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LITTLEWOOD-PALEY-STEIN FUNCTIONS FOR HODGE-DE

RHAM AND SCHRÖDINGER OPERATORS

THOMAS COMETX

Abstract. We study the Littlewood-Paley-Stein functions associated with
Hodge-de Rham and Schrödinger operators on Riemannian manifolds. Under
conditions on the Ricci curvature we prove their boundedness on Lp for p in
some interval (p1, 2] and make a link to the Riesz Transform. An important
fact is that we do not make assumptions of doubling measure or estimates
on the heat kernel in this case. For p > 2 we give a criterion to obtain the
boundedness of the vertical Littlewood-Paley-Stein function associated with
Schrödinger operators on Lp.
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1. Introduction and main results

Let (M, g) be a non-compact Riemannian Manifold of dimension n. Here g de-
notes the Riemannian metric that gives a smooth inner product gx on each tangent
space TxM . It induces a smooth inner product on cotangent spaces T ∗

xM which

we denote by <,>x and the Riemannian measure dx. We note |.|x =< ., . >
1/2
x

the associated norm on the cotagent space. Let Lp = Lp(M,Λ1T ∗M) with norm

‖ω‖p =
[∫

M |ω(x)|pxdx
]

1
p . For p = 2, we have the scalar product on L2(M,Λ1T ∗M)

which we denote by (α, β)L2 =
∫

M
< α, β >x dx. Let ∆ be the non-negative

Laplace-Beltrami on functions,
−→
∆ be the Hodge-de Rham Laplacian on 1-differential

forms. It is defined by
−→
∆ = dd∗ + d∗d where d is the exterior derivative and d∗ its

adjoint for the L2 scalar product. Let ∆̃ = ∇∗∇ be the rough Laplacian on forms,
where ∇ is the Levi-Civita connection. A link can be done between the previous
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two operators via the Ricci curvature. Indeed, let R be the Ricci tensor on 1-forms,
then the Böchner formula says

(1)
−→
∆w = ∆̃w +Rw.

The present work is devoted to the study of Lp boundedness of the Littlewood-
Paley Stein functions associated with the Hodge-de Rham Laplacian on 1-forms as
well as Schrödinger operators on functions. We also study the Lp boundedness of
the Riesz transform R = d∆−1/2. In contrast to previous works on Riesz transforms
we do not assume the doubling volume property or a Gaussian estimate for the heat
kernel.

The vertical Littlewood-Paley-Stein function for the Laplace-Beltrami operator
on functions was introduced by Stein and is defined by

G(f)(x) :=

[∫ ∞

0

|de−t
√
∆f(x)|2 tdt

]1/2

.

The horizontal one is defined by

g(f)(x) :=

[∫ ∞

0

| ∂
∂t

e−t
√
∆f(x)|2 tdt

]1/2

.

The functionals G and g are always, up to a multiplicative constant, isometries
of L2(M). An interesting question is to find the range of p such that g and G extend
to bounded operators on Lp(M). In [17], Stein proved that they are bounded on
Lp in the euclidean setting for all p ∈ (1,∞) and of weak type (1,1). In [18], he
proved the boundedness of G for 1 < p < ∞ in the case where M is a compact
Lie group and for p ∈ (1, 2] without any assumption ont he manifold. He also
proved the boundedness of g for a general Markov semigroup. The boundedness
of the horizontal Littlewood-Paley-Stein function is related to the existence of H∞

functional calculus for the generator of the semigroup (see Cowling et al. [8]).
Coulhon, Duong and Li proved in [7] that if the heat kernel admits a Gaussian
upper estimate and the manifold satisfies the volume doubling property, then G is
of weak type (1, 1). In [10], Lohoué treated the case of Cartan-Hadamard manifolds.
In [13], [14] Paul-André Meyer studied these functionals with probabilistic methods.

The boundedness of G is linked with the boundedness of the Riesz transform
R = d∆−1/2. Riesz transform always extends to a bounded operator from L2(M)
to L2(M,Λ1T ∗M) and it is a major question in harmonic analysis to find the range
of p for which it extends to a bounded operator on Lp. It is the case for p ∈ (1, 2)
under the assumptions of volume doubling property and Gaussian upper estimate
[5]. For p > 2 the situation is complicate. The Riesz transform is bounded on Lp for
all p ∈ (1,∞) if the Ricci curvature is non-negative by a well known result by Bakry
[2]. A counter example for large p is given in [5] for a manifold satisfying the volume
doubling property and the Gaussian bound. We refer to Carron-Coulhon-Hassell
[3] for precise results on such manifolds. A sufficient condition for the boundedness
of the Riesz transform in terms of the negative part of the Ricci curvature is given
by Chen-Magniez-Ouhabaz [4].
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For manifolds either without the volume doubling property or the Gaussian
bound little is known. It is an open problem wether the Riesz transform is always
bounded on Lp for p ∈ (1, 2).

In this article, we study the boundedness of the vertical Littlewood-Paley-Stein
functions associated with the Hodge-de Rham operator defined as follows

G+−→
∆
(ω)(x) :=

[∫ ∞

0

|de−t
√−→

∆ω|2x tdt)
]1/2

,

G−−→
∆
(ω)(x) :=

[∫ ∞

0

|d∗e−t

√−→
∆ω(x)|2 tdt)

]1/2

,

G−→
∆
(ω)(x) :=

[
∫ ∞

0

|∇e−t
√−→

∆ω|2x tdt)
]1/2

.

Note that de−t
√−→

∆ω is a 2-differential form and |de−t
√−→

∆ω|x is defined as before.
We also define the functional

H−→
∆
(ω)(x) :=

(∫ ∞

0

|∇e−t
−→
∆ω|2x+ < (R+ +R−)e−t

−→
∆ω, e−t

−→
∆ω >x dt

)

.

where R+ and R− respectively are the positive and negative part of the Ricci
curvature.

One can also define the horizontal functions for these operators by

−→g (ω)(x) =

[∫ ∞

0

| ∂
∂t

e−t

√−→
∆ω|2xtdt

]1/2

.

Our main contribution is the Lp boundedness of the vertical functional H−→
∆

associated with the Hodge Laplacian. We work outside the usual setting, that is
without assuming the manifold has the volume doubling property, or its heat kernel
satisfies a Gaussian estimate. Instead, we rely on two other hypothesis : a maximal
inequality for the semigroup and subcriticality of the negative part of the Ricci
curvature. Under these properties we prove the boundedness of all the previous
vertical Littlewood-Paley-Stein functions. More precisely

Theorem 1. Suppose that the negative part R− of the Ricci curvature is subcritical

with rate α ∈ (0, 1) that is, for all ω ∈ D(
−→
∆)

(2) (R−ω, ω)L2 ≤ α((∆̃ +R+)ω, ω)L2 .

Let p1 = 2
1+

√
1−α

. Given p ∈ (p1, 2] and assume that e−t
−→
∆ satisfies the maximal

inequality

(3) ‖ sup
t>0

|e−t
−→
∆ω|x‖p ≤ C‖ω‖p.

Then H−→
∆

, G+−→
∆

, G−−→
∆

and G−→
∆

are bounded on Lp. They are also bounded on Lq for

all q ∈ (p, 2].

Note that we can write Theorem 1 restricted to exact 1-forms assuming (3) only
on these forms.

As a consequence we obtain the following result on the Riesz Transform.
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Theorem 2. Suppose that the negative part of the Ricci curvature R− satisfies (2)

for some α ∈ (0, 1) and let p1 = 2
1+

√
1−α

. Given p in (p1, 2] and suppose that e−t
−→
∆

satisfies the maximal inequality (3). Then the Riesz transform is bounded on Lp′

where 1
p + 1

p′
= 1. It is also bounded on Lq for all q ∈ [2, p′).

Magniez, in [11], proved the boundedness of R on Lp for p in a slightly bigger
interval by assuming the doubling property and the Gaussian upper estimate for
the heat kernel. As mentioned above, we do not assume any of these two properties.
Instead we assume the maximal inequality (3). Note that if the heat semigroup on
functions satisfies the so-called gradient estimate

(4) |de−t∆f |x ≤ Me−δt∆|df |x
with some postive constants M and δ then (3) is satisfied on exact forms. Indeed, in

this case, |e−t
−→
∆df |x = |de−t∆f |x ≤ Me−δt∆|df |x ≤ M supt>0 e

−δt∆|df |x where the
right hand side term is bounded on Lp for p ∈ (1,∞) because e−t∆ is submarkovian
(see [18], p 73). If in addition one has Lp-decomposition on forms ω = df + d∗β
with ‖ω‖p ≃ ‖df‖p then (4) implies (3). The latter decomposition is not true on
all non-compact Riemannian manifolds. See [6] for a discussion on this property.

If R ≥ 0 then obviously (3) and (4) are satisfied since |e−t
−→
∆ω|x ≤ e−t∆|ω|x as a

consequence of the Böchner formula (1).
We also study the boundedness of the Littlewood-Paley-Stein function associated

with the Schrödinger operators L = ∆+ V , namely

GL(f)(x) :=

[∫ ∞

0

(

|de−tL1/2

f |2x + |V |(e−tL1/2

f)2(x)
)

tdt

]1/2

,

HL(f)(x) :=

[∫ ∞

0

(

|de−tLf |2x + |V |(e−tLf)2(x)
)

dt

]1/2

.

We use the classical notation V + and V − for the positive and negative parts of V .
We take V + ∈ L1

loc(M). The Schrödinger operator L is defined by the quadratic
form techniques.

Theorem 3. Let L = ∆+ V be a Schrödinger operator such that the negative part
V − is subcritical with rate α ∈ (0, 1) in the sense

(5)

∫

M

V −f2dx ≤ α

∫

M

(

V +f2 + |∇f |2
)

dx, ∀f ∈ C∞
c (M).

Then HL and GL are bounded on Lp(M) for all p ∈ (p1, 2] where p1 = 2
1+

√
1−α

.

The result was known for non-negative V (see Ouhabaz [16]). In this case α = 0
and then HL and GL are bounded on Lp for p ∈ (1, 2]. The paper is organized
as follows. In section 2, we recall links between Riesz transform and Littlewood-
Paley-Stein functions. In section 3 we prove Theorems 1 and 2. In section 4, using
the same techniques, we give a short proof of a result by Bakry in [2] saying that
the modified Riesz transform d(∆ + ǫ)−1/2 is bounded for p > 2 if we suppose the
Ricci curvature is bounded from below. In section 5, using the same techniques

again, we study the boundedess of the horizontal LPS function associated with
−→
∆.

In section 6 we prove Theorem 3. In section 7, we assume the doubling property
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and the Gaussian estimate for heat kernel to give a criterion on V to obtain the
boundedness of HL in the case p > 2.

Notations : Let p > 1. During all the paper, we denote by Lp either the spaces
Lp(M) and Lp(M,Λ1T ∗M) when the context is clear. We sometimes denote by
Lp(Λ1T ∗M) the space Lp(M,Λ1T ∗M). We denote by p′ the conjugate expontent
of p defined by 1

p + 1
p′

= 1. We denote by C∞
c (M) the space of smooth compactly

supported functions on M . We often use C and C′ for possibly different positive
constants.

2. The Littlewood-Paley-Stein fuctions and the Riesz Transform

The aim of this section is to recall the links between Littlewood-Paley-Stein
functions, Riesz transforms and other estimates. We show a duality argument
which shows why the function G−−→

∆
is useful to study the Riesz transform.

First, we have the following theorem which is taken from [6].

Theorem 4. Let p ∈ (1,∞). If G is bounded on Lp(M) and −→g is bounded from

Lp′

(Λ1T ∗M) to Lp′

(M), then the Riesz transform extends to a bounded operator
from Lp(M) to Lp(Λ1T ∗M).

The subordination formula for positive and self-adjoint operators

(6) e−tA
1
2 =

1√
π

∫ ∞

0

e−
t2

4sAe−s ds√
s

gives the following pointwise domination (see e.g. [7]).

Proposition 5. For all f ∈ C∞
c (M), for all ω ∈ C∞

c (Λ1T ∗M), for all x ∈ M ,

(7)

{

G(f)(x) ≤ CH(f)(x)

G−→
∆
(ω)(x) ≤ C′H(∇)

−→
∆

(ω)(x) ≤ C′H−→
∆
(ω)(x)

where C and C′ are positive constants and H and H
(∇)
−→
∆

are defined by

H(f)(x) =

[∫ ∞

0

|de−t∆f |2xdt
]1/2

H
(∇)
−→
∆

(ω)(x) =

[∫ ∞

0

|∇e−t
−→
∆ω|2xdt

]1/2

.

In order to study the boundedness of the Riesz transform R = d∆−1/2 on Lp,
we argue by duality. It is sufficent to prove the boundedness of the adjoint R∗ =
∆−1/2d∗ on Lp′

to obtain the boundedness of the Riesz transform on Lp. By the

classical commutation property, R∗ = d∗
−→
∆−1/2. Therefore we consider d∗

−→
∆−1/2

on Lp′

.
In the next result, we have a version of Theorem 4 in which we appeal to G−−→

∆

instead of −→g and G.

Theorem 6. Let p ∈ (1,∞). If G−−→
∆

is bounded from Lp′

(Λ1T ∗M) to Lp′

(M),

then the Riesz transform extends to a bounded operator on Lp (with values in
Lp(Λ1T ∗M)).



6 THOMAS COMETX

Proof. We show that d∗
−→
∆

−1/2
is bounded from Lp′

(Λ1T ∗M) to Lp′

(M). The proof
is the same as for Theorem 4. We write the argument for the sake of completeness.
Let ω ∈ Lp′

(Λ1T ∗M). We have by duality

‖d∗−→∆−1/2ω‖p′ = sup
g∈Lp(M),‖g‖p=1

∣

∣

∣

∣

∫

M

d∗
−→
∆−1/2ω(x)g(x)dx

∣

∣

∣

∣

.

By the reproducing formula
∫

M

f(x)g(x) dx = 4

∫

M

∫ ∞

0

[
∂

∂t
e−

√
∆f(x)][

∂

∂t
e−

√
∆g(x)] tdtdx

applied with f = d∗
−→
∆−1/2ω we have

∫

M

d∗
−→
∆−1/2ω(x)g(x)dx = 4

∫ ∞

0

∫

M

[
∂

∂t
e−t

√
∆d∗

−→
∆−1/2ω(x)][

∂

∂t
e−t

√
∆g(x)]tdxdt.

Using the commutation formula d∗
−→
∆ = ∆d∗, we have

∂

∂t
e−t

√
∆d∗

−→
∆−1/2ω = −

√
∆e−t

√
∆d∗

−→
∆−1/2ω

= −d∗
√

−→
∆e−t

√−→
∆−→
∆−1/2ω

= −d∗e−t

√−→
∆ω.

Thus,

‖d∗−→∆−1/2ω‖p′ = 4 sup
g∈Lp(M),‖g‖p=1

∣

∣

∣

∣

∫ ∞

0

∫

M

[d∗e−t

√−→
∆ω(x)][

∂

∂t
e−t

√
∆g(x)]tdxdt

∣

∣

∣

∣

≤ 4 sup
g∈Lp(M),‖g‖p=1

∥

∥

∥

∥

∥

(
∫ ∞

0

|d∗e−t
√−→

∆ω|2xtdt
)1/2

∥

∥

∥

∥

∥

p′

×
∥

∥

∥

∥

∥

(∫ ∞

0

| ∂
∂t

e−t
√
∆g(x)|2tdt

)1/2
∥

∥

∥

∥

∥

p

= 4 sup
g∈Lp(M),‖g‖p=1

‖G−−→
∆
(ω)‖p′‖g(f)‖p

≤ C‖ω‖p′ .

Here we used the boundedness of G−−→
∆

on Lp′

which is our assumption. Note that g

is bounded on Lp for all p ∈ (1,∞) by [18], p111. �

3. Vertical LPS functions for the Hodge-de Rham Laplacian for

p ≤ 2

In this section we prove Theorem 1 and 2. We start with some useful pointwise
inequalities on smooth differential forms.

Lemma 7. For p ≤ 2, for all suitable differential form ω and for all x ∈ M we
have the pointwise inequality

(8) −∆|ω|px ≥ |ω|p−2
x

[

p(p− 1)|∇ω|2x − p < ∆̃ω, ω >x

]

.
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Proof. We compute the calculations for p = 2. Let x ∈ M , let Xi be orthonormal
coordinates at x, and θi their dual basis in the cotangent space, satisfying ∇θi = 0
for all i at x. We have

∆̃ω = −
n
∑

i=1

∇Xi∇Xiω.

Hence,

∆̃|ω|2x = −
n
∑

i=1

∇Xi∇Xi < ω, ω >x

= −2
n
∑

i=1

∇Xi < ∇Xiω, ω >x

= −2

n
∑

i=1

[

< ∇Xi∇Xiω, ω >x +|∇Xiω|2x
]

= 2 < ∆̃ω, ω >x −2
n
∑

i=1

|∇Xiω|2x

= 2 < ∆̃ω, ω >x −2|∇ω|2x.
In order to obtain (8) for p < 2, we recall that for all suitable functions f we have

(9) −∆f
p
2 =

p(p− 2)

4
|∇f |2f p−4

2 − p

2
f

p−1
2 ∆f.

We apply (9) with f = |ω|2 and the equality we proved for p = 2 to obtain

−∆|ω|px =
p(p− 2)

4

∣

∣(∇|ω|2x)
∣

∣

2

x
|ω|p−4

x − p

2
|ω|p−2

x ∆|ω|2x

=
p(p− 2)

4
|(∇|ω|2x)|2x|ω|p−4

x − p|ω|p−2
x < ∆̃ω, ω >x +p|ω|p−2

x |∇ω|2x.

Consequently, it is sufficient to show that

(10)
p(p− 2)

4

∣

∣(∇|ω|2x)
∣

∣

2

x
|ω|p−4

x ≥ p(p− 2)|ω|p−2
x |∇ω|2x.

Since p < 2, (10) is equivalent to

(11)
∣

∣∇(|ω|2x)
∣

∣

2

x
≤ 4|ω|2x|∇ω|2x.

We prove (11) using local coordinates. We write ω =
∑n

j=1 fjθj , so that |ω|2x =
∑n

i=1 f
2
i and

∣

∣(∇|ω|2x)
∣

∣

2

x
= |

n
∑

i=1

2fidfi|2x

= 4

n
∑

j=1

n
∑

i=1

fifj < dfi, dfj >x

≤ 4

n
∑

j=1

f2
i

n
∑

i=1

|dfj |2x

= 4|ω|2x|∇ω|2x
where we used Cauchy-Schwarz inequality in R

n. �
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We will also need other the following inequalities from [11].

Lemma 8. For any p > 1 and any suitable ω, we have the pointwise inequality

(12) |∇
(

|ω|
p
2−1
x ω

)

|2x ≤ p2

4(p− 1)
< ∇

(

|ω|p−2
x ω

)

,∇ω >x .

Lemma 9. For any suitable 1-differential form ω we have the pointwise estimates
|dω|x ≤ 2|∇ω|x and |d∗ω|(x) ≤ √

n|∇ω|x.

We recall that the negative part of the Ricci curvature is sub-critical with rate
α ∈ (0, 1) if for all suitable ω we have (2)

(R−ω, ω)L2 ≤ α
[

(R+ω, ω)L2 + ‖∇ω‖22
]

.

Note that (2) is equivalent to

(
−→
∆ω, ω)L2 ≥ (1− α)((∆̃ +R+)ω, ω)L2 .

We have the following analogous inequality on Lp.

Proposition 10. If the negative part of the Ricci curvature is subcritical with rate
α, then for all suitable non vanishing ω in Lp

(13)
∫

M

< R−ω, ω >x |ω|p−2
x dx ≤ α

∫

M

< R+ω, ω >x |ω|p−2
x + |∇

(

|ω|
p
2−1
x ω

)

|2xdx.

Proof. Let ω ∈ Lp(Λ1T ∗M) a suitable differential form and let β = |ω|
p
2−1
x ω. We

have β ∈ L2(Λ1T ∗M) and then we apply (2) to β to obtain

∫

M

< R−|ω|
p
2−1
x ω, |ω|

p
2−1
x ω >x dx ≤ α

∫

M

< R+|ω|
p
2−1
x ω, |ω|

p
2−1
x ω >x

+ |∇
(

|ω|
p
2−1
x ω

)

|2xdx.

Using the pointwise linearity of R+ and R− it leads to
∫

M

< R−ω, ω >x |ω|p−2
x dx ≤ α

∫

M

< R+ω, ω >x |ω|p−2
x + |∇

(

|ω|
p
2−1
x ω

)

|2xdx.

which is the desired inequality. �

The following proposition is proven in [11]. We reproduce the proof for the sake
of completeness.

Proposition 11. Suppose that the negative part of the Ricci curvature is subcritical

with rate α ∈ (0, 1). Let p1 = 2
1+

√
1−α

. Then the norm ‖e−t
−→
∆ω‖p is a decreasing

function of t for all p ∈ (p1, p
′
1). Consequently e−t

−→
∆ is a contraction semigroup on

Lp for all p ∈ (p1, p
′
1).

Proof. Let ω be a suitable smooth differential 1-form and ωt = e−t
−→
∆ω. We compute

the derivative of E(t) = ‖ωt‖pp. We have
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∂E(t)

∂t
=

∫

M

∂

∂t
|ωt|pxdx

= −p

∫

M

<
−→
∆ωt, |ωt|p−2

x ωt >x dx

= −p

∫

M

< ∇ωt,∇|ωt|p−2
x ωt >x + < (R+ −R−)ωt, |ωt|p−2

x ωt >x dx

= −p

∫

M

< ∇ωt,∇|ωt|p−2
x ωt >x + < (R+ −R−)|ωt|

p
2−1
x ωt, |ωt|

p
2−1
x ωt >x dx

≤ −p

∫

M

4(p− 1)

p2
|∇|ωt|

p
2−1
x ωt|2x+ < (R+ −R−)|ωt|

p
2−1
x ωt, |ωt|

p
2−1
x ωt >x dx.

We used Lemma 8 to obtain the last inequality. By the subcriticality assumption
we have

(14)
∂E(t)

∂t
= −p(1− α)

∫

M

< R+|ωt|
p
2−1
x ωt, |ωt|

p
2−1
x ωt >x dx

− p

(

4(p− 1)

p2
− α

)∫

M

∣

∣

∣∇|ωt|
p
2−1
x ωt

∣

∣

∣

2

x
dx.

Hence ∂E(t)
∂t

≤ 0 for p such that 4(p− 1) ≥ αp2. This is equivalent to p ∈ (p1, p
′
1)

where p1 = 2
1+

√
1−α

. �

This result ensures the existence of e−t
−→
∆ω in Lp(Λ1T ∗M) and then one can

consider Littlewood-Paley-Stein functions associated with
−→
∆ on Lp.

Proof of Theorem 1. By Lemma 9 and Proposition 5 it is sufficient to prove
the boundedness of H−→

∆
. We follow similar arguments as in [18], p52-54. Let ω be

a smooth non vasnishing 1-differential form and ωt := e−t
−→
∆ω. A direct calculation

and Lemma 7 give

(15)







−∆|ω|px ≥ −p < ∆̃ω, ω >x |ω|p−2
x + p(p− 1)|ω|p−2

x |∇ω|2x

− ∂

∂t
|ω|px = p <

−→
∆ω, ω >x |ω|p−2

x .

Using the Böchner formula (1) we obtain

− ∂

∂t
|ωt|px = p < (∆̃ +R+ −R−)ωt, ωt >x |ωt|p−2

x .

Let ξ, c, k be positive constants and set

Q(ω, x, t) := − ∂

∂t
|ωt|px − ξ∆|ωt|px+ < (−cR+ + kR−)ωt, ωt >x |ωt|p−2

x .

Using (15) we obtain

Q(ω, x, t) ≥ |ωt|p−2
x

[

p(1− ξ) < ∆̃ωt, ωt >x +(p− c) < R+ωt, ωt >x

+ (−p+ k) < R−ωt, ωt >x +ξp(p− 1)|∇ωt|2x
]

.
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Hence,

(16) |ωt|2−p
x

[

Q(ω, x, t) + |ωt|p−2
x p(ξ − 1) < ∆̃ωt, ωt >x

]

≥

(p− c) < R+ωt, ωt >x +(−p+ k) < R−ωt, ωt >x +ξp(p− 1)|∇ωt|2x.
If the quantities ǫ := p− c and η := −p+ k are positive we obtain

(17) < R+ωt, ωt >x + < R−ωt, ωt >x +|∇ωt|2x
≤ C|ωt|2−p

x

[

Q(ω, x, t) + |ωt|p−2
x p(ξ − 1) < ∆̃ωt, ωt >x

]

for some positive constant C depending on p, ξ, ǫ and η. In particular we have the
pointwise inequality

(18) Q(ω, x, t) + |ωt|p−2
x p(ξ − 1) < ∆̃ωt, ωt >x≥ 0.

By integration of (17) for t ∈ [0,∞) we obtain

H−→
∆
(ω)(x)2 ≤ C

∫ ∞

0

|ωt|2−p
x

[

Q(ω, x, t) + |ωt|p−2
x p(ξ − 1) < ∆̃ωt, ωt >x

]

dt.

Integrating over M yields
∫

M

H−→
∆
(ω)(x)pdx ≤

C

∫

M

(∫ ∞

0

|ωt|2−p
x

[

Q(ω, x, t) + |ωt|p−2
x p(ξ − 1) < ∆̃ωt, ωt >x

]

dt

)
p
2

dx.

Hence, by (18)
∫

M

H−→
∆
(ω)(x)pdx ≤

C

∫

M

|ω∗|p(1− p
2 )

[∫ ∞

0

Q(ω, x, t) + |ωt|p−2
x p(ξ − 1) < ∆̃ωt, ωt >x dt

]
p
2

dx.

We use Hölder’s inequality on M with powers 2
p and 2

2−p . By (18), we can avoid

absolute values in the second integral and obtain

∫

M

H−→
∆
(ω)(x)pdx ≤ C

[∫

M

|ω∗|p
]1− p

2

×
[∫

M

∫ ∞

0

Q(ω, x, t) + |ωt|p−2
x p(ξ − 1) < ∆̃ωt, ωt >x dtdx

]p/2

where

(19) ω∗(x) := sup
t≥0

|ωt|x.

The maximal inequality (3) gives
∫

M

H−→
∆
(ω)(x)pdx ≤ C‖ω‖p(1−

p
2 )

p ×
[∫

M

∫ ∞

0

Q(ω, x, t) + |ω|p−2
x p(ξ − 1) < ∆̃ωt, ωt >x dtdx

]p/2

.
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Set

I(t) :=

∫

M

< (kR− − cR+)ωt, |ωt|p−2
x ωt >x

− p(1− ξ) < ∆̃ωt, ωt >x |ωt|p−2
x dx.

We have
∫

M

∫ ∞

0

Q(ω, x, t) + p(ξ − 1)|ω|p−2
x < ∆̃ωt, ωt >x dtdx

=

∫

M

∫ ∞

0

[

− ∂

∂t
|ωt|px − ξ∆|ωt|p

]

dtdx+

∫ ∞

0

I(t)dt

= ‖ω‖pp +
∫ ∞

0

I(t)dt

≤ ‖ω‖pp
where we used Lemma 12 below. Note that we also used that we can choose a
sequence tn tending to +∞ such that |ωtn |x tends to zero. This is true because

‖ωt‖2 tends to zero. Indeed, let ω =
−→
∆β in the range of

−→
∆. One has ‖ωt‖2 =

‖−→∆e−t
−→
∆β‖2 ≤ C

t ‖β‖2 by the analyticity of the semigroup on L2. The subcriticality

condition implies that there is no harmonic form on L2. Hence the range of
−→
∆ is

dense and this is still true for all ω ∈ L2. Therefore,
∫

M

H−→
∆
(ω)(x)pdx ≤ C‖ω‖p(1−

p
2 )

p ‖ω‖
p2

2
p = C‖ω‖pp.

By interpolation we obtain the boundedness on Lq for all q ∈ (p, 2].

Lemma 12. Under the subcriticality assumption, for all p ∈ (p1, 2] we can choose
positive constants c, k and ξ such that I(t) ≤ 0 for all t > 0.

Proof. By Proposition 10,

I(t) ≤
∫

M

(αk − c) < R+ωt, |ωt|p−2
x ωt >x dx+

∫

M

αk|∇
(

|ωt|
p
2−1
x ωt

)

|2x − p(1− ξ) < ∆̃ω, |ω|p−2
x ω >x dx.

By integration by parts and Lemma 8, we have

I(t) ≤
∫

M

(αk − c) < R+ωt, |ωt|p−2
x ωt >x dx

+

∫

M

(

αk − 4(1− ξ)(p− 1)

p

)

|∇
(

|ωt|
p
2−1
x ωt

)

|2xdx.

Choose c, k and ξ such that
{

pαk ≤ 4(p− 1)(1− ξ)

αk ≤ c.

We can choose k as close to p as we want, so any value of p satisfying αp2 − 4(p−
1)(1−ξ) < 0 can be chosen to satisfy the first inequality. If ξ < 1−α, this inequality



12 THOMAS COMETX

is satisfied for all p in the interval
[

2
1− ξ −

√

(1 − ξ)(1− ξ − α)

α
, 2

1− ξ +
√

(1− ξ)(1− ξ − α)

α

]

which is contained in [p1, p
′
1] with bounds tending to p1 and p1

′ when ξ tends to
zero. Hence, for all p ∈ (p1, 2] we can choose k and η such that pαk ≤ 4(p−1)(1−ξ).
Since α ∈ (0, 1), given k ∈ (p, p

α ) we can choose c = αk < p. �

Proof of Theorem 2. Let q ∈ [2, p′). By Theorem 1, G−−→
∆

is bounded on Lq′ .

By Theorem 6, the Riesz transform is on bounded on Lq.

4. Vertical LPS functions for the Hodge-de Rham Laplacian with

Ricci curvature bounded from below

We recall Bakry’s theorem in [2].

Theorem 13. Suppose that the Ricci curvature statisfies R ≥ −κ with κ > 0,
then the modified Riesz transform Rǫ = d(∆ + ǫ)−1/2 is bounded from Lp(M) to
Lp(Λ1T ∗M), for all p ∈ (1,∞) and ǫ > 0.

Bakry’s paper [2] contains several other results some of which are proven by
probabilistic methods. An analytic proof of the case p ∈ (1, 2] of the previous
theorem is given in [5]. In this section we follow the approach of the previous
sections to give a relatively short proof in the case p ∈ [2,∞).

Theorem 14. Suppose that the Ricci curvature satisfies R ≥ −κ with κ ≥ 0, then
the functional

Z(ω) :=

[∫ ∞

0

|∇e−t(
−→
∆+κ)ω|2xdt

]1/2

is bounded on Lp for p ∈ (1, 2].

Proof. Set ωt := e−t(
−→
∆+κ)ω. Lemma 7 gives

−∆|ωt|px ≥ p(p− 1)|∇ωt|2x|ωt|p−2
x − p < ∆̃ωt, |ωt|p−2

x ωt >x

= p(p− 1)|∇ωt|2x|ωt|p−2
x − p < (

−→
∆ −R)ωt, |ωt|p−2

x ωt >x

= p(p− 1)|∇ωt|2x|ωt|p−2
x − p < (− ∂

∂t
− κ−R)ωt, |ωt|p−2

x ωt >x

≥ p(p− 1)|∇ωt|2x|ωt|p−2
x + p <

∂

∂t
ωt, |ωt|p−2

x ωt >x

where we used R ≥ −κ. Multiplying by |ω|2−p
x we obtain

(20)

|∇ωt|2x ≤ C|ωt|2−p
x

[

−∆|ωt|px − p <
∂

∂t
ωt, |ωt|p−2

x ωt >x

]

≤ C|ωt|2−p
x

[

−∆|ωt|px − ∂

∂t
|ωt|px

]

.

As a consequence of (20) one has the pointwise inequality

(21) −∆|ωt|px − ∂

∂t
|ωt|px ≥ 0.
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We integrate (20) for t ∈ (0,∞) and use (21) to obtain

Z(ω)(x)2 ≤ C(sup
t>0

|ωt|x)2−p

∫ ∞

0

(

−∆|ωt|px − ∂

∂t
|ωt|px

)

dt

= C(sup
t>0

|ωt|x)2−p

(

|ω|px −
∫ ∞

0

∆|ωt|pxdt
)

.

In the last equality we used the fact that limt→+∞ ωt = 0 (in L2). This can be seen
from the domination

(22) |e−t(
−→
∆+κ)ω|x ≤ e−t∆|ω|x

and limt→+∞ e−t∆|ω|x = 0 in L2. The pointwise domination (22) is proven as
follows. By the Trotter-Kato formula,

|e−t(
−→
∆+κ)ω|x = |e−t

−→
∆−tκω|x

= lim
n→∞

∣

∣

∣

[

(e−
t
n (∆̃)e−

t
n (R+κ)

]n

ωt

∣

∣

∣

x

≤ e−t∆|ω|x.
Integrating over M yields

‖Z(ω)‖pp ≤ C

(∫

M

(sup
t>0

|ωt|x)pdx
)(2−p)/2(∫

M

[

|ω|px −
∫ ∞

0

∆|ωt|pxdt
]

dx

)p/2

≤ C

(∫

M

(sup
t>0

|ωt|x)pdx
)(2−p)/2

‖ω‖
p2

2
p

Here we used Hölder’s inequality with exponents 2
2−p and 2

p . By (22) we have

supt>0 |ωt|px ≤ supt>0 e
−t∆|ω|px. Hence,

∫

M

(sup
t>0

|ωt|x)pdx ≤
∫

M

sup
t>0

(e−t∆|ω|x)pdx

≤ C

∫

M

|ω|pxdx

because e−t∆ satisfies a maximal inequality as it is a submarkovian semigroup (see
[18] p73). As a consequence one has ‖Z(ω)‖p ≤ C‖ω‖p. �

As a consequence of Theorem 14 we recover the boundedness of Rǫ on Lp for
p ∈ [2,∞). Indeed, since Z is bounded on Lp′

, the same techniques as in Theorem 4
gives that Rκ is bounded on Lp. Finally, by writing Rǫ = Rκ(∆+κ)1/2(∆+ ǫ)−1/2

and using functional calculus for ∆ we see that Rǫ is bounded on Lp.

5. Horizontal LPS functions for the Hodge-de Rham Laplacian for

p ≤ 2

In this section we prove the boundedness of −→g for small values of p under the
same assumptions as in Theorem 1.

Theorem 15. Suppose that the negative part of Ricci curvature satisfies (2) for

some α ∈ (0, 1) and let p1 := 2
1+

√
1−α

. Given p ∈ (p1, 2] and suppose that e−t

√−→
∆

satisfies the maximal inequality

(23) ‖ sup
t>0

|e−t
√−→

∆ω|x‖p ≤ C‖ω‖p
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for all ω ∈ Lp. Then −→g is bounded from Lp(Λ1T ∗M) to Lp(M). It is also bounded
on Lq for q ∈ [p, 2]. For q ∈ [p, 2], we have the lower estimate

(24) ‖−→g (ω)‖q′ ≥ C‖ω‖q′ , ∀ω ∈ Lq′ .

Proof. Let ω be a suitable 1-form and set ωt := e−t

√−→
∆ω. We compute

(25)

∂2

∂t2
|ωt|px = p

∂

∂t
< −

√

−→
∆ωt, ωt >x |ωt|p−2

x

= p|ωt|p−2
x

[

<
−→
∆ωt, ωt >x +|

√

−→
∆ωt|2x

+ (p− 2)|ωt|−2
x <

√

−→
∆ω, ωt >

2
x

]

≥ p(p− 1)| ∂
∂t

ωt|2x|ωt|p−2
x + p <

−→
∆ωt, |ωt|p−2

x ωt >x .

Here we used the Cauchy-Schwarz inequality. Note that (25) implies

(26)
∂2

∂t2
|ωt|px − p <

−→
∆ωt, |ωt|p−2

x ωt >x ≥ 0.

Set w∗ := supt>0 |wt|x. We multiply (25) by t|ωt|2−p
x and integrate for t ∈ (0,∞).

Using (26) we obtain

−→g (x)2 ≤ C

∫ ∞

0

|ωt|2−p
x

[

∂2

∂t2
|ωt|px − p <

−→
∆ωt, |ωt|p−2

x ωt >x

]

tdt

≤ C(ω∗)2−p(x)

∫ ∞

0

[

∂2

∂t2
|ωt|px − p <

−→
∆ωt, |ωt|p−2

x ωt >x

]

tdt

≤ C(ω∗)2−p(x)

[

|ω|px − p

∫ ∞

0

<
−→
∆ωt, |ωt|p−2

x ωt >x tdt

]

.

Note that we used the fact that t
√−→

∆e−t
√−→

∆ω → 0 in L2 when t → +∞. We argue

similarly as when we proved ‖e−t
−→
∆ω‖2 → 0, taking first ω in the range of

√−→
∆ and

using its density. Hölder’s inequality for exponents 2
p and 2

2−p yields

(27) ‖−→g (ω)‖pp ≤ C‖ω∗‖p(1−
p
2 )

p

[∫

M

(

|ω|px − p

∫ ∞

0

I(t)tdt

)

dx

]p/2

,

where I(t) =
∫

M
<

−→
∆ωt, ωt|ωt|p−2

x >x dx. The same calculations as in Proposition

11 yield I(t) ≥ 0 for all t > 0. Hence, (27) gives ‖−→g (ω)‖p ≤ C‖ω‖p. We deduce
by interpolation that −→g is bounded on Lq for all q ∈ [p, 2]. The lower estimate is
obtained as in [18], p55-56. �

6. Vertical LPS functions for the Schrödinger Operator in the

subcritical case for p ≤ 2

In this section we prove Theorem 3. The following lemma is obtained by applying
(5) to |f | p2 .



LITTLEWOOD-PALEY-STEIN FUNCTIONS 15

Lemma 16. Assume that V − is subcritical with rate α, then for all suitable f in
Lp we have

(28)

∫

M

V −|f |pdx ≤ α

∫

M

p2

4
|∇f |2|f |p−2 + V +|f |pdx.

Proof of Theorem 3. By the subordination formula (6), it is sufficient to prove
the boundedness of HL. We have

HL(f) ≤ C
(

HL(f
+) +HL(f

−)
)

.

Thus it is sufficient to prove ‖HL(f)‖p ≤ C‖f‖p for all non-negative functions f .
Let f be a non-negative function and set ft := e−tLf . We have ft > 0 for all t > 0.
Let ǫ, η and ξ be positive constants and set

Q(f, x, t) := (− ∂

∂t
− ξ∆− cV + + kV −)fp

t .

We have

Q(f, x, t) = p[(∆ + V )ft]f
p−1
t + ξp(p− 1)|∇ft|2fp−2

t

− ξp(∆ft)f
p−1
t − cV +fp

t + kV −fp
t

= ξp(p− 1)|∇ft|2fp−2
t + p(1− ξ)(∆ft)f

p−1
t

+ [(p− c)V + + (k − p)V −]fp
t .

We multiply by f2−p
t to obtain

(29) ξp(p− 1)|∇ft|2 +
[

(p− c)V + + (k − p)V −] f2
t =

f2−p
t Q(f, x, t) + p(ξ − 1)ft∆ft.

Set ǫ := p − c and η := k − p. If ǫ and η are positive, the integration of (29) for
t ∈ [0,∞) yields
(30)

HL(f)
2(x) ≤ C

∫ ∞

0

f2−p
t

[

(− ∂

∂t
− ξ∆− cV + + kV −)fp

t + p(ξ − 1)fp−1
t ∆ft

]

dt

where C is constant depending on ǫ, η, ξ and p. A useful consequence of (29) is

(31) (− ∂

∂t
− ξ∆− cV + + kV −)fp

t + p(ξ − 1)fp−1
t ∆ft ≥ 0.

Set f∗ := supt>0 ft. Using (31), (30) gives

(32) HL(f)
2(x) ≤

C(f∗)2−p

∫ ∞

0

[

(− ∂

∂t
− ξ∆− cV + + kV −)fp

t + p(ξ − 1)fp−1
t ∆ft

]

dt.

Set

I(t) :=

∫

M

(−cV + + kV −)fp
t − p(1− ξ)fp−1

t ∆ft.



16 THOMAS COMETX

By Hölder’s inequality, (32) implies

‖HL(f)‖pp ≤ C

[∫

M

(f∗)pdx

]
2−p
2

×
[∫

M

∫ ∞

0

[

(− ∂

∂t
− ξ∆− cV + + kV −)fp

t + p(ξ − 1)fp−1
t ∆ft

]

dxdt

]
p
2

≤ C‖f∗‖
p(2−p)

2
p

[

‖f‖pp +
∫ ∞

0

I(t)dt

]
p
2

.

By Lemma 17 below, we can choose c, k and η such that I(t) ≤ 0 for all t > 0.
Hence,

‖HL(f)‖pp ≤ C‖f∗‖
p(2−p)

2
p ‖f‖

p2

2
p .

The same argument as is Proposition 11 implies that e−tL is a contraction semigroup
on Lp for all p ∈ (p1, p1

′). It is also a classical fact that e−tL is a positive semigroup.
For a positive contraction and analytic semigroup one has ‖f∗‖p ≤ C‖f‖p (see [9],
Corollary 4.1). Hence,

‖HL(f)‖pp ≤ C‖f‖pp.
Lemma 17. Under the subcriticality assumption, for all p ∈ (p1, 2] there exist c, k
and ξ positive constants such that I(t) ≤ 0 for all t > 0.

Proof. By Lemma 16 and integration by parts,

I(t) ≤
∫

M

(αk − c)V +fp + α
p2

4
|∇ft|2fp−2

t − p(1− ξ)fp−1
t ∆ft dx

≤
∫

M

(αk − c)V +fp +

[

αk
p2

4
− p(p− 1)(1− ξ)

]

|∇ft|2fp−2
t dx.

Choose k, c and η such that
{

pαk ≤ 4(p− 1)(1− ξ)

αk ≤ c.

The same discussion as in Lemma 12 gives that ξ, η and ǫ can be chosen to allow
any value of p ∈ (p1, 2]. �

7. Vertical LPS functions for the Schrödinger Operator in the

subcritical case for p > 2

In this section, we assume the manifold has the doubling property, that is there
exists a positive constant C such that for all x ∈ M and r > 0,

(33) V ol(x, 2r) ≤ CV ol(x, r)

where V ol(x, r) is the volume of the ball of center x and radius r for the Riemannian
distance ρ. This is equivalent to the fact that for some constants C and N ,

(34) V ol(x, λr) ≤ CλNV ol(x, r)

for all λ ≥ 1. We suppose in addition that the heat kernel pt(x, y) associated with
∆ has a Gaussian upper estimate, that is there exist positive constants C and c
such that

(35) pt(x, y) ≤ C
e−cρ2(x,y)/t

V ol(x,
√
t)
.
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Under these assumptions, the semigroup e−tL is uniformly bounded on Lp(M) for
all p ∈ (p0, p0

′) where p0
′ := 2

1−
√
1−α

N
N−2 . If N ≤ 2 it is true for p0

′ := +∞. Under

some integrability conditions on V , it is proven in [1] (Theorem 3.9) that the Riesz
transform dL−1/2 is bounded on Lp for p in some interval [2, q) if d∆−1/2 is also
bounded. We recall that HL is defined by

HL(f)(x) =

(∫ ∞

0

|∇e−tLf |2(x) + |V |(e−tLf)|2(x) dt
)1/2

.

Note that if V = 0 we obtain H∆ = H . We prove, under similar integrability
contiditions on V , that the Littlewood-Paley-Stein function HL is bounded in the
same interval. We recall a proposition from [1].

Proposition 18. Assume that V − satisfies (5) for some α ∈ (0, 1). Let p0
′ =

+∞ if N ≤ 2 and p0
′ = 2

1−
√
1−α

N
N−2 if N > 2. Given p and q such that p0 <

p ≤ q < p0
′ and set 1

r := 1
p − 1

q , then the family of operators V ol(x,
√
t)

1
r e−tL is

uniformly bounded from Lp(M) to Lq(M). By duality, the family e−tLV ol(x,
√
t)

1
r

is uniformly bounded from Lq′(M) to Lp′

(M) for all p0 < q′ ≤ p′ < p0
′ with

1
r = 1

q′ − 1
p′

.

Set


















H
(∇)
L (f) :=

(∫ ∞

0

|∇e−tLf |2dt
)1/2

,

H
(V )
L (f) :=

(∫ ∞

0

|V ||e−tLf |2dt
)1/2

.

Note that HL(f) ≤
√
2
[

H
(∇)
L (f) +H

(V )
L (f)

]

. We will use the next proposition

which follows from Proposition 4.2 in [6].

Proposition 19. If H
(∇)
L is bounded of Lp, then there exists a positive constant C

such that for all f ∈ Lp and t > 0,

(36) ‖∇e−tLf‖p ≤ C√
t
‖f‖p.

The main result of this section is the following.

Theorem 20. Assume that V − satisfies (5) for some α ∈ (0, 1). Define p0 as
before. Suppose there exist r1, r2 > 2 such that

(37)

∫ 1

0

‖ V

V ol(.,
√
t)

1
r1

‖2r1tdt < ∞,

∫ ∞

1

‖ V

V ol(.,
√
t)

1
r2

‖2r2tdt < ∞.

Set r := inf(r1, r2). If N > 2, let p ∈ [2, p0
′r

p0
′+r ) and assume that H∆ is bounded on

Lp, then H
(∇)
L is bounded on Lp. If N ≤ 2, let p ≥ 2 and assume H∆ is bounded

on Lp, then H
(∇)
L is bounded on Lp.

Proof. Duhamel’s formula for semigroups says that for all f ∈ Lp(M)

(38) e−tLf = e−t∆f −
∫ t

0

e−s∆V e−(t−s)Lfds.
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It follows that

|∇e−tLf |2 ≤ 2

[

|∇e−t∆f |2 +
∣

∣

∣

∣

∫ t

0

∇e−s∆V e−(t−s)Lfds

∣

∣

∣

∣

2
]

.

After integration on (0,∞) we obtain

(H
(∇)
L (f))2 ≤ C

[

(H∆(f))
2 +

∫ ∞

0

∣

∣

∣

∣

∫ t

0

∇e−s∆V e−(t−s)Lfds

∣

∣

∣

∣

2

dt

]

.

Therefore,

‖H(∇)
L (f)‖2p ≤ C



‖H∆(f)‖2p +
∥

∥

∥

∥

∥

∫ ∞

0

∣

∣

∣

∣

∫ t

0

∇e−s∆V e−(t−s)Lfds

∣

∣

∣

∣

2

dt

∥

∥

∥

∥

∥

p/2





≤ C



‖f‖2p +
∥

∥

∥

∥

∥

∫ ∞

0

∣

∣

∣

∣

∫ t

0

∇e−s∆V e−(t−s)Lfds

∣

∣

∣

∣

2

dt

∥

∥

∥

∥

∥

p/2



 .

Here we used the boundedness of H∆ on Lp. Hence, it is sufficient to establish that

(39)

∥

∥

∥

∥

∥

∫ ∞

0

∣

∣

∣

∣

∫ t

0

∇e−sLV e−(t−s)∆fds

∣

∣

∣

∣

2

dt

∥

∥

∥

∥

∥

p/2

≤ C‖f‖2p.

We have
∥

∥

∥

∥

∥

∫ ∞

0

∣

∣

∣

∣

∫ t

0

∇e−s∆V e−(t−s)Lfds

∣

∣

∣

∣

2

dt

∥

∥

∥

∥

∥

p/2

≤
∫ ∞

0

∥

∥

∥

∥

∥

∣

∣

∣

∣

∫ t

0

∇e−∆V e−(t−s)Lfds

∣

∣

∣

∣

2
∥

∥

∥

∥

∥

p/2

dt

≤
∫ ∞

0

(∫ t

0

∥

∥

∥∇e−s∆V e−(t−s)Lf
∥

∥

∥

p
ds

)2

dt.

Set










































































I1 :=

∫ 1

0

(

∫ t/2

0

∥

∥

∥∇e−s∆V e−(t−s)Lf
∥

∥

∥

p
ds

)2

dt,

I2 :=

∫ ∞

1

(

∫ t/2

0

∥

∥

∥
∇e−s∆V e−(t−s)Lf

∥

∥

∥

p
ds

)2

dt,

I3 :=

∫ 1

0

(

∫ t

t/2

∥

∥

∥∇e−s∆V e−(t−s)Lfds
∥

∥

∥

p
ds

)2

dt,

I4 :=

∫ ∞

1

(

∫ t

t/2

∥

∥

∥∇e−s∆V e−(t−s)Lf
∥

∥

∥

p
ds

)2

dt.

We have
∥

∥

∥

∥

∥

∫ ∞

0

∣

∣

∣

∣

∫ t

0

∇e−s∆V e−(t−s)Lfds

∣

∣

∣

∣

2

dt

∥

∥

∥

∥

∥

p/2

≤ 2 [I1 + I2 + I3 + I4] .
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We prove that each term I1, I2, I3 and I4 is bounded by C‖f‖2p. By Proposition 19,

I1 ≤ C

∫ 1

0

∣

∣

∣

∣

∣

∫ t/2

0

s−1/2
∥

∥

∥V e−(t−s)Lfds
∥

∥

∥

p
ds

∣

∣

∣

∣

∣

2

dt

≤ C

∫ 1

0

∣

∣

∣

∣

∣

∣

∫ t/2

0

s−1/2

∥

∥

∥

∥

∥

V

V ol(x,
√
t− s)

1
r1

V ol(x,
√
t− s)

1
r1 e−(t−s)Lf

∥

∥

∥

∥

∥

p

ds

∣

∣

∣

∣

∣

∣

2

dt

≤ C

∫ 1

0

∣

∣

∣

∣

∣

∫ t/2

0

s−1/2

∥

∥

∥

∥

∥

V

V ol(x,
√
t− s)

1
r1

∥

∥

∥

∥

∥

r1

∥

∥

∥V ol(x,
√
t− s)

1
r1 e−(t−s)Lf

∥

∥

∥

q1
ds

∣

∣

∣

∣

∣

2

dt

where 1
p = 1

r1
+ 1

q1
. Note that here q1 has to satisfy q1 < p0

′ which gives p < p0
′r1

p0
′+r1

.

Since s < t/2, V ol(x,
√
t− s) ≥ V ol(x,

√

t/2). Thus,

I1 ≤ C

∫ 1

0

∣

∣

∣

∣

∣

∣

∫ t/2

0

s−1/2

∥

∥

∥

∥

∥

V

V ol(x,
√

t/2)
1
r1

∥

∥

∥

∥

∥

r1

∥

∥

∥V ol(x,
√
t− s)

1
r1 e−(t−s)Lf

∥

∥

∥

q1
ds

∣

∣

∣

∣

∣

∣

2

dt

≤ C

∫ 1

0

∥

∥

∥

∥

∥

V

V ol(x,
√

t/2)
1
r1

∥

∥

∥

∥

∥

2

r1

∣

∣

∣

∣

∣

∫ t/2

0

s−1/2
∥

∥

∥
V ol(x,

√
t− s)

1
r1 e−(t−s)Lf

∥

∥

∥

q1
ds

∣

∣

∣

∣

∣

2

dt.

By Proposition 18, ‖V ol(x,
√
t− s)

1
r1 e−(t−s)Lf‖q1 ≤ C‖f‖p. Thus,

(40) I1 ≤ C





∫ 1/2

0

∥

∥

∥

∥

∥

V

V ol(x,
√
t)

1
r1

∥

∥

∥

∥

∥

2

r1

tdt



 ‖f‖2p = C′‖f‖2p.

We prove as for I1 that

(41) I2 ≤ C





∫ ∞

1/2

∥

∥

∥

∥

∥

V

V ol(x,
√
t)

1
r2

∥

∥

∥

∥

∥

2

r2

tdt



 ‖f‖2p = C′‖f‖2p.

Note that reproducing the previous proof for I2 implies that we have to choose

p < p0
′r2

p0
′+r2

. Now we bound I3 and I4. By Proposition 19 we have

I3 =

∫ 1

0

∣

∣

∣

∣

∣

∫ t

t/2

∥

∥

∥∇e−
s
2∆e−

s
2∆V e−(t−s)Lfds

∥

∥

∥

p
ds

∣

∣

∣

∣

∣

2

dt

≤ C

∫ 1

0

∣

∣

∣

∣

∣

∫ t

t/2

s−1/2
∥

∥

∥e−
s
2∆V e−(t−s)Lfds

∥

∥

∥

p
ds

∣

∣

∣

∣

∣

2

dt

= C

∫ 1

0

∣

∣

∣

∣

∣

∣

∫ t

t/2

s−1/2

∥

∥

∥

∥

∥

e−
s
2∆

V ol(x,
√

s/2)
1
r1

V ol(x,
√

s/2)
1
r1

V e−(t−s)Lfds

∥

∥

∥

∥

∥

p

ds

∣

∣

∣

∣

∣

∣

2

2dt.

By Proposition 18, e−
s
2∆V ol(x,

√

s
2 ) is bounded from Lq1(M) to Lp(M) with 1

p =
1
q1

− 1
r1

. Thus,
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I3 ≤ C

∫ 1

0

∣

∣

∣

∣

∣

∣

∫ t

t/2

s−1/2

∥

∥

∥

∥

∥

V

V ol(x,
√

s/2)
1
r1

e−(t−s)Lf

∥

∥

∥

∥

∥

q1

ds

∣

∣

∣

∣

∣

∣

2

dt

≤ C

∫ 1

0

∣

∣

∣

∣

∣

∣

∫ t

t/2

s−1/2

∥

∥

∥

∥

∥

V

V ol(x,
√

s/2)
1
r1

∥

∥

∥

∥

∥

r1

∥

∥

∥
e−(t−s)Lf

∥

∥

∥

p
ds

∣

∣

∣

∣

∣

∣

2

dt

≤ C

∫ 1

0

∣

∣

∣

∣

∣

∣

∫ t

t/2

s−1/2

∥

∥

∥

∥

∥

V

V ol(x,
√

t/4)
1
r1

∥

∥

∥

∥

∥

r1

∥

∥

∥
e−(t−s)Lf

∥

∥

∥

p
ds

∣

∣

∣

∣

∣

∣

2

dt

because s
2 ≥ t

4 . By the uniform boundedness of e−(t−s)L on Lp we have

(42)

I3 ≤ C





∫ 1

0

∥

∥

∥

∥

∥

V

V ol(x,
√

t/4)
1
r1

∥

∥

∥

∥

∥

2

r1

[

∫ t

t/2

s−1/2ds

]2

dt



 ‖f‖2p

≤ C





∫ 1

0

∥

∥

∥

∥

∥

V

V ol(x,
√

t/4)
1
r1

∥

∥

∥

∥

∥

2

r1

tdt



 ‖f‖2p

= C′‖f‖2p.
We prove in a similar way that

(43) I4 ≤ C





∫ ∞

1/4

∥

∥

∥

∥

∥

V

V ol(x,
√
t)

1
r2

∥

∥

∥

∥

∥

2

r2

tdt



 ‖f‖2p = C′‖f‖2p.

Combining (40), (41), (42) and (43) with (37) we obtain (39). Hence ‖H(∇)
L (f)‖p ≤

C‖f‖p. �

Finally we have a similar result for H
(V )
L .

Theorem 21. Let p > 2, assume V − satisfies (5) for some α ∈ (0, 1). Define p0
as before. Suppose there exist r1, r2 > 2 such that

(44)

∫ 1

0

‖ |V |1/2

V ol(.,
√
t)

1
r1

‖2r1dt < ∞,

∫ ∞

1

‖ |V |1/2

V ol(.,
√
t)

1
r2

‖2r2dt < ∞.

If N > 2, then H
(V )
L is bounded on Lp(M) for p ∈ [2, p0

′r
p0

′+r ), where r = inf(r1, r2).

If N ≤ 2, then H
(V )
L is bounded on Lp(M) for p ∈ [2,∞).

Proof. We have

‖H(V )
L (f)‖p =

∥

∥

∥

∥

∫ ∞

0

∣

∣

∣|V |1/2e−tLf
∣

∣

∣

1/2

dt

∥

∥

∥

∥

1/2

p/2

≤
(

∫ ∞

0

∥

∥

∥

∥

|V |1/2e−tLf

∥

∥

∥

∥

2

p

dt

)1/2

≤
√
2





(

∫ 1

0

∥

∥

∥

∥

|V |1/2e−tLf

∥

∥

∥

∥

2

p

dt

)1/2

+

(

∫ ∞

1

∥

∥

∥

∥

|V |1/2e−tLf

∥

∥

∥

∥

2

p

dt

)1/2


 .
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We bound the two latter integrals separately. One has
∫ 1

0

∥

∥

∥

∥

|V |1/2e−tLf

∥

∥

∥

∥

2

p

dt =

∫ 1

0

∥

∥

∥

∥

|V |1/2
V ol(x,

√
t)1/r1

V ol(x,
√
t)1/r1e−tLf

∥

∥

∥

∥

2

p

dt

≤
∫ 1

0

∥

∥

∥

∥

|V |1/2
V ol(x,

√
t)1/r1

∥

∥

∥

∥

2

r1

∥

∥

∥

∥

V ol(x,
√
t)1/r1e−tLf

∥

∥

∥

∥

2

q1

dt

where 1
p = 1

r1
+ 1

q1
. By Proposition 18, we have ‖V ol(x,

√
t)1/r1e−tLf‖q1 ≤ C‖f‖p.

Hence,

(45)

∫ 1

0

∥

∥

∥

∥

|V |1/2e−tLf

∥

∥

∥

∥

2

p

dt ≤ C

(

∫ 1

0

∥

∥

∥

∥

|V |1/2
V ol(x,

√
t)1/r1

∥

∥

∥

∥

2

r1

dt

)

‖f‖2p.

Note that here q1 has to satisfy q1 < p0
′ what gives p < p0

′r1
p0

′+r1
. The same argument

gives

(46)

∫ ∞

1

∥

∥

∥

∥

|V |1/2e−tLf

∥

∥

∥

∥

2

p

dt ≤ C

(

∫ ∞

1

∥

∥

∥

∥

|V |1/2
V ol(x,

√
t)1/r2

∥

∥

∥

∥

2

r2

dt

)

‖f‖2p.

Here we need p < p0
′r2

p0
′+r2

. Together with (44), (45) and (46) yield

‖H(V )
L (f)‖p ≤ C‖f‖p.

�

Remarks. If V ol(x, t) has polynomial growth V ol(x, t) ≃ tN (for example, in

R
N ) then the conditions (37) or (44) read as V ∈ L

N
2 −ǫ ∩ L

N
2 +ǫ for some positive

ǫ. In the general setting, we could not find implications between (37) and (44). In
[16], it is shown that if V ≥ 0 is not identically zero, then HL is not bounded on
Lp(RN ) for p > N if we assume there exists a positive bounded function φ such
that e−tLφ = φ for all t ≥ 0. It is true for a wide class of potentials, for example if

V ∈ L
N
2 −ǫ ∩ L

N
2 +ǫ (see [12]). For a discussion on this property, see [15].
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