S50 = (T () -To() - 207, (1), we (62
and at the boundaries: 7o () = 0,
Su(0) = (1) (27 + B0, (63
.(0) = (1) 02 71(0) - (2 + )P, (1), (64

We have allowed above the forcing 7, () to depend on ¢. Although in most cases
we shall consider 7,(t) = 7, constant, yet in some instances we also admit to be
in the form 7,(t) = 1po4,)(t)7. for some ¢, >0, 7, € R.

The resolution of these equations will allow us to get several crucial estimates.
For that purpose, we first rewrite the system in terms of Fourier transforms, and
we will then take its Laplace transform. Let us define

(k) =E,[F(t,k)],  B(t,k) =E[p(t,k)].
From (6.1) and (6.2) we conclude that

d (F(t, k) o, (Tt k) o 0 9 A 1
7 Gk) = 4 (e ) om0 () 0 (5) 0 (7<) ’)
6.5

where
0 1= €—2i7rk
A= (€2i7rk_1 _2,)/ )
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Assuming that 7,(¢) = 7,, t > 0 we can rewriting equation (6.5) in the mild
formulation and obtain

(%g: :%) = exp {n?At} (;8: Zg) +n’T, [ exp {n*A(t-s)} ( 2mk) ds
- n? fot exp {nzA(t - s)}po(s) (%) ds
+n? /O‘texp {n?A(t - s)} pu(s) (_,76127”%) ds. (6.6)

Denoting by A, (k) = —(7 + \/72 - 4sin2(7rk;)) the eigenvalues of A we obtain the
following autonomous integral equation for {p,(t)}e,

t
R =TO 0+ [ -9 s)s+ [l 9mne)s, (67
where

(n) n? 2riks (g2nik _ 1) (" 20, (k) _en2t>\_(k))

Qo (1) = Zme

037 (1) —’YZ 2N B e e B - (e ),

Poin (8) =Dy (s) = Ba(s),

Pom () = Po(s) +€*™*P,,(s),

( -(1- e2m’k)’7‘(0, k) + F+€2m'k)(en2t)\_(k) _ eth)H.(k‘))

'7\;(71) (t) = /z\:e%rikx

kel A_(k) = A (k) ;
4 3 eriel P(0, k) (A (k)M — X, (k)etr+ ()
keT, /\_(k?) - )\+( ) ’

6.1. Proof of Proposition 4.1. We define, for any x €I, and any A € C such
that Re(\) > 0, the Laplace transforms:

5. () = fo Mg (1)dt,  Fo() = fo ez (Dt
and
FO\ k) = fo TN )AL Tk = fo MGt k.
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Performing the Laplace transform on both sides of (6.5) we obtain the following
system

%()\,k) _ 12 2)-1 /T_\(ka) 2= 2 A4)-1 0
(5@\,/{;)) =(A-n°A) 50.%) +n°T,(A)(A=n*A) ook (6.8)
1
Oy (L) T O ).
Here
2 )1 1 % +2y  1-e 2k
N\ = ____ - __In
A=) = RO B ik A
n2
and A(\ k) := A2 + 29\ + 4sin’(7k). Let
~diff ~(+ ~ ~
P (V) =Fo(N) =B, () and - B, (3) = Fo(N) +F, (V).
Since i,@j((), k) =1o =0 we have
5 ~Asin®(7k)F(0, k) 5 (- 4sin®(7k) + A(A\/n2,k)) 7(0, k)
w A/ k) et A(Nn? k)
<= Mn2(\/n? +27) 7(0,k)
=y : (6.9)
et A(Nn? k)
. . ~diff ~(+)
Using (6.8) and (6.9) we conclude the expressions for py,, (\) and py,, (\)
~diff 1 = (\/n2 + 29)7(0, k)
q
pOn( ) 2ed,n()\/n2)k’ﬂ* A()\/TLQ,]{) (6 0)
N 1 Z (1-e2mk)p(0,k)  27,.()\) /Z\ sin?(7k)
n*eqn(A/n?) = A(Nn2 k) edn()\/nQ) A()\/nz,k)
and
~(+) < sin(27k)7(0, k)
A) = A1
n (V) = nes, )\/n2) Z A(A/n? k) (6.11)
. A = (1 +e2mk)p(0, k) . 227, (\) = cos?(wk)
ntes,(An?) = A(\n? k) n’es,(An?) Z A(ANn? k)’
where
A+ 27 + 2 sin® (k)

edm(/\) = ’Z\

e AP 29N+ 4sin®(mk)’
A2+ 29\ + 27\ cos? (k) + 4sin®(7k)

esn(A) = /z\:

k é]fn

A2+ 29\ + 4sin®(7k)
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6.1.1. First part of Proposition 4.1: estimates of [Py — Py | r2(r.)-
Let us fix ¢, >0 and consider 7,(t) := T, 1104,7(). Then, for A e C,Re()) >

7.(\) =?+'/0 e Mdt = f(l—e‘”*).

By the Plancherel Theorem we have

— 1 ~diff |2
[Fo=Pulsce = 5= . Fow ()", (6.12)
therefore, from (6.10), we can estimate
1Po = PulZoe.y § Pra + Pra + Paa, (6.13)
where
d 1 2 -2
Pn,l = ) ‘pd,n(n)| ‘ed,n(n)‘ dn? (614)
n? Jr
1 2 -2
Plyi=— [ |ran(m)| |ean(n)| dn, (6.15)
n? Jr
1 sin(n2nt,/2)|? 2 -2
P??,?) = _2f (—/)‘ |an(77)‘ |€d,n(n)| d777 (616)
n? Jr n
and
ean(n) = €qn(in) (6.17)
= in+29)7(0, k
pan(n) = 3, ( Jr(0.%) (6.18)

Pl 4sin®(mk) —n? + 2iyn’

_=_ (1-em)p(0, k)
Tan (1) = kgmélsinz(wk) I (6.19)
an(n) =3 2¢in (k) (6.20)

kefnélsinz(ﬂk) - n2+ 2iyn

After elementary, but somewhat tedious calculations, see the Appendix sections
A, B, D and E for details, we conclude that: for any n € R,

1
— S lean(n); (6.21)
7]
< -
lan(m] S 1 el (6.22)
1
|7Td7n(lr])| 5 2 1 IOg (1 + |n|_1)7 (623)
n 1
pan(n)| —, >l (6.24)
ed,n(n) n°+1

Let us emphasize here that these bounds are obtained thanks to the assumption
that we made on the spectrum of the averages at initial time, recall Assumption
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3.1-(3.10). From (6.16), (6.21) and (6.22) we get

1 1 preody 1
P7f3~n2/0 51n2(n217t*/2)dn+ﬁv/; — < —.

n2 n2

A similar argument, using (6.23) and (6.24), shows that Pg; < n2, for j = 1,2.

As a result we conclude (4.1).

6.1.2. Second part of Proposition 4.1: estimates of [Py + Py r2(r,)- -

Recall that 7,(t) = T, 1[o4,)(t). The strategy to estimate |py + P, [r2r,) is

completely similar. First, we write
(+)
1Py + Pl = 5= [ o i)

with 582 given by (6.11). Substituting from (6.11) we get
Hpo"'anL2(R)~Ps + Lo+ P,

where

Py = [ Jounn)fecn (],

Py, = ﬁénz\m,m(n)l ean(m)] “dn,

Prai= 5 [ sl 2t 2)]enn)f ewn ()]
and

es,n(n) = es,n(in)
=  sin(27k)7(0,k)

ps,n(n) = ; ] ’
g:fn -2 + 2iyn + 4sin’ (k)
- (1 + 6—27rik /5 O)k
(1) = = —n? + 2y + zJLS(iI12(7)T/<J) 7
kel
— 1+ cos(27k
AOEDY .

T+ 4sin®(nk) + iy

We have, see the Appendix sections C, D, E, F, for any n e R
1< lesn(n)l;

1
|Cn(77)| N )
VInl(1+nPr?)
1 _
- 1log(1+ln| Y,

|pS,n(77)| S

|7Tsn(77)| n2l.

"l
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(6.25)

(6.26)

(6.27)
(6.28)

(6.29)

(6.30)

(6.31)

(6.32)

(6.33)

(6.34)
(6.35)

(6.36)

(6.37)



Using (6.34) and (6.35) we conclude that

+00 qin2 2 1 qin2 2
Piys— f s (n*nt,[2) dn 1 [ St 2) g L (639)
© o nf Jo Ui 1+n° n=Jo n n
n%te qin? 2
Si sin (n)dn+islog(nt*+1), n> 1.
n? Jo n n? n?
From (6.34), (6.36) and (6.37) we can easily obtain P ; n=?, n>1, for j=1,2.
By virtue of (6.26) we conclude (4.2). Finally, Proposition 4.1 is proved. O

6.2. Proof of Proposition 4.2. To prove Proposition 4.2, we use once again
the autonomous system of equations for the averages of the momenta (6.1)—(6.4),
and we will prove two estimates, on

fot(ﬁo(8)+ﬁn(8))ds and /Ot(l_?o(s)—]_?n(s))ds.

Recall that 7,(t) = 7, 1104,)(t). Note that for any 0 <a <b<t, we can write

b_ ein(b_a) -1 ina= ¢
S Pelos = [ e (imyan (6.39)

Using (6.10) and (6.11) we conclude that

in(b-a) _ 1 . i ~ ~ ~
e—-emaﬁgf(m) = Pﬁll +P32+Pf33
2min ’ ' ’ ’

in(b-a) _ 1 = _, ~ ~ ~
e—.e’"“ﬁég(in) =Py +P22+P33
2min ' ' ’ ’

where, for ¢ € {d,s}, we denote

~ 1 — ein(b-a)
Py = e- e pn (1) eL_}L
’ 2min?n ’ ’

~ in(b-a) _ 1 |
P!, = e T - e”’“mn(i)e;;(—),
’ 2min?n “A\n?2) " \n?

P;(ig . _?_+2(€in(b7a) _ 1)(6*2'7715* -1 eiﬁaan (E) 6;171” (E) ’

27 n n
Ds T in(b—a ints ina n - n
Pra = g (o107 <) (7 < 1)eme, () e (1)

Hence,

[ ) -pa)as

o[ =0 ) Lt an)

< (b-a)'/?
~ n

: (6.40)
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where we have used Proposition 4.1-(4.1). On the other hand

[ ) +7u5))as

S In71 + In,Q + In,?n (641)

where

1 . 1 dn
li= = f\sm(n%(b—a)/2)| s ()] lesn() ™
n= Jr l

1 . -
L= [ JsinGatao - @)/2)] [ran()] esn )l an

L= oz [ Jsin(rn (o= a)/2) st /2 e ()l T2

Suppose that p € (0,3] and 0 < b—a < 1. Thanks to the estimates (6.34)—(6.37)
we conclude that

g L [ L0 it~ ) DsinGo )k
e (b-a)» 1) n2 0 V(1 +n32)

b—
s( nza) T (6.42)

where In 3> J = 1,2 correspond to splitting the domain of integration in the last
integral into [0, 1] and [1, (b—a)7P], respectively. We have

|sinz| S 2P, z>0.

Using this estimate to bound |sin(n?n(b—a)/2)|, since |sin(n?nt./2)| < 1, we can
bound (recall that p € (0,1]):

(b—a)r ! dn (b a)p

1
PR 209 o 771/2_” - (6.43)
In addition,
(b —a)p O dnp (b-a)P

n*r n

As a result, we obtain 1,3 $ (b— a)?/n. Estimates for I, ;, j = 1,2 are similar.
Hence, for any t > 0 we can find p > 0 such that

[ ) +p()as s 22,

and this together with (6.40) implies (4.3). O

n>1, (6.45)

6.3. Proof of Proposition 4.4. Let

STROYEO. P = X RO,

zel, z=1 zel,
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Multiplying the equations (6.1), (6.2) by 7,(¢) and p,(t), respectively and (6.3),
(6.4) by py(t) and p,,(t) and summing up we get

;;“"(t) n { VB (t) - Wf)o(t)——won(t)+ pn(t)n} (6.46)

Hence, by virtue of (4.3), we conclude that for any ¢, >0

1 t
[ 5,(s)ds| s n
0

~(Ba() -Ea(0)) < 0?7 e [0,.]. (6.47)
and (4.4) follows. From (6.46) we obtain further

2

(6.48)

'/Otﬁn(s)ds

Using Assumption 3.1-(3.9) and Proposition 4.2 we conclude that given t, > 0 we
have

%‘Bn(t) < %EH(O) _n? fo " (s)ds + n?7|

t__
PBo(t) s n-n? / PB,(s)ds, te[0,t], n>1. (6.49)
0
Therefore (4.5) follows upon an application of the Gronwall inequality. O

6.4. Proof of Lemma 5.4. To prove Lemma 5.4, we need an estimate for

sup ‘p

zel,

which can be done using the explicit formula (6.7). Note first that we have the
following inequalities for A, (k):

.92 c 2
-4 sin*(7k) () < -2sin (7rk)
v g

Therefore, in order to estimate the members which appear in the right hand side
of (6.7), let us introduce, for £=0,1,2,

n = |sin(7k)[f 2t sin’ (k)
( )(t) Z R COEwE] (exp{ - f} +exp {-t} )

-2y <A (k) <= and

Lemma 6.1. We have
(n) 1

(t),\,m, t?O,n>1,€=0,1,2. (650)

Proof. We prove the result for ¢ = 2. The argument in the remaining cases is
similar. It suffices only to show that

= 2t sin? (k) 1
> sin®(mk) exp{ - S )
kel { v } (1 + t)3/2

Since the left hand side of (6.51) is obviously bounded it suffices to show that

_ 2
" sin®(7k) exp { 2tsin(mh)y (k)
kefn g

t>0,n>1. (6.51)

} t3/2, t20,n> 1, (6.52)
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which follows easily from the fact that sin®(7k) ~ k2, as |k| < 1. O

From (6.7) we get that for any ¢, >0
sup [P, (t)|10,6.(t) < In(t) + 1L, (2) + 111, (¢), (6.53)

xel,

where

L,(t) = Q" (n2) 104 (1),

(0= [ (¢ )P o) (5)ds.
L (1) = [ g (- ) 7 (5) Lo (5)ds

and qé”)(t) = n2Q (n2t)1[0,t*](t), for ¢ = 1,2. Therefore, from Lemma 6.1 we

get
) B (n) [ 9\ 2 1 r’te dt log(n+1)
gy = [ @57 2e) a5 [ S 5 2B

n

We also have

t n2t
n () < dt
a1 1210, 00) = 7 fo Q (n2t)dt5f0 T Slog(n+1),

t n2t
(n) o [, < dt
i st =2 [ @00t [T sl st

In order to estimate [pj|, recall Proposition 4.1: using (4.1) and the Young

inequality for convolution we obtain

(n) i 2 log (n+ 1)
ITL,, ||L2 [0400) S ” HLl 0 +oo)H nliot) L2[0,+00) s n?
and ( )
2 (n) —sum 2 lOg—n +1
||1Hn||L2[o,+oo) A H ”Ll 0+oo)H 1[ b Il £2[0,+00) S n?
Thus, the conclusion of Lemma 5.4 follows. O

6.5. Proof of Lemma 5.2. To prove Lemma 5.2 we need to get an expression
for

S0 -700)
z=0
Using (6.1) and then summing by parts we get

%( ! ng(t))zn”fl (1B (8) B ()

n+1 ocl,

L (W) -

2 5, (1) (7 (1) = T (1)) +

P71 ().

32



Computing ﬁx(t) from (6.2) we can rewrite the utmost right hand side as

nld—
- l)z(m B -Tra(t)) - 27(n+1)z 20 5, 1) -7, ()

B0 - BT ().

Therefore, after integration by parts in the temporal variable, we get

27(n + 1) _/ Z 7a (s ?x+l(3))2d5 = n}r 1 x%i (72(t) -72(0))

M) [ B (5) s (5) -2, (5) s

27(7“1 (pr(t)(m(t) 7‘;0+1(7f)) Zlﬁx(())(m(())_q—nm(o)))

n2

n+1 1 [0 Po(s)T1(s)ds.

Using (4.4) from Proposition 4.4 we conclude that the first and third expressions
in the right hand side stay bounded, as n > 1. Summing by parts we conclude
that the second expressmn equals

2”)/(n+1)/ Z px+1(5) px(s))
27(n+1)_/ pi(s) Pl(S) po(s)) D 1(5)(pn(3) B 1(3)))

The expression stays bounded, due to Proposition 4.4-(4.5).
Multiplying (6.3) by py(t) and integrating we get

O -BO) =0 [ T ds -0+ [ s (659

From here, thanks to Proposition 4.4—(4.5) (which controls [ pj) and thanks to

Proposition 4.5 (which controls the left hand side of (6.54) since pa(t) < 2E(t)
by convexity), we conclude that

[ Fmas)as| s 1

Multiplying (6.4) by p,,(¢) and integrating we get

(B0 -F0) =7 [ B)ds— [ Tu(@p,()ds—n(y+7) [ F()ds

From here, thanks to Proposition 4.4—(4.5), Proposition 4.2 and Proposition 4.5

we conclude that
‘ f Tn(8)D,(5)ds| S

This ends the proof of (5.20). O

ﬁn
0

n
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7. ENTROPY PRODUCTION

This section is mainly devoted to proving Proposition 4.5, which will be con-
cluded in Section 7.2. For that purpose, we will obtain an entropy production
bound stated in Proposition 7.1 below, in Section 7.1. Its proof uses Proposition
4.2. This new result, together with the estimates given in Proposition 4.2 and
Proposition 4.4, will also allow us to conclude the proof of Lemma 5.1 (which
give all boundary estimates), in Section 7.3.

7.1. Entropy production bound. To prove Proposition 4.5, we need to show
that

sup . En[&c(s)]

S€[O,t] IGHn

grows at most linearly in n. We first relate this quantity to the entropy production,
as follows: recall that f,(¢) is the density of the distribution p,(t) of (r(¢),p(t))
with respect to vy, see (3.1). We denote the expectation with respect to vy by
(-Dr. Given a density F € L?(vr) we define the relative entropy H, r[F'] of the
measure du := F'dvp, with respect to v by

H,r[F] = (Flog F)y = fQ Flog Fdur. (7.1)

We interpret F'log F' =0, whenever F' = 0. Finally, we denote

Hy, () = Ho o[ fo(1)]. (7.2)

Then, by virtue of the entropy inequality, see e.g. [9, p. 338] (and also (7.18)
below), and from our assumption (3.7) on the initial condition, we conclude that:
for any a >0 we can find C, > 0 such that

E, [ 3 Sx(t)] < é(Can +H,r(t), t>0. (7.3)

xel,

This reduces the problem to showing a linear bound on H, 7(¢), which is the
main result of this section.

Proposition 7.1. Under Assumptions 3.1, for any t, T >0 we have

sup H, r(s) $n, n> 1. (7.4)
s€[0,t]
In order to prove Proposition 7.1 (which will be achieved in Section 7.1.3), we
first introduce another relative entropy which takes into account the boundary
temperatures fixed at T_ and T, and explains how relate them to each other.

7.1.1. Relative entropy of an inhomogeneous product measure. Recall the defini-
tion of the non-homogeneous product measure 7 given in (3.3) and of the density
fn(t) given in (3.5). The relative entropies H,(t) (defined in (3.6)) and H, 7 (t)
(defined in (7.1)) are related by the following formula.
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Proposition 7.2. For any T >0 and n > 1 we have

Hor()=Fa(0) - [ 3 (8- T)& - 4i7r) Fut)d7

Qn zelly,
1
- Z (G(Be,T4) -G(T,0)) - 51og (r-T7), t>0. (7.5)
x=1
In addition, for any t, >0
H,:(t)sH,(t)+n, n>1,te[0,t.]. (7.6)

Proof. Formula (7.5) can be obtained by a direct calculation. To prove the bound
(7.6) note first that one can choose a sufficiently small a >0 so that

sup —log{/ exp{ -« Z ((ﬁx - T‘l)&t - Bzﬂrx) }ﬁ(dr,dp)} = (C, < +o0.

n>1 n

xel,
(7.7)
From the entropy inequality we can write
> f (Bo = TY) &, - BuFory ) Tult)dT < —(c n+H,(1).
zely,
Thus (7.6) follows from (7.5). O

7.1.2. Estimate of H,(t). Next step consists in estimating H,(¢) by computing
its derivative. Using the regularity theory for solutions of stochastic differential
equations and Duhamel formula, see e.g. Section 8 of [3], we can argue that
ﬁl(t,r,p) is twice continuously differentiable in (r,p) and once in ¢, provided
that f,(0) € C2(Q,), which is the case, due to (3.7). Using the dynamics (2.4)-
(2.5) we therefore obtain:

()=~ (1 =77 5 B e (0] 500 - D), (78)

where j; ;11(t) := jo o1 (r(t), p(t)), With j, .1 given in (5.2), and the operator D
is defined for any F' > 0 such that F'log F' € L'(¥) and (V,F)'? € L2(7), by

(0. F)°

D(F)=n ¥ Doo(F) +7 ¥ 1, [ 10

xel, z=0,n n

———d7, (7.9)
with

F(r,p)
It is standard to show, using the inequality alog(b/a) < 2v/a(v/b - +/a) for any
a,b> 0, that: for any positive, measurable function F on €2,, and any x €[,

D, s(F) > [Q (F(r,p") - F(r, p))Qd’ﬁ > 0. (7.11)

The main result of this section is the following:

D, s(F):=- an F(r,p)log (M)d’ﬁ. (7.10)
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Proposition 7.3 (Entropy production). For any t >0 we have

fOtD(ﬁ(s))ds < % (E,,(0) + n) (7.12)
and _ B
si%g] H,(s) $H,(0) +n, n>1. (7.13)
Proof. From (7.8) we get
H,(t) = H,(0) + I, + II, + III,, (7.14)
where

n-1 t
In = — (CZZ__1 — T__l) n Z f En[jx,x+1(5):|d57
=070
IL, := n*T;'7, f tz‘?%”)(S)dS’
0

t _
111, = —n2[ D(F.(s))ds <0,
0
where the last inequality follows from (7.9) and (7.11). We now estimate I,,, 1I,.

(i) Estimates of 1,. Recall the fluctuation-dissipation relation (5.36) and recall
also the notation g,(t) := g,(r(¢),p(t)) (and similarly for other local functions).
We can write

|In| < In,l + In,2 + In,3>

where

L= 1 Tt -1
n

nz::jEn :gx(t) _gx(o):l‘ ) (7.15)

o= [T - T ‘fot E,[Vi(s) - Va(s)]ds
t _

| Eaoas)]as
0 L

To deal with I,,; we invoke the entropy inequality: for any a >0 we have

(2 Ez)ﬁ(t)dﬁsé{log(fexp{% Z(p§+r§)}dﬁ)+ﬁn(t)} (7.18)

xel, zelly
for any ¢ > 0. Recalling the definition of g, given in (5.37) and choosing a > 0
sufficiently small it allows us to estimate

1 = 1 = 1 = 1~
In71 pS E Z 81(0) + E Z gx(t) S E Z gm(O) +1+ EHn(t), n 2 1, t>0.

xel, xel, xel,

, (7.16)

L= T =T n

. (7.17)

To deal with I,, 5, which involves boundary terms, we shall need some auxiliary
estimates.
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Lemma 7.4. For any t, >0 we have: for n>1,t€[0,t,],

]En[fot(pf(s) +pg(s))ds] <1+ fotD(fn(s))ds (7.19)

and

E, [fot (ri(s) +ri(s))d5] S1+ %ﬁn(t) + /:D(ﬁl(s))ds

N {1+f0tﬁn(s)ds}1/2 {fOtD(f;(s))ds}

1/2

(7.20)
Proof. Note that
9 1 ~ _ 1 ~ -
EEW] =7 [ T = [ iy Fu(s)m

Therefore, by the Cauchy-Schwarz inequality

¢ 2 K ra 1/2 apnﬁl(s) ~
fo E,[p;(s)]ds s 1+ fo ]S;npn (Fa(s)Y TAONE dVdS‘

<1+{fotlznpiﬁa(S)d”ﬁds}l/Q{fot Qn%fzg;))zd’ﬁds}m

. 1/2 . 1/2
<1+{f0 En[pg(s)]ds} {fo D(fn(s))ds}

A similar calculation can be made at the left boundary point. This yields (7.19).
To prove (7.20) note that, by (2.4)—(2.5),

n_QEn[pn(t)T‘n(t) —pn(O)T’n(O)] (7.21)
= /OtEn[pn(S)(pn(S) = Pn-1(8)) + (T4 =1a(8))ra(s) - (F + 27)pn(5)rn(5)]d5-

Thanks to the assumption on the initial energy bound (3.9) we have

En[[otri(s)ds] < /OtEn[pi(s)]ds+ [OtEn[pn(s)pn_l(s)]ds
+ {fOtE[Ti(S)]ds}m +(7+27) ‘fot]En[pn(s)rn(s)]ds

1
+n 2B [p2(¢) +r2(t)] + =, n>1,t>0. (7.22)
n

Similarly we get

s{fotEn[rg(s)]ds}l/Q{fotD(};(s))ds}l/Z (7.23)
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and
1/2

‘[OtEn[pn(S)pn—l(S)]ds s{fotIE‘,n[pi_l(s)]ds}l/2 {/OtD(ﬁL(s))ds}

for n> 1, t > 0. Using the entropy inequality the last bound leads to

1/2

‘fotEn[pn(S)pnl(S)]dS 5{1+[Otﬁn(s)d5}1/2{fOtD(ﬁ(s))dS} C(7.24)

for n>1,t > 0. By the entropy inequality we also get

- 1 =
2B [p2(t) +r2(1)] 5 ﬁ(1 +H,(1)) (7.25)
Substituting these bounds into (7.22) we conclude (7.20). The proofs for the case
of the left boundary point are analogous. O

Returning to the proof of Proposition 7.3, with the help of Lemma 7.4, we get

LoSn+n fOtD(ﬁL(s))ds . %ﬁn(t)

. 1/2 . 1/2
+n{1+/0 ﬁn(s)ds} {[0 D(ﬁl(s))ds} : n>1,t20.

By an application of the Young inequality we conclude that for any o > 0 we can
choose C' > 0 so that

t - ~ t
L2 S Cn+an? f D(fn(s))ds+an(t)+C’f H,(s)ds, n>1,t>0. (7.26)
0 n 0
An analogous bound holds for I,, 5. Therefore we conclude that for any o > 0,
t _ 1~ t
I, < n+an? / D(F.(s))ds + —HL,,(¢) + [ H,(s)ds, n>1,t20. (7.27)
0 n 0

(it) Estimates of 11,,. To estimate 1I,, we need Proposition 4.2. Thanks to (4.3)
we conclude that

L] = n* T sn, n>l. (7.28)

t
[ A (s)as
0

Choosing « sufficiently small in (7.27) and substituting from (7.27) and (7.28)
into (7.8) we conclude that there exists ¢ > 0, for which

. . t t
(1) s FL.(0) + 1+ f L, (s)ds - en? [ D(F.(s))ds. (7.29)
0 0
This, by an application of the Gronwall inequality, in particular implies that
H,(t) sH,(0) +n. (7.30)

Thus (7.13) follows. Estimate (7.12) is an easy consequence of (7.29) and (7.13).
U
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7.1.3. Proof of Proposition 7.1. From the assumption (3.7), one has
H,(0) $n, n>l.
Therefore, Proposition 7.1 directly follows from (7.6) and (7.13).

7.2. The end of the proof of Proposition 4.5. Proposition 4.5 directly follows
from the entropy inequality (7.18) and bound (7.6).

7.3. Boundary estimates: proof of Lemma 5.1. The entropy production
bound from Proposition 7.3 is also crucial in order to get information on the
behavior of boundary quantities. We prove here all the estimates of Lemma 5.1.

Proof of Lemma 5.1, estimate (5.5). We start with the right boundary point x =
n. The proof for x =1 is similar. Using the definition (3.3) we can write

‘fIE Pa(8)Pn-1(s)]d ‘f ds/ PPt fo(8)dT

7 ()12 Lpnni5) apnfn(s) |
) (f( )2

sT;l{fOtds[an,%_lﬁ(s)dﬁ} {f 5 (ap}fzi‘;))Q } . (7.31)

Invoking the entropy production bound (7.12) we conclude that
/2

[ Eufpa(sIp.a(s) ds<—{ [ 1<s>ds]} S L (1

in light of the energy estimate (4.7) of Proposition 4.5, which is now proved. [
Proof of Lemma 5.1, estimate (5.6). To show (5.6) note that

E, [/Otrn(s)pn(s)ds] = ‘fotds/rnépnfn(s)dﬁ
o fario] | [ S

< % {En [fotri(s)ds]}l/2 < %7

in light of Proposition 4.5—(4.7). The proof for the left boundary is similar. [

=T ds
0 Q,

(7.33)

Proof of Lemma 5.1, estimate (5.7). From the time evolution of the dynamics
(2.5) (see also (6.4)) we obtain for x =n

< () (¢) - (")(0)) /0 (7+ —r(”)(s))ds—(27+7)—/ P (s)ds.  (7.34)

Using the energy bound (4.7) we conclude that the right hand side is of order of
magnitude n=3/2 as n - +oo. Thanks to Proposition 4.2 we conclude (5.7). The
proof for x =1 is analogous. 0
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Proof of Lemma 5.1, estimate (5.8). We show the proof for x = n only, as the
argument for x = 0 is analogous. Note that,

Enlfot(pi(s)—TJr)ds] =T, fotdsfﬂnpnapnﬁ(s)dﬁ.

Thus, by the Cauchy-Schwarz inequality

Enlfot(pi(s)—ﬂ)ds]
<T+{f0tds[2npzﬁ(s)dﬁ}l/2{f f ap’}fés) } . (7.35)

From (7.21), Lemma 5.1-(5.5) and (5.6), which have been proved above, we get

B [ (20 -7 - ()] s
0
Then, by Lemma 5.1-(5.9) and (7.36), for any ¢ >0
i ~
f ds f RE(s)dr<l, n>l. (7.37)
0 Qn

Using this estimate together with Proposition 4.5-(4.7) we conclude (5.8). O
Proof of Lemma 5.1, estimate (5.9). From (7.21) and Lemma 5.1-(5.5) we get

AtEn[Ti(S)]dsg fotEn[pi(s)]ds+|F+| fotEn[rn(s)]ds’
+(7+27)‘fOtEn[pn(S)rn(s)]ds

where 0,(1) = 0, as n > +oo0. Using the Young inequality we conclude that

E, [fotrg(s)ds] <E, [[Otpg(s)ds] i1, x>l (7.39)

We use Lemma 5.1-(5.8) to conclude that

t
En[f rg(s)ds]sL n>l.
0

An analogous estimate on E,, [ fot r2(s) ds] follows from the same argument, using
the relation

S e 2 1. (7.36)

+on(1), (7.38)

n 2L(por1) = (p1 = po)po + 71 = (7 +27)por (7.40)
and the entropy production bound at z = 0. 0
Proof of Lemma 5.1, estimate (5.10). For the right boundary current j,_1,, the
equality follows from the definition (5.4), thanks to: Proposition 4.2, Lemma 5.1

(5.8), and the energy estimate (4.7). An analogous argument, using (5.3) instead,
works for left boundary current. 0
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Proof of Lemma 5.1, estimate (5.11)—(5.12). From (7.21), combined with the above
(7.36), and Lemma 5.1-(5.8), the result follows. O

Proof of Lemma 5.1, estimate (5.13). The derivative of H,, 7(¢) can be computed
similarly to (7.8) as

H, (1) == w*Dr(f(0) ~n* ¥ (17 =1,1) (L= [ () h(0)dvr)

T, (7.41)
where
Dr((0)=7 % Dea() +7 3 7. [, it

and h, 1 = gr, /gr. Using (7.41) we conclude that for any 7' > 0

n* )y (T1—Tzl)[Dt(Tx—[ani(s)fn(s)dl/T)ds

z=0,n
t t
#0? [ Dr(fu(s))ds + Hor(t) = Hor(0) + 0277 [ 750 (s)ds. (7.42)
0 0

Since the entropy H,, r(¢) and the form Dr(f,(s)) are both non-negative (from
a similar argument as in (7.11)), and the right hand side of (7.42) grows at most
linearly in n (from Proposition 4.2) we conclude

> (1) [ (@-Ef2e)])ds s (7.43)
Let T-1:=T; '+ T;'. From (7.43) we get
t
(LT) Y T, fo (T, - E[p2(s)]) ds 5

z=0,n

(7.44)

SRS

and (5.13) follows. O

8. ENERGY BALANCE IDENTITY AND EQUIPARTITION

The main result which is left to be proved is Proposition 4.6, which describes
an equipartition phenomenon between the mechanical and thermal energies. To
prove that result, we will use the Fourier-Wigner distributions which permit to
control the energy profiles over various frequency modes, and have been success-
fully used in previous works. The major difficulty here is the presence of boundary
terms, which all need to be controlled. In Section 8.1 we introduce definitions
and write down the evolution equation satisfied by wave functions. In Section 8.2
we obtain an energy balance identity (Proposition 8.1). The proof of Proposition
4.6 is achieved in Section 8.3.
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8.1. The wave and Wigner functions. In the present section we restore the
superscript n when referring to the mean and fluctuation of the stretch and
momentum. We define the fluctuating wave function as

D) =T (@) +ipt (), wel,,t>0, (8.1)
and its Fourier transform,
TR =T (k) + B3 (4k), kel t>0. (8.2)

The wave function extends to a periodic function on ﬁZ, by letting zﬂﬂ/(")(k+ 1) =
P (k) for any k € T,. In particular () (k + - ) is well defined for any 7 € Z.
Then for k €T, neZ,t>0 we define the Fourier-Wigner functions:

1

Wi(tn, k)= 2(n+1)]E W)(t/ﬁ N [2™] (¢, k)]

W (4. k) = gy B [[7] (1= 20) 50 = ()" 1),
T (k) = s B [ 50 1k 520) 500 .

(k) = o B[ (1= 220) 5] (8)| = () 0. m -,

As a direct corollary from Proposition 4.5 we conclude the following bound: for
any t >0 we have

z( up sup 3 [ (s,. )| + sup sup ’z‘m(s,n,w) cro (83)
=+ \ s€[0,t] neZ kel s€[0,t] neZ kel

Note that, similarly to (8.1)—(8.2), we can also define the (full) wave function

M (1) = (¢) +ip™ (¢) and its Fourier transform $0 (¢, k). Using (2.4)—(2.5)
we conclude that the fluctuating wave function satisfies

AP (¢, k) = —n? (22’ Sin? (k)™ (£, k) + sin(2rk) [B ] (¢, k)) at (8.4)

—vnQ{ZL[@m]L(t,k)}dt— > {D[W]L(t-,k—k')}dﬁak') + AR, (4, k),

=% k’e]ln L=+

where //\/',3(757 k) = N(t, k) —yn2t(n + 1)dy0 is a martingale, with
N(t, k)= Y Ny(ynPt)e 2ok,

xel,

where [¢)(™]#(¢, k) are defined by (2.16) and finally

AR (1, k) = n2(Fa(t) - Fo(t)) +i Y ™27 (—Fn25, (£)dt + na/2A T, dw, (t)).

z=0,n
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Here 6, , is the usual Kronecker delta function, which equals 1 if z = y and 0
otherwise. The process N (t,k) is a semi-martingale whose mean and covari-
ation can be computed from the relations (dN(t,k)) = yn2(n + 1)d;0dt, and
(AN (t, k), dN (L, k")) = yn2(n + 1)t6; _pdt.

8.2. Energy balance for the fluctuating Wigner functions. After straight-
forward computations one gets, for ¢ = +:

oW, =1 (-in(d,5) W' - n?sin(27k) Y, - n?sin (27 (k+ L)) 57”_‘) (8.5)
+yn? L(WJ + W -V - ?n‘) + wn%W,{ - W;)

_ 7}7 2
+n?U,(t,n) +

]
Z 672TI"L{E Py Tx

z=0,n
2

sy B 2 RO (k- )+ Za (8 ks 20 DT (1) .
Y= (n sin(2rk) W' - in?(o,5) Y* = n?sin (2n(k+ L)) W, ) (8.6)

+n? ]L,(i;n+ +Y W - ’I/\V/,;) + an(?n_ - 17+)

2 Ty(t,n) - ——— 3 e e,

n+1$0n

E, [A( kYO (t k4 L)+ 20 (ke 25 k)]

n2

"o+ 1)

where L is defined by (Lf)(k) := 2 f(k") = f(k) for any f:T, - C and we let

k'ely,

(0n8)(n, k) == 277,( sin? (7r(k + %)) - sinQ(Wk)),

(ons)(n, k) = 2( sin? (7r(k‘ + #)) + sinz(ﬂk)),
_ (8.7)
Zn(t, k) = Pn(t) = Po(t) =7 _Z eI DL (1),

Un(tﬂ?) =

SEV (LE )BT (8]

+1k11n

We are interested in the time evolution of the following quantity: let us denote

E(t) = 3 ST(IWi P+ W2 + (TP + V) (¢, K). (8.8)

neln kT,
43



One can check that
€(t) = 2(n1+ D Z { (. [0 052 0)]) + (B [ (07 (1))

2 (B[R (0]) }

After a tedious but direct calculation, using (8.5)-(8.6), we get the following
identity

1 24n?
S0 (1) = o

> (n-E 0] )5 0]

z=0,n

LIS 50 0) B[ 0))

n+1 el

2 s AEF o 0]) - (Em R 0 o))

n+1 z=0,n z'€el,

—4””2{ Y (E[er0) - % (En[ﬁ”)@)ﬁfc’f)(ﬂ]f}- 9)

n+1 x,x' €l x#ax’ z,x'el,

n+1

The main result of this section is the following

Proposition 8.1 (Energy balance identity). For any t, > 0 there ezists C' > 0
such that

€, (t) +ym? Y Z[ ‘W* W‘ +]¥r - Y‘)(sn,k:)ds

neln kT,

<&, (0)+ Ctlog*(n+1), te[0,t],n>1. (8.10)
Proof. Thanks to Lemma 5.1-(5.13) we can write

2 (n-m o] ) 0] < £ n(n-s o)) e

By Proposition 4.5 and Lemma 5.4 for any ¢, >0 we also have

T @) e 7)o
(o S [EE)]) ([ o) a) s 2w

SG[U,t*] zel,
for n>1, t€[0,t.]. Since

2 Z (Tl ) 3 o o))

neln kT, n+1 z,x'ely,
we conclude (8.10). O
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8.3. Equipartition of energy: proof of Proposition 4.6. In this section we
prove Proposition 4.6. Let us recall here its statement: under the assumptions
of Theorem 3.5 (namely Assumptions 3.1, and 3.4), for any complex valued test
function G € C§°([0,+00) x [ x T) we have

lim f > Go()E[ (7)) - (7 (9)) Jas = 0. (8.12)

n—+o0
aceI[

Let us introduce
Vat,n, k) =Y, (t,n,k) + Y, (t.n, k), (8.13)
R, (t,n, k) =Y, (t,n.k) - Y, (t,n, k).

By the Parseval identity,

S S bl = oy & (BAE O O)-EFE OR0)])

neln kT, x,z’ely,
(8.14)
and for any G € C>~(I), cf. (2.18),

S STVt k)G () =

neln kT,

S E, [72-p2] Gs.

n+1mdI

To prove Proposition 4.6 we need to show that

lim Zf V(6,0 k)G (t,n, k)dt = 0 (8.15)

n—+oo

neﬂn kel,

for any G € Cg°([0,+00) x I x T). From (8.6) we obtain,
O R, = n?(6,3)(n, k) (WJ - W‘) —in?(0,s) V, +29n°R, (8.16)
(. [Glt) - B F (1 + )]+ B [ (0) - B F (1.0)])

T 5 (e, [ (1 k + 52) ]+ 2o 0B, [ (0F (1 )]}

n+1 Jar;

+

where 0,5 is given by (8.7) and
(6,3)(n, k) = sin(2rk) —sin (27 (k + =L )).
Given s € (0,1) we let
T. = {k el,: 0<k<(n+ 1)’5} and T =T, \T,..

We can write

Zf Va(s,1, k)G (5,1, k)ds = O + O, (8.17)

neﬂn kel,
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where terms O, ; and Of correspond to the summation in & over TI\,,LS and Tffw
respectively, and s € (0,1) is to be determined later on. Denoting Gy := -G/(0,5)
and G :=6,5G/(0,s), and using (8.16) we can write

08 =1, + 11, + 111, +IV,, + V,,, (8.18)

where

L, := n2 Z Z f (s n,k;)G*(s n, k)ds,

neln kels

II,, =1 Z Z f ( Wg)(s,n,k)ég(s,n,k)ds,

neln keTs,

— pt -
ML, =-2vi 3 3 / Ro(s,m,k)G3 (s,m, k)ds,

V=g 23 3 [ o [@() ~Bo()) T+ )]
E, [(Ba(s) = 5o () " (5.1)] } G (s,m, k)ds,
Vi 1= _n-ll-lx 0,n nel,, kz]lz f mek]E [px(s)p(s k+n+1)]

n 6—27rm( n+1 n [ﬁm(s)ﬁ‘*(gg? k‘)] }/G\I(S,T], k?)dS

Estimates of O, s. We show that for any s € (0,1)

lim O, =0. (8.19)

n—>+00

Choose an arbitrary € > 0. Since G € C{*([0,+00) x [0,1] x I) we can find a
sufficiently large M > 0 such that

sup |G (s,n,k)| <e. (8.20)

> M kel,se[0,t]

We can write O, 5 = Oy 5 1 + On s+, where the terms O, sy and OM correspond in
(8.17) to the summation over |77| < M and |n| > M, respectively. Thanks to (8.19)
and (8.3) we conclude that

oM |<t{ [sup /Z\:Wn(s,n,k)‘}{ Y sup ‘@(s,n,k)‘}<g, (8.21)

s€[0,t],mel, kT, [n|>M kell,s€[0,t]
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provided M > 0 is sufficiently large. On the other hand, using the Cauchy-Schwarz
inequality and (8.10) we get

—~ t = ~
Onst <Gl [~ 5 8 Vs, k)lds

[nl<M keT,, o

Y2 a2 < (M log®(n +1))1/2
nsl2 "~ ns/2 ’

<@wwﬂ§:zﬂmww

se[0t] Upnl<M ke, ,

Therefore lim,, 10 |On s = 0. Combining with (8.21) we obtain (8.19).

FEstimates of OF. To estimate OF we use the decomposition (8.18). By integration
by parts formula we get I,, =1,, 1 +1,, 2, where

Z’ —_— +oo __ ~
hii=- 2 % fo Bo()o,0: (1),

nely, keﬁfl

Lo=—5 2 5 R(0)Gi(0).

nely ke’]l\fI

Using the Cauchy-Schwarz inequality and @1(75, n,k) =0, for t > t,, we obtain

> ¥ [ Rmagia

neln kel ‘
— te , V2 ot , V2
<{z N MLAC) dt} {z > [ e dt} .
nely, keTn 0 nely, kETfL 0

Let ¢(n) :=1/(1 +n?). We have

ST [ <y T 2 T lom s
Nl ety 70 neo s, (K2 + (K +n/n)2)" (&K
Thanks to (8.10) we conclude that
1 — +oo __ -
ST [ RGO log(nr 1), nx 1.
n neln ke’]f% 0

Thus, for any s € (0,2) we get lim,_, 1,1 = 0. The argument to prove that
lim;, 40 I, 2 = 0 is analogous.
Concerning II,,, by the Cauchy-Schwarz inequality we get

L, s{ S5 fot|(’v‘v’n+ -W) (s,n,k;)|2ds}1/2{ S5 f0t|§2(s,n,k)|2ds}l/2.

neln ke, neln keTs,
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Using (8.10) we can estimate the right hand side by an expression of the form

log(n+1){z N ) 8o, n,k”gds}m

n€ln keTs
1/2
log(n + 1){ } log(n +1) _
S 0+, provided s € (0,2).
Limeme) f

Estimates of 111,,. By the Cauchy-Schwarz inequality we can write

i<y 3 5 [ [Ralsm 0G5, 0| ds

nely, kel$

<27{Z T [ [Butsnh) ds} {z T [ (Zn’;’)ﬁﬂ ds}

neln ke, neln kels
Using (8.10), together with (8.22), we can estimate the right hand side by
Cn3s2log(n +1)

n n—00

0+, provided s € (O,%

Estimates of IV,, and V,,. The argument in both cases is the same, so we only
consider 1V,,. We can write IV,, =1V, ; +IV,, 5, where

IVy1:=—— Z Z f (pn(s) po(s))p(s k+nﬁl)]a{(s,n,k)ds

77611 keTs,
Iwz———zz]“ [(Ba(s) = Fo(s))F (5. k)] G (5,m. k)
neln ey
By the Plancherel 1dent1ty we can write

= 2 [ B[ @) - m) ()]s,

zelly,

IV, = ]

where

Gio(s)= 3 S e G (s,m, k).

neln kE’]I\%
As a result, invoking (4.7), the Cauchy-Schwarz inequality and Plancherel iden-
tity, we can find a constant C' > 0, independent of n, and such that

Vool< —= 3 [ {ELmO BT & 5 6 1ol

xely,

t 1/2
< {fo E. [ (5)] + ()] 3 B [72 ()] d } {[ zyGu(s)y?ds}

n+1 xel, xell

<ﬁ{fotﬂ‘3n[ﬁ%( s) +Do(s }1/2{/ Z > Gis, ﬁ,k)‘ dS}

ke ]IS nely
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Invoking Lemma 5.1, see (5.8), we conclude that

1/2
1 — 1 1 n3s/2
v, — |t < ,
v | (S (B )| <@ e

provided s € (0, %) The proof of the fact that lim, . IV, follows the same
lines as the argument presented above.

8.3.1. Conclusion. Therefore, for s € (0, %) we have proved that both O, s and
O vanish as n - oo, and we conclude (8.15).
This ends the proof of Proposition 4.6.

APPENDIX A. PROOF OF (6.22)

Clearly

|an(n)] < RN n*> 8. (A1)

Suppose that 12 € (0,8). Let ®(u, k) := [4sin*(7k) — u]? + 472u. From (6.20) we
see that ,

<= sin®(7k)

< R S

|an(77)|~ Z @(1727]{:)

ke’]l\fl
After a simple calculation one concludes that 42 sin(7k) $ ®(u, k) for u € (0,8),
k el,. Hence |a,(n)| $ 1, n? € (0,8). This together with (A.1) yield (6.22).

APPENDIX B. PROOF OF (6.21)

Recall that
in+2y+2ysin’(vk)  E(n,k)
—n2 +4sin’ (k) + 2y [O(n, k)P’

ed,n(n) = /z\

kel

(B.1)

where
=(n, k) = sin2(7rk)[ - 20%7 + 8y + 8781n2(7rk)] +in[-n? + 4sin® (k) (1 -Fy) - 49?],
O(n, k) = —n? + 4sin*(rk) + 2iyn.

We have
1 1

2 .
O, k)I> ~ 42
Let p := sin?(wk). Let I' be the parabola in the (z,%) plane described by the
system of equations
F(p) = p[ = 207° + 87 + 87p],
9(p) =n[-n* +4p(1-77) -47%], peR.

By a direct calculation one can check that there exist two tangent lines to I
passing through (0,0). Hence (0,0) ¢ Conv(I") - the closed region bounded by I

(B.2)
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Denote by d, > 0 the distance between (0,0) and Conv(I') and P, the respective
nearest neighbor projection of (0,0). Note that

D*(p) = f2(p) + *(p) = p*[=20°7 + 8 + 87p]* + [ + 49® = dp(1 - 7).
When 77 > 1 then D?(p) > 4+?n?. If, on the one hand, 77y < 1, then for p < y2+n?/4,
we have

~ 1/2 ~
D(p) = lnl (n* +47°) " > 299,
If, on the other hand, p > ~2 + n?/4, then,

=27 + 8y + 89p > 20" + 8y + 27(47° + %) 2 8y + 857* > 0.
Therefore,
D(p) > p| = 2077 + 8y + 83p| > 2(y + 77°) (49" + %) = 8 (1 + 7).
We conclude that
( (n, |P |) d, > 27* min {47(1 +77), 7|7I|}

Therefore, by virtue of (B.1) and (B.2) we conclude

4y(1
, 92 inf 7(4;7777) Al (B.3)

[ea.n ()]
and (6.21) follows.

APPENDIX C. PROOF OF (6.34)

Note that
2(rk = cos?(mk) [4sin®(7k) - n?
o) = 1+ 4y 5 O oy, S cos (k) [ sin () — 7]
i, [Asin® (k) = n? + 2iyn| e, [4sin® (k) = n? + 2iyn|

and (6.34) follows. O

APPENDIX D. PROOF OF (6.23) AND (6.36)

We only prove (6.23), as the argument for (6.36) follows the same lines. It is
clear from (6.19) that

[Tan(m) S a1 > 8. (D.1)

By an elementary calculation one gets

1/2
{% [(4sin®(mk) —1?)* + 472772]} > (8y*sin* (k) + 4v°n?)

for n? < 8. Hence,

1/2

= |sin(7k)| 1 )
man(m)] s Y ——5——<log(l+—), n*<8
o In| + sin? (k) ( |77|)

and combining with (D.1) we conclude (6.23).
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ApPPENDIX E. PROOFS OF (6.24) AND (6.37)

Estimate (6.37) follows straightforwardly from the definition (6.32) and as-
sumption (3.10) on (0, k).

Concerning (6.24) we estimate first in the case n? < 8. Hypothesis (3.10) allows
us then to estimate |pan(n)| < 1/|n| for n > 1, cf. (6.19). Combing with (6.34) we
conclude |pgn(n)/ean(n)| s 1.

In the case 2 > 8, using the fact that 3 7(0,k) = ro = 0, we write

kel

(1277 +29)7(0, k) Z (in + 29)7(0, k) (B.1)
4sm (mk) —n? + 2iyn her -n? + 2iyn
4sin®(7k) (in + 27)7(0, k) | 1

|pd n(n)|

i

481n2(7rk) n? + 2iyn][-n2 + 2iyn]| T 1+ 0P
and (6.24) follows.
AppPENDIX F. PROOF OF (6.35)
From the definition of ¢,, we conclude that
1
(Ml S ——, neR,nx1. (F.1)
[l +n?
By an elementary calculation one gets, for any w e C~[-1,1]
’Z\ e2mik (@ (T +w)+ )P (1 +w) (F.2)
rm e =21+ w)erm + 1 (9F(1+w) - 1)(1- P+ (1+ w))’ '

where @, : C\ [-1,1] - D~ {0} is the inverse to the function

J(2) = (z+i), 2 eD~ {0},

Here D := {z € C : |z] < 1}. Using the branch of the square root that maps
C~ (=00,0] into C, := {w: Rew >0} we can write

O, (w) =w-vVw?-1, weC,n(C~\[-1,1]). (F.3)
Using (6.33) and (F.2) we can write
1 4-n?+2ivm< e2mik

en() = 2 2 z C et = 2(1+ w)emh + 1
1 n?
=~ _[2_-L F.4
5 ( 5 +w77) bn (1), (F.4)

where w(n) := -n?/2 + iyn and
(@ 1+ w) + )P, (1+w)
)= @) - (- e (1 w)
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Suppose now that 1% < for a sufficiently small § > 0 so that

@.(1- L s i) <1 S, v <o

Let A, := {n: n>>21sin?(w/n)}. Then, for any n € A, we have n® > 2/(mn)?,
therefore, thanks to (F.3),
2 1(21/2,)/)1/2

|<I>+(1—%+m7)| <1-3

In| <&
™

and

2
D, (1—%+i’yn)

limsup sup

n—+0o0 77€An,|77|<5

n+l 1,91/2~ 127"
Slimsupll——( 7) ] =0.
n—+oo 2 ™

Therefore,

1
|@K0NS]E@5, forneA,, n>l.

Combining with (F.1) we conclude that (6.35) holds for 2 > 2-1sin*(7/n). When
n? < 271sin?(7/n) we conclude directly from (6.33) that

— 1 b dk 1
< N S
|Cn(n)| ~ Z 4Sin2(7Tk3) + |77| ~ f() k2 + |77| b |77|1/2

ké]fn

and (6.35) is also in force.
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