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Abstract

New asymptotic models are formulated to capture the thermal transfer across falling

films. These models enable us to simulate a wide range of Biot and Peclet number values,

without displaying nonphysical behaviors. The models correctly capture the onset of the

thermally developed regime at the inlet of the flow. To evaluate the parameter space

of acceptability, a comparison has been made with the primitive equation solution for

periodic boundary conditions, as well as for an open flow with a periodic forcing at the

inlet. A good agreement is obtained for moderate to high Peclet numbers.
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x streamwise coord. Tw wall temp. We Weber number

y cross-stream coord. Ta ath. temp. Ct Inclination number

t time h film thickness Pe Peclet number

g grav. acc. q local flow rate Bi Film Biot number

β plate inclination θ T |y=h B̃i Biot number

ν kinematic visc. ϕ h2 ∂yyT |y=h Pr Prandtl number

µ dynamic visc. T fluid temp. Nu Nusselt number

ρ specific mass u velocity (x)

α diffusivity v velocity (y)

k conductivity XNu Nu. flow equiv. var.

H conv. coeff. Re Reynolds number

Table 1: Nomenclature

Introduction

Falling films form thin layers of liquid flowing on a tilted plate, with a thickness of the

order of a millimeter or less. Starting with the works of Nusselt [25], followed by Kapitza

and Kapitza [20], this topic has been heavily studied and the hydrodynamic of a tilted

falling film flowing on a smooth plate is well known. Curiously, the interplay between heat

or mass transfers and the wavy dynamics of falling films has been far less studied, even

though Frisk and Davis [14], Yoshimura et al. [40] demonstrated that the wavy regime of

the film can indeed increase several folds the heat and mass transfer coefficients between

the liquid and the gas. Most studies on heat and mass transfer across the film focus on

the wave-less smooth film situation [21]. Only a few studies have been devoted to the

wavy regime and addressed heat transfer and hydrodynamics couplings by solving the

Fourier equation across the film, the hydrodynamics being dealt with the Navier-Stokes

equations or a reduced model. The former approach leads to expensive computations,

hardly compatible with a parametric study of the phenomena. It has been restricted

either to 2D simulations in a domain corresponding to a full exchanger plate [35], or

to numerical domains of limited extensions [17, 16, 38, 24, 23]. The latter approach

allows better performances with acceptable accuracy but is still not fast enough to allow
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extensive studies, such as sensibility analyses or optimizations. This explains a lack of

numerical studies of non-isothermal falling films, the computation being too expensive to

simulate evolution on a full exchanger plate for a significant time interval at a reasonable

cost.

Another approach is to use reduced models for both fluid dynamic and heat trans-

fer as proposed by Hirshburg and Florschuetz [18] some years ago or more recently by

Aktershev et al. [2] but under a fully-linear assumption for the temperature field. The

convection effect has thus been neglected. Later, Ruyer-Quil et al. [30] have developed

a reduced model, based on the weighted residual integrated boundary layer (WRIBL)

approach. They considered a linear distribution of the temperature field as a closure

hypothesis. This linear distribution was parameterized with only one variable corre-

sponding to the free surface temperature θ = T |ȳ=1. Unfortunately, this model shows

nonphysical behaviors at large Peclet numbers, as the temperature field may lie outside

the admissible range. Trevelyan et al. [37] proposed a family of models for both constant

temperature and imposed heat flux conditions at the wall. Their approach improves over

Ruyer-Quil et al. [30] by using test functions verifying all boundary conditions. However,

occurrences of non-physical negative temperatures are still observed as the Peclet num-

ber is raised. Recently, Chhay et al. [9] derived a one-equation model in a conservative

and Galilean-transform invariant form. In that case, the temperature is bounded, but

the model introduced a non-physical critical value θc = 7/22 at which convective terms

cancel out. It seems that a more complex parameterization of the temperature field is

required to overcome this deficiency. Lastly, Thompson et al. [36] considered the inter-

action of a falling film with a non-uniform heating and derived second-order consistent

models. However, the inclusion of second-order convective terms limits their applicability

to low and moderate Peclet numbers. This is due to the non-physical vanishing of the

diffusion terms at a critical Peclet number. The main focus of our study is to overcome

the aforementioned limitations of previous attempts and reach a moderate to high Peclet

number domain of applicability with reduced models.

A cure to these shortcomings have been proposed with a two fields parametrization

(Cellier [7]), adding a second variable φ = ∂yT h|ȳ=0 corresponding to the heat flux at the

wall. This approach leads to better results than before but still shows some nonphysical
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behaviors, with an unbounded temperature. Moreover, the damping terms were not

correctly accounted for, non-stationary simulations showing a faster development of the

wall thermal boundary layer in the case of the primitive Fourier equation than predicted

by the model. While not being an issue when studying fully developed traveling waves,

it impedes the simulation of heat transfer whenever the thermal healing length is not

negligible compared to the exchanger dimension. This is especially the case when the

Peclet number is increased.

At the same time, only a few experimental studies on this topic are available due

to numerous difficulties. Thermocapillarity (Marangoni effect) leads to dry patches for-

mation that is highly problematic when a tracer is used in the fluid. Properly probing

the temperature field inside the fluid depth (and not only the surface temperature) is

not trivial. Promising approaches involve planar laser-induced fluorescence (PLIF) or

laser-induced luminescence to access the temperature volumetric mean [5, 8, 39, 33].

Furthermore, most of the study leads to three-dimensional hydrodynamic regimes, for

which an extension of the modeling is required in order to perform a proper comparison

[10, 12, 11]. Difficulties also occur with the control of the boundary condition. Imposing

a constant temperature or even a constant flux at the wall is experimentally challenging.

A similar issue arises with the heat transfer at the free surface, whose precise monitor-

ing requires to account for the development of thermal boundary layers in the gas flow,

a difficulty we disregard here using a Newton law of cooling. In order to avoid these

difficulties and to validate precisely our modeling attempts, numerical experiments have

been used instead. Solutions to the Fourier equation are used as a reference, which allows

us to get rid of the experimental difficulties and focus on the modeling of heated falling

film at high Peclet number .

In this study, we propose a new non-isothermal falling film model in which the tem-

perature field is parameterized with two variables:

θ = T |ȳ=1 ϕ = h2 ∂
2T

∂y2

∣∣∣
ȳ=1

. (1)

This is an attempt to overcome the limitation of the modeling proposed by Ruyer-Quil

et al. [30] and Chhay et al. [9] by adding more accuracy in the temperature field repre-

sentation, and obtain a model that possesses coherent damping rates.

The paper is structured as follows: section 1 presents the problem to be solved. Our
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modeling attempt follows in section 2. These attempts are validated by the Fourier

solutions and former attempts by performing two tests. The first one consists of lineariz-

ing the equations assuming a non-deformable interface. Construction of large-amplitude

nonlinear traveling waves provides the second test. We next discuss time-dependent sim-

ulations of heat transfer across falling liquid films in extended domains using our model

(section 3). The accuracy and region usefulness of our models are then discussed in the

parameter space Biot versus Peclet numbers.

1. Primitive equations

Notations

We consider a plane making an angle β with the horizontal. We restrict ourselves to

the two-dimensional case where the solution is independent of the span-wise coordinate,

and we introduce x and y to refer to the steam-wise and cross-stream coordinates respec-

tively. A film of thickness h flows on a plane maintained at constant temperature Tw and

exchanges heat with a cold atmosphere Ta with a constant heat transfer coefficient H.

β

ey

ex

q

êy

êx

ex

ey

h(x)Tw

Ta

θ(x)

Figure 1: Sketch of a heated falling film (slice).

Here we turn directly to dimensionless equations and choose a scaling based on the

Nusselt film thickness hN = [3νqL/(g sinβ)]1/3 and the velocity 3uN = g sinβh2
N/ν

corresponding to three times the averaged velocity of the Nusselt solution, where qL is

the volumetric flow rate per unit span-wise length, ν = µ/ρ is the kinematic viscosity
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and g is the gravitational acceleration. Our choice of a velocity scale corresponds to

the speed of kinematic waves generated by the deformation of the free surface in the

long-wave limit, as traveling waves have a speed close to it.

The dimensionless primitive equations thus consist in the Navier-Stokes equations

3Re (∂tu+ u∂xu+ v∂yu) = −∂xp+ ∂xxu+ ∂yyu+ 1 , (2a)

3Re (∂tv + u∂xv + v∂yv) = −∂yp+ ∂xxv + ∂yyv , (2b)

∂xu+ ∂yv = 0 , (2c)

the Fourier equation

3Pe (∂tT + u∂xT + v∂yT ) = ∂xxT + ∂yyT , (2d)

completed by the no-slip condition at the wall

u = v = 0 at y = 0 , (2e)

the kinematic condition at the free surface

∂th+ u|h∂xh = v|h , (2f)

a temperature imposed condition at the wall and a Newton law of cooling at the free

surface

T = 1 at y = 0 , (2g)

∂yT − ∂xh∂xT = −BiT
√

1 + (∂xh)2 at y = h . (2h)

We note that equation (2f) is formally equivalent to the mass balance

∂th+ ∂xq = 0 (2i)

where q =
∫ h

0
udy is the flow rate. Re = uN hN

ν = qL
ν is the Reynolds number, Pe = Pr Re

is the Peclet number and Pr = ν
α is the Prandtl number. Finally, Bi = H hN

k is the film

Biot number, where α, k and H are the thermal diffusivity, the conductivity and the

convective heat transfer coefficient. It is also useful to define a second Biot number

B̃i = H lν
k based on a length lν =

(
ν2

g sin β

)1/3

corresponding to the balance of gravity and

viscosity. In contrast with the film Biot number Bi, the Biot number B̃i is independent
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of the Reynolds number. The atmosphere has no active effect on the film hydrodynamic

and the thermocapillary effect is not taken into account (but can be easily added to the

model derivation if needed) as this study focus on developing a model compatible with

the high Peclet case.

2. Development

In the following, we focus on the derivation of averaged heat equations which enables

us to solve the heat transfer within the film more easily than solving the Fourier equa-

tion (2d) within the framework of the long-wave assumption. We thus introduce a film

parameter ε as the ratio of the typical thickness of the film to the typical length of the

waves. The derivatives are of the order of this ε term, with respect to the stream-wise

direction x or with time, as the film evolution is assumed to be slow. As a consequence,

the cross-stream velocity is v = −
∫ y

0
∂xudy = O(ε).

Within this framework, we further assume that the velocity field u remains close to

the parabolic profile corresponding to the Nusselt flow, i.e.

u = u(0) +O(ε) (3)

=
3q

h

(
ȳ − 1

2
ȳ2

)
+O(ε) , (4)

where q =
∫ h

0
u dy is the local flow rate and ȳ = y/h is a reduced coordinate. The velocity

field is thus parameterized with two variables, the film thickness h and the local flow rate

q, whose evolution is governed by the mass balance (2i) and an averaged momentum

balance. Several models have been proposed within this framework. Let us cite for

instance, the model proposed by Vila and coworkers [3].

2.1. Gradient expansion approach

We thus aim at an integral approximation of the energy balance which mimics the

elimination of the cross-stream coordinate that is achieved in Saint-Venant like models.

To this aim, we shall project the temperature distribution onto a carefully chosen set of

functions. The associated amplitudes of these functions will form our parametrization

of the temperature field. The evolution equations associated to these amplitudes will

approximate the variations in space and time of the temperature within the waves. The
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obtained sets of reduced equations will be validated using two different tests. The first one

corresponds to the linear damping eigenmodes of the diffusion operator. As observed in

[6], passing this test is crucial to correctly capture the thermal entrance region of the film

where the thermal boundary layers develop from the wall and free surface. The second

test is the construction of traveling-wave solutions of large amplitude. In the latter case,

the thermal regime is developed but differs from the Nusselt linear temperature profile

due to convective effects.

Let us first consider that the temperature distribution is never too far from its sta-

tionary (∂t = 0) and uniform (∂x = 0) distribution, i.e. a linear distribution given by:

TNu = 1 +

(
1

1 + Bih
− 1

)
ȳ . (5)

A regular expansion around TNu with respect of the film parameter ε, i.e. T = TNu(h) +

εT1 + ε2T2 . . . is next obtained by solving in sequence the Fourier equation (2d) at each

order. The result can be found in e.g. [19], where the corrections T1, T2 and so on are

all functions of h and its derivatives. Within this framework, the temperature field is

thus entirely slaved to the kinematics of the film flow. However, it is well known that

this description of the temperature field is inaccurate whenever the advection of heat

by the flow is non-negligible, i.e. whenever the Peclet number is of order one or larger.

We, therefore revisit the gradient expansion by allowing some degrees of freedom to the

temperature distribution.

Our starting point is the linear relaxation of temperature for a uniform film flow.

Considering that the film thickness h and velocity field (u, v) are known (and constant),

linearization of the energy balance around the conductive equilibrium and decomposition

in normal modes can be done by writing T = TNu + T̃ (ȳ) exp (ikx+ λt), T̃ � TNu, where

λ is the eigenvalue, k a real wavenumber and again ȳ = y/h.

3Peh2(λ− i ku)T̃ = ∂ȳȳT̃ ≡ LT̃ with T̃ |ȳ=0 = 0 and ∂ȳT̃ |1 + BihT̃ |1 = 0 (6)

Solutions to (6) form discrete branches, as setting k to zero (very long-wave limit) yields

eigenfunctions v(n)
k=0(ȳ) and eigenvalues λ(n)

k=0 given by

v
(n)
k=0 = sin(ln ȳ), λ

(n)
k=0 = − l2n

3Pe
(7a)
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where ln are solutions to

l cot l + Bih = 0 . (7b)

All eigenvalues λ(n) have a negative real part. They correspond to relaxation modes

promoted by the diffusion of heat across the film. Two limits are worth investigating.

The first one is Bi = 0 which corresponds to an insulated free surface, in which case the

TNu = 1 is constant and equal to its value at the wall. The second limit is Bi → ∞, in

which case the free surface is at the constant temperature T = 0 (equal to the temperature

of the gas phase).

For Bi = 0,the discrete spectrum of L for k = 0 is

l1 =
π

2
, l2 =

3π

2
, l3 =

5π

2
, (8a)

3Peλ
(1)
k=0 ≈ −2.47 , 3Peλ

(2)
k=0 ≈ −22.21 , 3Peλ

(3)
k=0 ≈ −61.69 . (8b)

For Bi→∞ we have instead

l1 = π , l2 = 2π , l3 = 3π , (9a)

3Peλ
(1)
k=0 ≈ −9.87 , 3Peλ

(2)
k=0 ≈ −39.48 , 3Peλ

(3)
k=0 ≈ −88.83 . (9b)

Considering long-time evolutions of the temperature, deviations from the linear temper-

ature distribution (5) are all damped by the relaxation eigenmodes. As a consequence,

the temperature field is slaved to the film thickness. At shorter time scales, only the

eigenmodes with sufficiently small eigenvalues are effective and the first eigenmodes (7)

should be taken into account, in which case the temperature field depends not only on h

but also on the amplitudes of some eigenmodes. Roberts [28] used the center manifold

approach to extend this idea in the case of non-uniform film thickness and large devia-

tions. Following Roberts, we shall assume that the time evolution of the temperature is

determined by the evolution on a manifold that is tangent to the first eigenmodes (7).

Let us thus decompose the temperature field into

T = TNu + T (0) + T (1) , (10)

where T (0) is aligned with the two first eigenmodes v(1)
k=0 and v(2)

k=0. This idea is similar to

the semi-analytical method for solving the problem of heating of a uniform film flow that

has been proposed by Aktershev and Bartashevich [1]. However, instead of projecting
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the temperature field on the sinus functions v(n)
k=0, as proposed by Aktershev and Barta-

shevich, where ln are not given explicitly but indirectly through the solution to (7b), it

is more convenient to use polynomial approximations.

Requiring that ṽ1(ȳ) and ṽ2(ȳ) are polynomials of the lowest degrees in ȳ and Bi

which verify

ṽ′1(1) + Bihṽ1(1) = 0 , ṽ1(0) = 0 , (11a)

for Bih = 0 , ṽ1(1) = 1 , ṽ′1(1) = 0 , (11b)

for Bih� 1 , ṽ1(1) � Bih , ṽ′1(1)− 1� Bih , (11c)

and

ṽ′2(1) + Bihṽ2(1) = 0 , ṽ2(0) = 0 , (12a)

for Bih = 0 , ṽ2(1) = 1 , ṽ′2(1) = 0 , ṽ2(2/3) = 0 , (12b)

for Bih� 1 , ṽ2(1) � Bih , ṽ′2(1)− 1� Bih ,

ṽ2(1/2) � Bih , (12c)

then gives

ṽ1 = ȳ(2− ȳ) + Bih ȳ(1− ȳ) , (13)

ṽ2 = −12ȳ

(
2

3
− ȳ
)(

5

4
− ȳ
)

+ Bih 2ȳ(1− ȳ)

(
ȳ − 1

2

)
. (14)

ṽ1 and ṽ2 are polynomial approximations to the relaxation eigenmodes v(1)
k=0 and v(2)

k=0.

Obviously, these approximations are more accurate at low values of the Bi number than

at high values. Indeed, we anticipate that the most challenging phenomenon to capture is

the onset of thermal boundary layers in the vicinity of the hyperbolic stagnation points

appearing with the recirculation zones in large-amplitude solitary waves [37]. These

thermal boundary layers do not develop in the limit of large Bi numbers as the free surface

temperature becomes constant and we therefore focus on accuracy on low or moderate

values of Bi. We next introduce a linear combination of ṽ1, ṽ2 and two variables to

represent the departure of the temperature field from the linear temperature distribution.

The choice of these variables is particularly important. In order to fully capture the onset

of a thermal boundary layer close to the stagnation point at the front of the waves, we
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chose variables which monitor the temperature distribution close to the free surface. The

free-surface temperature θ = T (y = h) is the most obvious choice. We complete it using

the derivative of lowest order which is independent to θ. As the Newton law (2h) relates

the gradient of temperature to the free-surface temperature, we chose ϕ = h2∂yyT (y = h)

such that ϕ has the dimension of a temperature. We thus introduce v̂1 and v̂2 :

v̂1 = ȳ[3− 3ȳ + ȳ2 + Bih(2− 3ȳ + ȳ2)] , (15a)

v̂2 =
1

2
ȳ (1− ȳ)

2
. (15b)

as linear combinations of ṽ1, ṽ2 verifying

v̂1(1) = 1, v̂1”(1) = 0 , (16a)

v̂2(1) = 0, v̂1”(1) = 1 . (16b)

We first introduce the ansatz

T (0) = [θ − θ0(h)]v̂1(ȳ) with θ0 =
1

1 + Bih
, (17)

so that θ = (TNu + T (0))(y = h). We emphasize that TNu + T (0))(y = h) defined by

(17) verifies the boundary conditions (2g) and (2h). Thus, according to our choice of

variables, the decomposition (10) with (17) is set unique by the gauge condition

T (1)|y=h = 0 . (18)

Inserting the decomposition (10), (17) in (2d) gives

∂yyT
(1) = 3Pe (∂t + u∂x + v∂y) (TNu + T (0))− ∂xx(TNu + T (0))− ∂yyT (0) . (19a)

Here, the second-order corrections to the advection terms 3Pe (∂t + u∂x + v∂y)T (1) have

been dropped out while the diffusion terms have been retained. This is justified con-

sidering that (i) these corrections are small compared to the other advection terms,

(ii) all leading-order physical contributions have been retained in (19a). This proce-

dure is similar to the treatment of the momentum balance using the weighted residuals

technique, where second-order inertial terms are dropped from the averaged momentum

balance. See the discussion in Richard et al. [27]. Inclusion of these second-order inertial

terms is possible but at the expense of complicated formulations or limited ranges of
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applicability as performed in Scheid et al. [34] using a PadÃľ approximant technique

. We note that solving (19a) is similar to looking for T (1) in terms of an expansion

T (1) = εT
(1)
1 +ε2T

(1)
2 +. . . with respect to the film parameter where only the leading-order

contributions are retained. Equation (19a) is completed with the boundary conditions

T (1) = 0 at y = 0 , (19b)

∂yT
(1) = ∂xh∂x(TNu + T (0))− Bi(TNu + T (0))

1

2
(∂xh)2 at y = h . (19c)

Solving (19) gives the correction T (1) as a polynomial in y whose coefficients are

dependent on the variables h, q, θ, ϕ and their derivatives. The gauge condition (18)

then provides an evolution equation for the variables θ, namely

3Pe∂tθ = 3Pe

{
−3(82 + 19Bih)

7(27 + 7Bih)

q

h
∂xθ −

57Bih

7(27 + 7Bih)

qθ

h2
∂xh

+
3[11 + (−11 + 38Bih)θ]

14(27 + 7Bih)h
∂xq

}
− 60(1 + Bih)

27 + 7Bih

θ − θ(0)

h2

+∂xxθ +

(
6 + 3(−2 + 7Bih)θ

27 + 7Bih

)
∂xxh

h
+

(
6 + 6(−1 + 2Bih)θ

27 + 7Bih

)
(∂xh)2

h2

+

(
6(8 + 7Bih)θ

27 + 7Bih

)
∂xh∂xθ

h
, (20)

referred hereinafter as the θ model.

In essence, equation (20) is an averaged energy balance which must be contrasted to

the model derived by Ruyer-Quil et al. [30] using the method of weighted residuals:

3Pe∂tθ = 3Pe

{
−27

20

q

h
∂xθ +

7

40

(1− θ)
h

∂xq

}
− 3

θ − θ(0)

h2

+∂xxθ + (1− θ)∂xxh
h

+

(
1− θ − 3

2
Bih

)
(∂xh)2

h2
+
∂xh∂xθ

h
(21)

The two energy balances are consistent with the long-wave expansion up to first-order

for the convection terms and second-order for the diffusion terms. In fact, (21) can be

obtained following our approach with the ansatz

T (0) = [θ − θ0(h)]ȳ so that TNu + T (0) = 1 + (θ − 1)ȳ (22)

Considering the aforementioned first test consisting of the linear relaxation of the

temperature to the linear Nusselt distribution, (20) represents a significant improvement
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over the former formulation (21). Linearizing (20) considering a flat film (i.e. h = 1 and

q = 1) gives a damping rate

3Peλθ = −60(1 + Bih)

27 + 7Bih
− k2 (23)

which is compared to the eigenvalue λ(1) in figure 2b. As expected, a much better

agreement is observed with the new formulation (20) than with (21).

We note that the projection approach followed by Thompson et al. [36] corresponds

to the ansatz (17) where T (0) remains aligned with the Nusselt linear temperature dis-

tribution, i.e.

T (0) = [θ − θ0(h)]v̂lin with v̂lin = TNu/θ0(h) (24)

so that v̂lin(1) = 1 as required by the definition of θ. Following our approach, the resulting

evolution equation for the free-surface temperature then reads

3Pe∂tθ = 3Pe

{
−3(25 + 7Bih)

20(3 + Bih)

q

h
∂xθ −

21Bih

20(3 + Bih)

qθ

h2
∂xh

+
27Biθ

20(3 + Bih)
∂xq

}
− 6(1 + Bih)

3 + Bih

θ − θ(0)

h2

+∂xxθ +

(
3Bihθ

3 + Bih

)
∂xxh

h
+

(
3Bihθ

3 + Bih

)
(∂xh)2

h2

+

(
6(1 + Bih)θ

3 + Bih

)
∂xh∂xθ

h
, (25)

Equation (25) represents a truncation of the model derived by Thompson et al. [36]

(equation 6.6 in this publication) by dropping second order convective terms proportional

to Pe2. The corresponding damping rate

3Peλlin = −6(1 + Bih)

3 + Bih
− k2 (26)

is again compared to the eigenvalue λ1 in figure 2a.

Our comparisons to previous attempts of one-variable modeling would not be com-

plete without mentioning the work by Trevelyan et al. [37]. These authors have con-

structed Galerkin projections of the temperature field which, in contrast to [30], verify

the boundary conditions (2g) and (2h). However, by following strictly the Galerkin ap-

proach, their one-variable model, referred to as GST[1] in their work, is not consistent

with the long-wave expansion (consistency is however recovered when the number of
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variables is larger than three). Considering GST[1], Trevelyan’s choice of polynomial

projection is equivalent to

T (0) = [θ − θ0(h)]v̂Tre(y/h) with v̂Tre(ȳ) =
1

2
ȳ
(
3− ȳ2 + Bih(1− ȳ2)

)
. (27)

This choice of polynomial profile stems from the requirement that ∂yyT = 0 at the wall,

as can be proved easily by writing the Fourier equation (2d). A consistent evolution

equation for θ similar to (20) and (25) can easily be formed from the ansatz (27) following

the approach developed above. For the sake of brevity, we refrain from writing it.

2.2. Construction of traveling-wave solutions

A second validation of the modeling approach is offered by the construction of the

traveling-wave solutions to the models. Considering a stationary solution in a frame of

reference ξ = x − c t, moving at constant speed c, the set of partial differential equa-

tions reduces to ordinary differential equations which is then recast into an autonomous

dynamical system [19]. This dynamical system of finite dimension is solved using a con-

tinuation method by Auto07p software [13]. We have focused on solitary-wave solutions

to (20) where the hydrodynamics of the film is modeled by the Saint-Venant equations

derived by Vila and coworkers

∂th = −∂xq , (28a)

3Re∂tq = −3Re∂x

(
q2

h
+

2

225
h5

)
= h− 3

q

h2
+ We∂xxxh . (28b)

In this section, we compare the solutions to the different one-variable models of heat

transfer to the solutions to the primary Fourier problem (2) that we have obtained using

a classical pseudo-spectral method (see section AppendixA for details).

Equation (21) has been shown to be limited to low Peclet values as its solutions present

nonphysical values of the free-surface temperature, i.e. θ lies out of the admissible interval

[0,1]. We present therefore in figure 3 the evolution of the minimum of θ as a function

of the Reynolds number Re. The film is vertical (β = 90◦) and the liquid properties

correspond to water (Ka = 3000).

Comparisons to the solutions to the Fourier equations (2) show that (20) achieves a

much better agreement to the reference than the former averaged energy equation (21).
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Figure 2: Real part of the eigenvalues corresponding to the modal response of the temperature field to

a perturbation of wavenumber k. Solutions λθ, λ±, λScheid to the models (20), (31), (21) and (25) are

compared to the solutions λ(n) to (7b)
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Figure 3: Minimum of the free surface temperature θ under a solitary wave as function of the Reynolds

number for a vertical water film (β = 90◦ and Ka = 3000). Left: Pr = 30 and B̃i = 0.1 ; right: Pr = 7

and B̃i = 10. The insert shows an enlargement of the main plot.

Aberrant values of θ are almost unobserved with the new formulation. Solutions the

model by Thompson et al. [36] present a similar property , but only if the second-order

convective terms proportional to Pe2 are dropped out leading to (25) . Considering that

(20), (21) and (25) present similar mathematical structures, the origin of the differences

in behavior of their solutions is not obvious. In particular, as is generally the case with

asymptotic expansions, the conservative structure of the basic Fourier equation is lost.

Yet, it can be noticed that among the ansatze for the temperature profile presented so

far, (17) and (24) verify the Newton law of cooling (2h), whereas (22) does not. In

fact, with (22), the reconstructed temperature field T = TNu + T (0) + T (1) verifies the

Fourier equation, the boundary condition (16a) at the wall, but complies with the New-

ton law (2h) at the free surface only in the asymptotic limit where θ remains close to

θ0(h), which is a more restrictive condition than ensuring that the second-order advection

terms 3Pe (∂t + u∂x + v∂y)T (1) remains small in comparison to first-order ones. How-

ever, starting with the temperature ansatz (27) corresponding to the work by Trevelyan

et al. [37], the obtained model does present occurrences of negative temperature even

though (27) verifies the boundary condition (2h). Therefore, we conclude that requiring

that the temperature profile verifies the boundary conditions is not sufficient to guarantee
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that θ remains within the physical range. To conclude this comparison of our approach

with previous attempts, we have added to figure 3 the curves corresponding to the model

by Thompson et al. [36] including second-order convective terms. Besides complicating

the problem to solve, inclusion of these second-order terms leads to non-physical values

of the temperature as the Peclet number is raised, which severely reduces the parameter

range for which this model may be useful.

Yet, a close examination of the distribution of θ (figure 4) under a wave shows that

the model (20) overestimates the variations of temperature under the wave. The model

also fails to reproduce the jump of free-surface temperature at the front of the wave which

is promoted by the presence of a roll in the wave crest. This rapid variation signals the

development of a thermal boundary layer in the vicinity of a hyperbolic stagnation point

at the front of the crest (at h ≈ 2.6 for the discussed solitary wave). The onset of a

thermal boundary layer cannot be captured by (21) as θ tends to be a function of h in

that case whenever the Peclet number Pe is large as observed in figure 3.
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Figure 4: Distribution of the free surface temperature θ under a solitary wave as a function of x (left)

and the fluid thickness h (right) for a vertical water film (β = 90◦, Ka = 3000, Re = 33, Pr = 30 and

B̃i = 0.1).

17



2.3. A two-variable model of heat transfer

Overcoming the limitations of one-variable averaged heat equations demands to enrich

the modeling. We can do so by selecting another variable which reflects the complexity of

the temperature field in the vicinity of the free surface, we thus introduce ϕ = h2∂yyT (y =

h) such that ϕ has the dimension of a temperature.

We then introduce a more complete ansatz

T (0) = [θ − θ0(h)]v̂1(ȳ) + ϕv̂2(ȳ) (29)

The decomposition (29) is made unique by adding

∂yyT
(1)|y=h = 0 . (30)

to the gauge condition (18). Solving (19) then provides an expression of the correction

T (1) that is consistent with the ansatz (29) and the long-wave expansion up to first-order

for the convective terms and second-order for the diffusion ones. The gauge conditions

(30) and (18) then yields coupled evolution equations for the variables θ and ϕ, namely

3Pe(∂t + u|y=h∂x)θ =
ϕ

h2
+ 2Bi∂xh∂xθ +

ϕ

h2
(∂xh)2 + Biθ∂xxh+ ∂xxθ (31a)

with u|y=h = 3
2q/h, and

3Pe∂tϕ = −3Pe

(
15

14

q

h
∂xϕ+ Eϕ

q

h
∂xθ + Fϕ

∂xq

h
+Gϕ

qθ

h2
∂xh

)
+

1

h2
{−60(1 + Bih)(θ − θ0(h))− (27 + 7Bih)ϕ}

+Jϕ
(∂xh)2

h2
+

4

h
∂xh∂xϕ+ Lϕ

∂xh∂xθ

h
+ ∂xxϕ (31b)

referred hereinafter as the θ - ϕ model, with

Eϕ = −3(25 + 11Bih)

14
, Fϕ = −66 + 9ϕ+ 6(38Bih− 11)θ

28
, Gϕ =

57

7
Bih ,

Jϕ = 6− (25 + 7Bih)ϕ+ 6(2Bih− 1)θ , Lϕ = 48− 12Bih− 14(Bih)2 . (31c)

The evolution equation (31a) is the trace of the Fourier equation taken at the interface.

As a consequence, it is exact and independent of the choice of the polynomials v̂1 and

v̂2.

18



100 101 102

Pr

0.4

0.5

0.6

0.7

m
in

(θ
)

θ

θ - ϕ

(a) B̃i = 0.1

100 101 102

Pr

−0.005

0.000

0.005

0.010

m
in

(θ
)

θ

θ - ϕ

(b) B̃i = 10

Figure 5: Minimum value of a θ under a solitary wave as function of the Prandtl number (Re = 15,

β = 90◦ and Ka = 3000).

By construction, model (31) is consistent at order ε. A study of the linear response

of the model to a sinusoidal perturbation of wavenumber k assuming a uniform film flow

(i.e. h = 1 and q = 1/3) yields the matrix

C =

 −k2 1

−60 (1 + Bih) −(27 + 7 Bih)− k2

 (32)

whose eigenvalues λ± are compared to the two first eigenvalues (7) and to damping rate

(23) in figure 2b. λ+ is a good approximation to λ1 whereas λ− is a poorer one to

λ2. Nevertheless, λ+ ≈ λ1 shall guarantee that the diffusive relaxation to the linear

temperature distribution is correctly captured by the model.

Figure 5 compares the minimum values of the free surface temperature obtained

with the one-variable (20) and two-variable model (31) for two Biot number. A minor

improvement is observed using two variables for a high Biot number instead of the one-

variable model. For both models, min(θ) presents nonphysical negative values. The two-

variable model remains closer to 0 than the θ model. For both models, this nonphysical

behavior is limited compared to previous attempts.

Figure 4 has been completed with the results of the θ - ϕmodel (31). A very noticeable

improvement over the θ model (20) can be observed as the sharp variation of the free

surface temperature at the hyperbolic stagnation point in the wave is precisely captured

by the θ - ϕ model. This agreement has been obtained over a wide range of Bi and Pr

number.
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Figure 6: Film of water on a vertical wall at Re = 15, B̃i = 10, Pr = 100 and f = 8 Hz.

Figure 6 presents a comparison in the very demanding case of large values of Pr

and Bi numbers where the agreement to the Fourier solution is the least convincing.

Yet, the solution to the θ model agrees again well with the Fourier solution in the wave

tail, where the film is close to the Nusselt solution (a flat film), but has some trouble

to remain accurate as the shape of the wave becomes more complex. It is especially

obvious when θ is plotted according to h (fig. 6b). Adding a second variable, more

of the temperature surface distribution complexity is captured, θ(x) mimicking well the

reference solution. The simplest model is still advantageous : it shows a good accuracy to

capture the averaged properties along the wave where the θ - ϕ model fail to predict the

surface temperature where the film is almost flat. This is a common behavior of complex

models: they improve accuracy and are able to capture more complex phenomena but are

less robust and fail when the case is more demanding and far away from the asymptotic

(here an order-one Peclet hypothesis). This can be observed for the long-wave Benney

equations which capture the hydrodynamics of the film at low values of the Reynolds

number. The second-order Benney equation, even if more accurate than the first-order

one, is unable to deal with moderate Reynolds numbers [15].

This is confirmed by the results displayed in figure 7, which presents the global Nusselt

number for traveling-wave solutions (computed as the average of the flux at the free

surface rescaled by its value for a flat film) according to the wave frequency. The flux
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Figure 7: Film of water on a vertical wall at Re = 15. The graphs show the global Nusselt number

(average of the flux at the free surface rescaled by its value for a flat film). Top B̃i = 0.1, Bottom

B̃i = 10. First column Pr = 7, second column Pr = 35, last column Pr = 100.

being averaged, the θ - ϕ model main advantage (the ability to represent the complexity

of the heat transfer in a more complex hydrodynamic regime) recedes, and the θ model

performs somewhat better, especially for high Prandtl number. However both models

capture accurately the global heat flux through wave in the thermally developed regime.

This is particularly true dealing with water (Pr = 7). Departures from the predictions

of the Fourier equation can be observed at high values of Prandtl number. Yet, both

models provide reasonable answers even at Pr = 100.

To conclude, the two models (20) and (31) have different advantages. The first one

is robust, and can lead to a better global accuracy. It also uses only one variable to

parametrize the thermal transfer, leading to cheaper resolution cost. The latter is able

to represent more complex behaviors at a cost of a somewhat lower robustness (and

global accuracy) and a higher computational cost (which is still far less expensive than

solving the full Fourier equation). According to the goal of the study, one or the other

may be used.
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3. Time dependent simulations

The proposed formulations for the averaged heat balance have been validated through

computations of the traveling-wave solutions, which implies a thermally and hydrody-

namically developed regime. However, describing accurately the entrance region of a film

flow developing on a plate is crucial for the optimization of a plate exchanger. Therefore,

we turn to time-dependent simulations of heat transfer across a 2D liquid falling film.

These simulations have been performed using the Saint-Venant hydrodynamic formula-

tion, proposed by Ruyer-Quil and Manneville [29], which reads as



∂th = −∂xq

3Re∂tq = 5h
6 −

5 q
2h2

+ 3
7Re

(
9∂xh

q
h − 17∂xq

)
q
h −

5
6Ct ∂xh+ 5

6Weh ∂xxxh

+ 4 q
h2 ∂xh

2 − 9
2h∂xh∂xq −

6 q
h ∂xxh+ 9

2∂xxq .

(33)

The reason of this choice is the model’s capacity (33) to adequately capture the

nonlinear wavy regime of liquid falling films at low to moderate values of the Reynolds

number, as demonstrated by comparisons to direct numerical simulation (DNS) (see for

instance Ruyer-Quil et al. [31]). In section 1, the hydrodynamic model has been chosen

to make a comparison with the previous study by Chhay et al. [9]. The hydrodynamic

parameters are Re = 15, Ct = 0 and We = 266 in each case. They correspond to a water

film flowing on a vertical plate. This relatively low value of the Reynolds number ensures

that the hydrodynamics of the film is adequately captured by the model.

In parallel to the models of heat transfers, we also solved the basic Fourier equation

(2d) to provide means of validations. To solve the Fourier equation, a change of coor-

dinates has been performed with ȳ = y/h ∈ [0, 1] instead of y ∈ [0, h]. As a result, the

numerical domain is a fixed rectangle x ∈ [0, L], ȳ ∈ [0, 1], removing the need of a moving

mesh.

3.1. Application case example

As an introduction to comparisons between models and their validation to the Fourier

basic equation, a typical case is presented here. It corresponds to a water falling film
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flowing on a vertical plate with an oscillation of its inlet fluid height, periodic in time. We

chose a moderate Reynolds number and a low Biot number (as seen in heat exchangers).

The parameter set is the following: Ct = 0, Re = 15, We = 266, Pe = 105, Bi = 0.1.

The plate is maintained at a hot constant temperature, whereas the fluid flows in contact

with a cold atmosphere.

As we can see in figure 8a, the inlet oscillations grow quickly, leading to a saturated

wavetrain. These waves consist of one main hump preceded by capillary waves. These

capillary waves are close to each other and have a smaller amplitude than the main

hump. Without inlet noise, these waves are evenly spaced and stable in time. Figure 8b

shows the temperature field across the film. With moderate-to-high Peclet numbers, we

can notice convective effects at the top of the main crest where the cold fluid near the

interface mixes slightly with the fluid in the bulk region of the film.

3.2. Comparison between models

Simulations have been first run for a low Peclet number, in order to check the coher-

ence with the Fourier equation. In the low Peclet limit assumption, where the long-wave

expansion holds, the temperature fields predicted by the model should agree with the

reference solution to the Fourier equation. As we can see in figure 9, in the limit case

Pe → 0, the models present the same behavior as the reference Fourier model, for both

moderate and high Biot numbers.

As we increase the Peclet number, we still observe a good agreement with the Fourier

equation, even if our models are built on a low Peclet hypothesis (cf. figure 10). As stated

previously, the θ model is not complex enough to catch the detail of the temperature

field (especially in the crest, near the thermal boundary onset) where the θ - ϕ models

are capable to exhibit a similar complexity. Considering the isotherms close to the wall,

the simplest model shows a better agreement with the Fourier equation than the more

complex one, where some spurious oscillations can be seen. This is not surprising, as the

model is parameterized with only one variable corresponding to the liquid-gas interfacial

temperature (where the temperature field presents the greatest complexity). In any case,

considering the fact that our derivation assumes order-one values of the Peclet number,

the two models show a good agreement with the Fourier equation.
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Figure 8: Example study, water flowing over a vertical plate. Ct = 0, Re = 15, We = 266, Pe = 105,

Bi = 0.1. Temperature field computed solving the Fourier equation.
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Figure 9: Comparison between the reference case and the different models at low Peclet (Pe = 1). Left,

Bi = 1 and right, Bi = 100. From top to bottom, we have the θ model and the θ - ϕ with polynomial

test functions.
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Figure 10: Comparisons between the reference case and the different models at moderate Biot (Bi = 1).

Left panel: high Peclet number Pe = 105 (coherent with water thermal properties). Right panel: very

high Peclet number Pe = 2000.
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In addition to the periodic-box simulation, simulations of the evolution of the film

in an open large domain, representative of an element of a plate exchanger, have been

performed. This is a critical case, as our previous attempts [7] were unable to capture

correctly the onset of the thermally developed regime at the inlet of the flow. The reason

for this inaccuracy lies in an incorrect representation of the diffusion relaxation modes

discussed in the previous section. The thermal entrance length increases with the Peclet

number and can exceed the exchanger length: this is an important factor for the heat

exchanger optimization. The same parameters as the periodic-box case have been chosen

(Re = 15, Ct = 0, We = 266). We modeled a L = 20 cm length exchanger plate. A

Dirichlet boundary condition has been used at the flow input such as

h|x=0 = 1 +A sin(2π t f) q|x=0 =
1

3
h3

with the amplitude A = 0.1 and the frequency f = 10.

The outlet is dealt with a no-flux boundary condition: it yields some numerical errors

that are convected outside the domain. We lose a small part of the simulation domain

length, and therefore extend the domain to L = 25 cm. We then crop a buffer zone to

obtain 20 cm of useful length for the simulation.

Figure 11 focuses on the first part of the plate, where the waves are growing. The

θ - ϕ model has the same behavior when the Biot number is low and shows a slightly

better agreement with the Fourier equation than the θ model. Both over-estimate the

interfacial temperature.

To check the accuracy of the models for a relaxation process, some simulations have

been run for a flat case (without any film perturbation) and a hot film input (T |x=0 =

1). For the interfacial flux, our two new models (θ and θ − ϕ) have very close behaviors

(see figure 12). We are not able to capture the very first part of the relaxation, where

the Fourier model goes from no flux at all to local maxima before relaxing. Our model

cannot capture such a sharp transition, as a polynomial projection of the temperature

field cannot represent a Dirac function. That explains the observed initial flux overshoot.

A previous attempt (referred as CFM2015 [32]) is unable to capture the relaxation of the

interfacial flux at all.

Similarly to Aktershev and Bartashevich [1], we have represented the temperature
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Figure 11: Simulation of a full exchanger plate, first part of the domain. Re = 15, Ct = 0, We = 266.
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profile of the different models as well as the solution of the Fourier equation for a flat

film. This has been done at different positions on the plate, as shown in figure 13.

As stated previously, the polynomial projection of the temperature field, parametrized

with interfacial-based free variable, cannot capture a sharp transition. This led to an

unphysical representation near the plate (especially for the θ model). Yet, the interfacial

temperature is correctly captured. The position where the linear temperature profile is

reached is predicted more accurately when the Biot number is low. This is a consequence

of our polynomial approximation which is linear with respect to the low Biot number

and can be improved by using more test functions and refining the projection. This

improvement will lead to higher model complexity.

3.3. Validation - periodic box

A series of simulations have been computed with fixed hydrodynamic parameters, the

only varying parameters being the Biot and the Peclet number. The different simulations

are compared to the Fourier reference case.

For very large Peclet numbers, this procedure is not sufficient to guarantee an accurate

representation of the temperature field, especially in the vicinity of the thermal boundary

layer. However, the obtained accuracy is adequate for the validation of the models.

The chosen sampler is a Latin Hypercube Sampler [22] generating samples following a

log-normal distribution. The log-normal shapes are chosen in order to fix the median for

both varying parameters. The samples are summed up in the figure 14a. The number of

samples (640) is large enough to provide a good overview of the behavior of the models

according to the two varying parameters.

The two models presented in the previous section are used to simulate a traveling wave

in a periodic box of length L/h̄N = 90. The long-time solution of the different models

is compared with the reference solution to the Fourier equation. Figure 15 compares the

different results. The norm H1 is defined as

LH1
(X) =

√∫
X2 +

∂X

∂x

2

dx . (34)

This norm has been chosen to evaluate both the amplitude and the shape of the heat flux

distributions at the interface as predicted by the models. We can observe that the two
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models exhibit a very good agreement with the reference solutions. For more than half

of the physical domain investigated, the error is below a 5% threshold, and never exceed

25%. The θ - ϕ model presents a wider domain in the parameter space of applicability,

defined here by the 5% error threshold. In particular, the range of validity for the

Pe number has been extended up to Pe = 100, whatever the value of the Bi number,

which is a significant improvement over the θ model. However, the θ model presents less

pronounced maxima of deviation from the Fourier solutions (with a maximal error of

19% instead of 23%) but is not able to represent some important phenomena, such as

the developing thermal layers near the crest of the waves (as shown in figure 10).

3.4. Validation - full exchanger

The same set of parameters as the periodic-box case has been chosen for the validation

case. We have simulated a L = 20 cm length exchanger plate. The same boundary

conditions as in section 3.2 have been used. A regular forcing at the inlet is again

enforced with an amplitude equal to A = 0.1 and a frequency given by f = 10.

Such simulations being expensive in comparison with the periodic-box case, we limit

the sample number to 64. The samples can be seen in figure 14b: the parameter space is

well explored and the shape of the log-normal distribution has been chosen so that the

median is aligned with our reference case.

As observed in figure 16 (see (34) for theH1 norm definition), the error of the transient

state is smaller than the error for a steady traveling wave, and we have seen that our

models relax well to the equilibrium state. The same remarks made for the periodic box

stay: the θ model fails to represent the complexity of the temperature field (see figure

10). Yet, this simple model catches well the interfacial flux with an error below 15%,

which is a strong improvement compared to the previous attempts [6, 9].
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Figure 12: Interfacial heat flux along the flow length, flat film. Re = 15, Ct = 0, We = 266.
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Pe = 105.
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Figure 14: Validation sampling: samples chosen with the latin hypercube sampling (LHS) method.

31



101 102 103

Pe

100

102

B
i

CFM2015

< 0.05

> 0.05

0.00→ 1.13

101 102 103

Pe

θ

< 0.05

> 0.05

0.00→ 0.19

101 102 103

Pe

θ - ϕ

< 0.05

> 0.05

0.00→ 0.23

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200

relative error (LH1
norm)

Φ
(ȳ

=
1
)

Figure 15: Relative error (H1 norm) on the wall and interface flux, for the different models. Minimum

and maximum error values are displayed at the top left of each plots, and the black border separates

the domain where the error is inferior to 5%. This border is determined by training a multi-layered

perceptron (MLP) classifier with our data.
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Figure 16: Relative error (H1 norm) on the wall and interface flux, for the different models. The

minimum and maximum error values are displayed at the top left of each plot, and the black border

separates the domain where the error is inferior to 5%. This border is determined by training a MLP

classifier with our data.
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Conclusion

A new asymptotic model, offered with two variants, has been developed as an alter-

native to the full resolution of the Fourier equation across a falling film. This leads to a

faster resolution at the cost of a reduced domain in the parameter space of applicability

(very high Pe numbers are still out of reach). This model overcomes the limitations of

previous attempts, which led to acceptable results for moderate Biot and Peclet numbers

only, and yielded non-physical behavior outside this range. Moreover, the diffusive re-

laxation towards the conductive equilibrium in the entrance region of the plate observed

with the Fourier equation is now correctly captured. This improves the models accuracy,

even outside the entrance regime. It also extends the physical space of applicability (see

figure 15, 16), even with only one free variable to represent the temperature distribution

(relative error less than 20% for Pe ∈ [101, 103] and Bi ∈ [10−3, 103]).

The two variants, resp. θ model and θ - ϕ model, possess different advantages. The

simplest one (θ model) is more robust and has a cheaper resolution cost. It is a good can-

didate for global studies (optimization for example), whereas the second one (θ - ϕmodel)

is able to capture more complex thermal transfer behaviors. This complexity has a cost,

in terms of robustness and computation especially, at the crest of the waves (due to the

extra free variable and evolution equation). That computation cost is still much less ex-

pensive than the alternative, i.e. solving the Fourier equation. Hence, this model shows

itself to be a good candidate when the comprehension of the phenomena is important

but the cost of the Fourier equation cannot be afforded. This cost can be prohibitive

when it comes to transfers within a 3D falling film in a spatial domain representative of a

realistic plate exchanger. The latter is our next goal, within reach by coupling our model

with a computation-efficient shallow-water model developed recently by Bresch et al. [4].

Other perspectives include the introduction of coupling effects between hydrodynamic

and heat transfer via the Marangoni effect, or via other temperature dependencies of the

fluid properties [26] in the models. The introduction of such coupling is trivial and will

give access (with the extension to 3D of the models) to a proper comparison with the

experimental studies. Readers interested in how to extend such models in 3D or how to

account for the thermocapillarity can find details in Kalliadasis et al. [19].

This family of models constitutes a new tool which provides a costless evaluation
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of thermal transfers across a falling film, making costly investigations in terms of num-

ber of simulations (optimization, sensitivity analysis, parameterized exploration of the

parameter space...) now accessible.

AppendixA. Construction of solutions to the Fourier equation

In this section, we present an approach to solve the Fourier equation (2d) in the case

of traveling wave solutions. We first project the temperature field as

T = 1 +

n∑
i=1

τi(x, t)φi(X) and X = 2
y

h(x, t)
− 1 (A.1)

where φi(X) are linear combinations of Chebyshev polynomials of the first kind Ti given

by

φ1 = 1 +X ,

φ2i = T2i(X)− 1 and φ2i+1 = T2i+1(X)−X for i ≥ 1 , (A.2)

so that φi(1) = φi(−1) = 0 for i ≥ 2 and φ1(−1) = 0. The Dirichlet condition at wall

(2g) is thus verified by (A.1). Considering traveling waves, i.e. stationary solutions in

frame ξ = x− c t moving at a constant speed c, and writing the Fourier equation (2d) on

the Gauss-Lobato points Xi = − cos(πi/n) i ≥ 1 gives formally n− 1 relations
n∑
j

φj(Xi)Dξξτj = Fi(τj , Dξτj) , (A.3)

whereDξ = d/dξ. We next complete the Fourier equation (2d) by the boundary condition

η∂xxT = ∂yT − ∂xh∂xT + BiT
√

1 + (∂xh)2 at y = h . (A.4)

The Newton law of cooling (2h) is recovered in the limit η → 0. Substitution of (A.1)

into (A.4) completes the n− 1 relations (A.3) into a linear system of dimension 2n

A
dU

dξ
= B(U; η) , (A.5)

with U = (τi, Dξτi), 1 ≤ i ≤ n. Inverting (A.5) leads to an autonomous dynamical

system of dimension 2n. This dynamical system is solved along with the dimension-three

dynamical system corresponding to (28) or (33) with the help of the software AUTO07p

[13] (see [19] for detail). The value of the constant η has been set to 10−6. We checked

the convergence with respect to η by dividing its value by 10.
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