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FUNCTIONAL RELATIONS FOR SOLUTIONS OF
q-DIFFERENCE EQUATIONS

THOMAS DREYFUS, CHARLOTTE HARDOUIN, AND JULIEN ROQUES

Abstract. In this paper, we study the algebraic relations satisfied by
the solutions of q-difference equations and their transforms with respect
to an auxiliary operator. Our main tools are the parametrized Galois
theories developed in [HS08] and [OW15]. The first part of this paper
is concerned with the case where the auxiliary operator is a derivation,
whereas the second part deals with a q-difference operator. In both
cases, we give criteria to guarantee the algebraic independence of a series,
solution of a q-difference equation, with either its successive derivatives
or its q-transforms. We apply our results to q-hypergeometric series.
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Introduction

The study of the differential transcendence of special functions is an old
and difficult problem. Only very recently, systematic methods to tackle this
kind of question were discovered. Indeed, after the seminal work of Cassidy
and Singer in [CS07], several authors developed Galoisian approaches in or-
der to study the differential or difference relations between solutions of lin-
ear differential or difference equations; see e.g. Hardouin and Singer [HS08],
Di Vizio, Hardouin and Wibmer [DVHW14b, DVHW14a] and Ovchinnikov
and Wibmer [OW15]. For instance, this led to a short and comprehensive
proof of Hölder’s theorem asserting the differential transcendence of Euler’s
Gamma function; see [HS08]. Also, this enabled the authors of the present
paper to study the differential transcendence of generating series issued from
the theory of automatic sequences, such as the Baum-Sweet or the Rudin-
Shapiro generating series, which turn out to satisfy linear Mahler equations;
see [DHR18]. In the present paper, we take a close look at the differential
algebraic relations satisfied by solutions of linear q-difference equations.Very
little was known about the differential or difference algebraic relations be-
tween these solutions. The first results in this direction, due to Bézivin
([BB92]) and Ramis ([Ram92]), assert that a non rational solution of a lin-
ear q-difference equation does not satisfy a linear dependence relation with
its successive transforms with respect to a derivation or a q-difference oper-
ator provided that q is multiplicatively independent of q, i.e., log(q/q) /∈ Q.
Later, the parametrized Galois theories developed by Hardouin and Singer
in [HS08] and Ovchinnikov and Wibmer in [OW15] allowed their authors to
give complete criteria for the differential or difference transcendence for the
solutions of q-difference equations of order one or of systems of such equa-
tions. For irreducible q-difference equations, the results of [HS08] allowed to
characterize the dependencies of the solutions via the existence of a linear
compatible equation in the auxiliary operator. Our paper is mainly con-
cerned with q-difference equations of order greater than two and combines
the results of Bézivin and Ramis with the parametrized Galois theories men-
tioned above. This paper is divided in two parts.

∗ ∗ ∗
In the first part, we study the algebraic relations between the successive
derivatives of the solutions of linear q-difference equations. These relations
are encoded by the parametrized difference Galois groups introduced by
Hardouin and Singer in [HS08]. The basic (and, at first sight, quite opti-
mistic) question is: if we know the algebraic relations between the solutions,
what can be said about the differential algebraic relations? In Galoisian
terms, an equivalent question is: if we know what the non parametrized dif-
ference Galois group is, what can be said about the parameterized difference
Galois group? Our answer reads as follows. Consider a linear q-difference
equation

(1) an(z)y(qnz) + an−1(z)y(qn−1z) + · · ·+ a0(z)y(z) = 0

where a0(z), . . . , an−1(z), an(z) ∈ C(z), a0(z)an(z) 6= 0, and where q is a
non zero complex number with |q| 6= 1. Let G be the difference Galois
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group of this equation. This is an algebraic subgroup of GLn(C) which
reflects the algebraic relations between the solutions of the equation. Let Gδ
be its parametrized difference Galois group. This is a differential algebraic
subgroup of GLn(C̃), where C̃ is a differential closure of C , i.e., it is a group
of matrices whose entries are the zeros of differential algebraic polynomials
with coefficients in C̃. As mentioned above, this parametrized difference
Galois group reflects the differential algebraic relations between the solutions
of the equation. The main result of the first part of the present paper, see
Theorem 2.1, can be stated as follows. The technical assumption on the
Galois group in the following theorem could be roughly rephrazed as the
assumption that the Galois group is “sufficiently big”, which means that there
are few algebraic relations among the solutions of the q-difference equation.

Theorem. Assume that the derived subgroup G◦,der of the neutral component
G◦ of G is an irreducible almost simple algebraic subgroup of SLn(C). Then,
Gδ is a subgroup of G(C̃) containing G◦,der(C̃).

Since Gδ is sufficiently big, we have for instance the following consequences
on the solutions, see Corollary 3.2.

Proposition. Let h(z) be a non zero Laurent series solution of (1). Let
G be the difference Galois group of (1) and consider the derived subgroup
G◦,der of the neutral component G◦ of G.

• Assume that n ≥ 2 and G◦,der = SLn(C). Then, h(z), . . . , h(qn−1z)
are differentially algebraically independent over C(z).
• Assume that n is even and G◦,der = Spn(C). Then, the series
h(z), . . . , h(qn−1z) are differentially algebraically independent over
C(z).
• Assume that n ≥ 3 and G◦,der = SOn(C). Then, h(z), . . . , h(qn−2z)
are differentially algebraically independent over C(z).

An important family of q-difference equations is given by the generalized
q-hypergeometric equations. Assume that 0 < |q| < 1. Let us fix n ≥ s,
two integers, let a = (a1, . . . , an) ∈ (qR)n, b = (b1, . . . , bs) ∈ (qR \ q−N)s,
λ ∈ C×, and define σq(f(z)) = f(qz). Let us consider the generalized q-
hypergeometric operator:

zλ

n∏
i=1

(aiσq − 1)−
s∏
j=1

(
bj
q
σq − 1

)
.

When b1 = q, this operator admits as solution the q-hypergeometric series:

nΦs(a, b, λ, q; z) =
∞∑
m=0

(a; q)m
(b; q)m

λmzm

=
∞∑
m=0

n∏
i=1

(1− ai)(1− aiq) . . . (1− aiqm−1)

s∏
j=1

(1− bj)(1− bjq) . . . (1− bjqm−1)
λmzm.

Using [Roq08, Roq11, Roq12], we see that, in many cases, the algebraic
group G◦,der is either SLn(C), SOn(C) or the symplectic group Spn(C) (for
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n even). Therefore, the above results ensure that, in many cases, the q-
hypergeometric series are differentially transcendental. To the best of our
knowledge, the only previously known result in this direction was due to
Hardouin and Singer [HS08] about some q-hypergeometric equations of order
two.

The first part of the present paper is organized as follows. Section 1
contains reminders about difference Galois theory. Section 1.2 contains re-
minders and complements about the parametrized difference Galois theory
developed in [HS08]. In particular, we study the notion of projective isomon-
odromy. Roughly speaking, we show that if the difference Galois group of
(1) is large, then we have two possibilities: either the parametrized difference
Galois is large, or any solution of (1) satisfies a linear differential equation.
In Section 2, we prove the above Theorem by showing that the latter case in
the previous alternative does not occur. In Section 3, we apply our results
to the q-hypergeometric equations.

∗ ∗ ∗
In the second part of the paper, we study the algebraic q-difference equa-

tions satisfied by the solutions of the equation (1), where q is a non zero
complex number with |q| 6= 1 such that q and q are multiplicatively inde-
pendent, i.e., log(q/q) /∈ Q. These relations are reflected by the parametrized
difference Galois group introduced by Ovchinnikov and Wibmer in [OW15].
Our main results are formally similar to those mentioned above. However,
the proofs are more involved in this case because the parametrized difference
Galois groups are difference affine algebraic groups. These are more subtle
than the differential algebraic groups. We obtain the following result, see
Corollary 8.1.

Theorem. Let A ∈ GLn(C(z)) and let G be the difference Galois group of
the q-difference system σq(Y ) = AY over the σq-field C(z). Assume that one
of the following holds

• n ≥ 2 and G◦,der = SLn(C);
• n ≥ 3 and G◦,der = SOn(C);
• n is even and G◦,der = Spn(C).

If there exists f ∈
⋃∞
j=1C((z1/j)) such that Y0 = (f, σq(f), . . . , σq

n−1(f))t

is a vector solution of σq(Y ) = AY , then f is σq-transcendental over⋃∞
j=1C(z1/j).

The second part of the paper is organized as follows. Section 4 contains
reminders and complements about the parametrized difference Galois theory
developed by Ovchinnikov and Wibmer in [OW15]. Then, we split our study
in two cases, depending on the σq-transcendence of the determinant of the
fundamental matrix of solutions. Since the latter is solution of an order one
q-difference equation, we have to compute the parametrized difference Galois
group of such equations. This is the goal of Section 5. Then, in Section 6, we
deal with projective isomonodromy, and we find basically the same type of
result as in the first part. If the difference Galois group of (1) is large, then
we have two possibilities: either the parametrized difference Galois group is
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large, or any solution of (1) satisfies a linear q-difference equation. In Section
7, we prove that the latter case does not occur when the determinant of the
fundamental matrix of solutions is σq-algebraic. Hopefully, in all cases, we
are able to prove the σq-transcendence of Laurent series solutions of (1). We
apply our main results to the q-hypergeometric series in Section 8.

General conventions. All rings are commutative with identity and contain
the field of rational numbers. In particular, all fields are of characteristic zero.

Acknowledgement. We thank M. Singer for pointing out some inaccuracies
in a previous version of the paper. We would like to thank the anonymous
referee for her/his careful reading and helpful comments.

Part 1. Differential relations for solutions of q-difference equations

1. Galois theories of difference equations

1.1. Difference, differential and difference differential algebra. In
this paper we will use standard notions notations and results from difference
and differential algebra. Some of them are recalled below and all of them can
be found in [HS08, Section 2 and Section 6.2] and in the references therein
(notably [Coh65, vdPS03, vdPS97]).

1.1.1. Difference differential algebra. A (σq, δ)-ring (R, σq, δ) is a ring R en-
dowed with a ring automorphism σq of R and a derivation δ of R commuting
with σq. If there is no possible confusion, we write R instead of (R, σq, δ).

In the sequel we use the notions of (σq, δ)-ideals, (σq, δ)-morphisms,
(σq, δ)-algebras, (σq, δ)-fields, etc. We will not recall here these definitions
but we would like to mention as a general convention that the operator predi-
cate indicates that the algebraic structure of the attribute is compatible with
the operators. For instance, a (σq, δ)-ideal is an ideal setwise invariant by σq
and δ. We refer to [HS08, Section 2 and Section 6.2] for more details.

For any (σq, δ)-ring R, we denote by Rσq and by Rδ the rings of σq and δ
constants respectively of the (σq, δ)-ring R, i.e.,

Rσq = {c ∈ R | σq(c) = c} and Rδ = {c ∈ R | δ(c) = 0}.

If Rσq (resp. Rδ) is a field, it is called the field of σq-constants (resp. δ-
constants).

1.1.2. Differential algebra. If σq = Id, any (σq, δ)-attribute will be called a
δ-attribute. For instance, a δ-ring R is a ring R endowed with a derivation
δ : R→ R.

Let K be a δ-field. Let R be a K-δ-algebra and let a1, . . . , an ∈ R. We
denote by K{a1, . . . , an}δ the K-δ-subalgebra of R generated by a1, . . . , an.
If R is moreover a field, we denote by K〈a1, . . . , an〉δ the K-δ-subfield of R
generated by a1, . . . , an. We denote by K{y1, . . . , yn}δ the K-δ-algebra of δ-
polynomials in the differential indeterminates y1, . . . , yn and with coefficients
in the δ-field K; it is the K-algebra of polynomials with coefficients in K
and in the indeterminates δjyi with j ≥ 0 and 1 ≤ i ≤ n (we emphasize
that δjyi is simply a notation for indeterminates) endowed with the unique
derivation extending the derivation of K and such that δ(δjyi) = δj+1yi.
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Let R be a K-δ-algebra and let a1, . . . , an ∈ R. If there exists a nonzero
P ∈ K{y1, . . . , yn}δ such that P (a1, . . . , an) = 0, then we say that a1, . . . , an
are δ-algebraically dependent over K. Otherwise, we say that a1, . . . , an are
δ-transcendental over K, or δ-algebraically independent over K.

A δ-field k is called δ-closed if, for every set of δ-polynomials F , the system
of δ-equations F = 0 has a solution in some δ-field extension of k if and only
if it has a solution in k. Note that the field of δ-constants kδ of any δ-closed
field k is algebraically closed. A fundamental fact is that any δ-field k is
contained in a δ-closed field. In fact, for any such k there is a δ-closed field
k̃ containing k such that for any δ-closed field K containing k, there is a
δ-k-isomorphism of k̃ into K. Moreover, if kδ is algebraically closed then
k̃δ = kδ. We refer to [Kol74] for more details.

From now on, we consider a δ-closed field k. A subsetW ⊂ kn is Kolchin-
closed (or δ-closed) if there exists S ⊂ k{y1, . . . , yn}δ such that

W = {a ∈ kn | f(a) = 0 for all f ∈ S} .
The Kolchin-closed subsets of kn are the closed sets of a topology on kn,
called the Kolchin topology. The Kolchin-closure of W ⊂ kn is the closure
of W in kn for the Kolchin topology.

Following Cassidy in [Cas72, Chapter II, Section 1, Page 905], we say that
a subgroup G ⊂ GLn(k) ⊂ kn×n is a linear δ-algebraic group if G is the
intersection of a Kolchin-closed subset of kn×n (identified with kn

2) with
GLn(k).

For a δ-subfield F of k , we say that a linear δ-algebraic group G ⊂ GLn(k)
is defined over F if G is the zero set of δ-polynomials with coefficients in F .
For G ⊂ GLn(k) a linear δ-algebraic group defined over F and L a δ-field
extension of F , we denote by G(L) the set of L-points of G.

A δ-closed subgroup, or δ-subgroup for short, of a linear δ-algebraic group
is a subgroup which is Kolchin-closed. The Zariski-closure of a linear δ-
algebraic group G ⊂ GLn(k) is denoted by G and is a linear algebraic group
defined over k.

1.1.3. Difference algebra. If δ = 0, any (σq, δ)-attribute will be called a σq-
attribute. For instance a σq-ring R is a ring R endowed with a ring auto-
morphism σq : R→ R.

1.2. Difference and Parametrized Difference Galois theories.

1.2.1. Parametrized Difference Galois theory. For details on what follows,
we refer to [HS08].

Let K be a (σq, δ)-field such that k = Kσq is a δ-closed field and consider
a linear difference system

(1.1) σq(Y ) = AY

with A ∈ GLn(K) for some integer n ≥ 1.
By [HS08, § 6.2.1], there exists a K-(σq, δ)-algebra S such that
1) there exists U ∈ GLn(S) such that σq(U) = AU (such a U is called

a fundamental matrix of solutions of (1.1));
2) S is generated, as K-δ-algebra, by the entries of U and det(U)−1;
3) the only (σq, δ)-ideals of S are {0} and S.
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Such a S is unique up to isomorphism of K-(σq, δ)-algebras and is called
a (σq, δ)-Picard-Vessiot ring, or (σq, δ)-PV ring for short, for (1.1) over K.
A (σq, δ)-PV ring is not always an integral domain but it is a direct sum
of integral domains stable by δ and transitively permuted by σq. The total
quotient ring QS of S has a natural structure of S-(σq, δ)-algebra and is
called a total (σq, δ)-PV ring for (1.1) over K. We have QSσq = k.

The (σq, δ)-Galois group Galδ(QS/K) of S over K is the group of K-
(σq, δ)-automorphisms of QS , i.e.,

Galδ(QS/K) = {φ ∈ Aut(QS/K) | σq ◦ φ = φ ◦ σq and δ ◦ φ = φ ◦ δ}.

According to [HS08, Proposition 6.18], for any φ ∈ Galδ(QS/K), there
exists a unique C(φ) ∈ GLn(k) such that φ(U) = UC(φ) and the faithful
representation

ρU : Galδ(QS/K) → GLn(k)

φ 7→ C(φ)

identifies Galδ(QS/K) with a δ-closed subgroup of GLn(k).

1.2.2. Difference Galois theory. If the derivation δ is always considered to
be trivial, a (σq, δ)-PV ring R for (1.1) over K will be simply called a Picard-
Vessiot ring, or PV ring for short. The corresponding total (σq, δ)-PV ring
QR will be simply called a total Picard-Vessiot ring, or total PV ring for
short. The corresponding (σq, δ)-Galois group will be simply called the dif-
ference Galois group and denoted by Gal(QR/K). The faithful representa-
tion ρU identifies Gal(QR/K) with a linear algebraic subgroup of GLn(k).
We refer to [vdPS97, Theorem 1.13] for more informations.

1.2.3. From parametrized to non parametrized difference Galois groups. Let
S be a (σq, δ)-PV ring over K for (1.1) and let U ∈ GLn(S) be a fundamental
matrix of solutions. The K-σq-algebra R generated by the entries of U and
det(U)−1 is a PV ring for (1.1) over K and we have QR ⊂ QS . One can
identify Galδ(QS/K) with a subgroup of Gal(QR/K) by restricting the ele-
ments of Galδ(QS/K) to QR; with this identification, we have the following
result:

Proposition 1.1 ([HS08, Proposition 2.8]). The group Galδ(QS/K) is a
Zariski-dense subgroup of Gal(QR/K).

1.3. A technical result. In order to use the Galois theory exposed in Sec-
tion 1.2.1 above, we need to work with a base (σq, δ)-field K such that
k = Kσq is a δ-closed field. Unfortunately, most of the function fields arising
naturally as base (σq, δ)-fields do not satisfy this condition. The following
Lemma will be used in order to remedy this problem.

Lemma 1.2 ([DHR18, Lemma 2.3]). Let F be a (σq, δ)-field such that
k = F σq is algebraically closed. Let k̃ be a δ-closed field containing k. Then,
the ring k̃⊗kF is an integral domain whose fraction field K is a (σq, δ)-field
extension of F such that Kσq = k̃.
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1.4. Transcendence results. Let K be a (σq, δ)-field such that k = Kσq

is δ-closed. Let S be a (σq, δ)-PV ring for (1.1) over K, let QS be the
corresponding total (σq, δ)-PV ring, and let Galδ(QS/K) be the associated
(σq, δ)-Galois group.

In the following result, we denote by SOn(k) the special orthogonal group

SOn(k) = {C ∈ SLn(k)|CtC = In}

and, if n is even, by Spn(k) the symplectic group

Spn(k) = {C ∈ GLn(k)|CtJC = J} where J =

(
0 In/2
−In/2 0

)
.

Proposition 1.3. Let U ∈ GLn(S) be a fundamental matrix of solutions of
(1.1) and let u be a row (resp. column) vector of U . If n ≥ 2 and if there
exists P ∈ GLn(k) such that the image of Galδ(QS/K) by the representation
ρUP contains

• SLn(k) or Spn(k) then the entries of u are δ-algebraically indepen-
dent over K;
• SOn(k) then any n− 1 distinct elements among the entries of u are
δ-algebraically independent over K.

Proof. For the sake of clarity, we assume that u = (u1, . . . , un) is the first
row of U . The proof in the other cases is similar.

SLn(k)-case.

We first explain the strategy of the proof in the SLn(k)-case. Let
X = (Xi,j)1≤i,j≤n be δ-indeterminates. Let I be the kernel of the unique
morphism of K-δ-algebras K{X, 1

det(X)}δ → S such that X 7→ U . We
denote by (x1, . . . , xn) = (X1,1, . . . , X1,n) the first row of X. The δ-
algebraic relations with coefficients in K between u1, . . . , un correspond to
the elements of I ∩ K{x1, . . . , xn}δ. So everything amounts to prove that
I∩K{x1, . . . , xn}δ = {0}. In order to prove this, we will relate I to the ideal
defining the δ-algebraic group Galδ(QS/K). Such a relation follows from the
fact that the (σq, δ)-PV ring S is the coordinate ring of a Galδ(QS/K)-torsor
over K.

We shall now give the details of the proof, still in the SLn(k)-case. As
above, we let I be the kernel of the unique morphism of K-δ-algebras
ϕ : K{X, 1

det(X)}δ → S such that X 7→ U and we denote by V the δ-
algebraic variety over K defined by I. On the other hand, we let G be the
image of Galδ(QS/K) by the representation ρU , we let L be the δ-ideal of
k{X, 1

det(X)}δ of the equations of G and we let G be the δ-algebraic variety
over K defined by L; in other words, G is the δ-linear algebraic group over
K obtained from G by extension of scalars from k to K. Both V and G can
be seen in GLn,K. The following map is well-defined and makes V a G-torsor
over K (this is the content of [HS08, Proposition 6.24]):

V ×K G → V ×K V
(v,M) 7→ (v, vM).
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So, if we let K̃ be a δ-closure of K, we have V(K̃) 6= ∅ and V(K̃) = Z0 ·G(K̃)

for any Z0 ∈ V(K̃). In terms of the δ-ideals Ĩ and L̃ of K̃{X, 1
det(X)}δ defining

V(K̃) and G(K̃) respectively, the equality V(K̃) = Z0 · G(K̃) is equivalent to

Ĩ =
{
P̃ (Z−10 X)

∣∣∣ P̃ ∈ L̃
}
.

Since the image of Galδ(QS/K) by the representation ρUP con-
tains SLn(k), we see that G contains H = PSLn(k)P−1(= SLn(k)).
So, G(K̃) contains H̃ = SLn(K̃) and, hence, Ĩ is contained in
the radical δ-ideal {det(X)− det(Z0)}δ of K̃{X, 1

det(X)}δ generated
by det(X) − det(Z0). We now claim the equality of ideals
{det(X)− det(Z0)}δ ∩ K̃{x1, . . . , xn}δ = {0}. Indeed, let us consider
P̃ = P̃ (X) = P̃ (x1, . . . , xn) ∈ {det(X)− det(Z0)}δ ∩ K̃{x1, . . . , xn}δ. For
any (a1, . . . , an) ∈ K̃n \ {(0, . . . , 0)}, there exists a matrix A ∈Mn(K̃)
with first row (a1, . . . , an) such that det(A) = det(Z0), so that
P̃ (a1, . . . , an) = P̃ (A) = 0 because P̃ ∈ {det(X) − det(Z0)}δ. Therefore,
P̃ vanishes on K̃n \{(0, . . . , 0)} and, hence, P̃ = 0. We now have the desired
result because

I ∩K{x1, . . . , xn}δ ⊂ Ĩ ∩ K̃{x1, . . . , xn}δ
⊂ {det(X)− det(Z0)}δ ∩ K̃{x1, . . . , xn}δ = {0}.

Spn(k)-case.

We now consider the Spn(k)-case. Arguing and using the same notations as
in the SLn(k)-case treated above, we see that it is sufficient to prove that the
equality Ĩ ∩ K̃{x1, . . . , xn}δ = {0} holds true if H = PSpn(k)P−1 instead
of PSLn(k)P−1. If H = PSpn(k)P−1 then G(K̃) contains

H̃ = {Q ∈ GLn(K̃)|QDsQ
t = Ds and det(Q) = 1}

with Ds = PJP t and, hence, Ĩ is contained in the radical δ-ideal
{XDsX

t − Z0DsZ
t
0,det(X)− det(Z0)}δ of K̃{X, 1

det(X)}δ generated by

XDsX
t − Z0DsZ

t
0 and det(X) − det(Z0). Of course, H̃ is nothing but the

symplectic group for the symplectic form with matrix Ds in the canonical
basis of K̃n. The first row of Z0 is non zero and, hence, is the first vector of a
symplectic basis of K̃n with respect to the symplectic form with matrix Ds in
the canonical basis of K̃n. This proves that Z0 = RS for some R ∈ GLn(K̃)

with first row (1, 0, . . . , 0) and some S ∈ H̃. Then, RDsR
t = Z0DsZ

t
0 and

det(R) = det(Z0). So, setting Y = R−1X and denoting by (y1, . . . , yn) the
first row of Y , we have K̃{X, 1

det(X)}δ = K̃{Y, 1
det(Y )}δ, K̃{x1, . . . , xn}δ =

K̃{y1, . . . , yn}δ and

Ĩ ⊂ {XDsX
t−Z0DsZ

t
0,det(X)− det(Z0)}δ = {Y DsY

t−Ds,det(Y )− 1}δ.

Now, we claim that Ĩ ∩ K̃{y1, . . . , yn}δ={0}. Indeed, consider

P̃ = P̃ (Y ) = P̃ (y1, . . . , yn) ∈ {Y DsY
t −Ds,det(Y )− 1}δ ∩ K̃{y1, . . . , yn}δ.
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Using the fact that any nonzero vector of a symplectic vector space
is the first vector of some symplectic basis, we see that, for any
(a1, . . . , an) ∈ K̃n, there exists a matrix A ∈ H̃ with first row (a1, . . . , an).
So, P̃ (a1, . . . , an) = P̃ (A) = 0 because P̃ ∈ {Y DsY

t−Ds,det(Y )−1}δ and,
hence, P̃ = 0. We now have the desired result because

I ∩K{y1, . . . , yn}δ ⊂ Ĩ ∩ K̃{y1, . . . , yn}δ
⊂ {Y DsY

t −Ds,det(Y )− 1}δ ∩ K̃{y1, . . . , yn}δ = {0}.

SOn(k)-case.

We now consider the SOn(k)-case. For the sake of clarity, we will
prove that u1, . . . , un−1 are δ-algebraically independent over K, the gen-
eral case being similar. Arguing and using the same notations as in the
SLn(k)-case treated above, we see that it is sufficient to prove that the
equality Ĩ ∩ K̃{x1, . . . , xn−1}δ = {0} holds true if H = PSOn(k)P−1

instead of PSLn(k)P−1. If H = PSOn(k)P−1 then G(K̃) contains
H̃ = {Q ∈ GLn(K̃)|QDQt = D and det(Q) = 1} withD = PP t and, hence,
Ĩ is contained in the radical δ-ideal {XDXt − Z0DZ

t
0, det(X) − det(Z0)}δ

of K̃{X, 1
det(X)}δ generated by XDXt − Z0DZ

t
0 and det(X) − det(Z0). Of

course, H̃ is the special orthogonal group for the bilinear form on K̃n with
matrix D with respect to the canonical basis of K̃n. We can decompose
Z0 as RQ where R ∈ GLn(K̃) is lower triangular and Q ∈ H̃. Then,
RDRt = Z0DZ

t
0 and det(R) = det(Z0). So, setting Y = R−1X and denoting

by (y1, . . . , yn) the first row of Y , we have K̃{X, 1
det(X)}δ = K̃{Y, 1

det(Y )}δ,
K̃{x1, . . . , xn−1}δ = K̃{y1, . . . , yn−1}δ and

Ĩ ⊂ {XDXt − Z0DZ
t
0,det(X)− det(Z0)}δ = {Y DY t −D,det(Y )− 1}δ.

Now, we claim that {Y DY t − D,det(Y ) − 1}δ ∩ K̃{y1, . . . , yn−1}δ = {0}.
Indeed, consider

P̃ = P̃ (Y ) = P̃ (y1, . . . , yn−1) ∈ {Y DY t−D,det(Y )−1}δ∩K̃{y1, . . . , yn−1}δ.

By the Graam-Schmidt process, for any (a1, . . . , an−1) ∈ K̃n−1, there ex-
ists an ∈ K̃ and a matrix A ∈ H̃ with first row (a1, . . . , an), so that
P̃ (a1, . . . , an−1) = P̃ (A) = 0 because P̃ ∈ {Y DY t − D,det(Y ) − 1}δ and,
hence, P̃ = 0. We now have the desired result because

I ∩K{y1, . . . , yn−1}δ ⊂ Ĩ ∩ K̃{y1, . . . , yn−1}δ
⊂ {Y DY t −D,det(Y )− 1}δ ∩ K̃{y1, . . . , yn−1}δ = {0}.

�

1.5. Projective isomonodromy. Let K be a (σq, δ)-field with k = Kσq

algebraically closed. Let k̃ be a δ-closure of k. Let C = k̃δ = kδ be the
(algebraically closed) field of constants of k̃. Lemma 1.2 ensures that k̃⊗kK

is an integral domain and that L = Frac(k̃⊗k K) is a (σq, δ)-field extension
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of K such that Lσq = k̃. We let QS be the total ring of quotients of a
(σq, δ)-PV ring S over L of the difference system

σq(Y ) = AY

where A ∈ GLn(K).

Proposition 1.4. The following properties are equivalent:
(1) Galδ(QS/L) is conjugate over GLn(k̃) to a subgroup of k̃×SLn(C);
(2) there exists B ∈ Kn×n such that

(1.2) σq(B)A = AB + δ(A)− 1

n
δ(det(A)) det(A)−1A.

Proof. The proof of this proposition is the same as the proof of [DHR18,
Proposition 2.10] and hence is omitted. �

In what follows, we denote by NG(H) the normalizer of H in G. A sub-
group of the linear group is called irreducible if the induced representation
is irreducible.

Lemma 1.5. Let H be an irreducible subgroup of SLn(C). Then,

N
GLn(k̃)

(H) = k̃×NSLn(C)(H).

Proof. Let M ∈ GLn(k̃) be in the normalizer of H. Consider N ∈ H.
We have MNM−1 ∈ H. In particular, we have δ(MNM−1) = 0, i.e.,
δ(M)NM−1 −MNM−1δ(M)M−1 = 0, so M−1δ(M) commutes with N . It
follows from Schur’s lemma that M−1δ(M) = cIn for some c ∈ k̃×. So, the
entries ofM = (mi,j)1≤i,j≤n are solutions of δ(y) = cy. Let i0, j0 be such that
mi0,j0 6= 0. Then, M = mi0,j0M

′ with M ′ = 1
mi0,j0

M ∈ GLn(k̃δ) = GLn(C).
SinceC is algebraically closed, we can writeM = λM ′′ forM ′′ ∈ SLn(C) and
λ ∈ C×. Hence, the normalizer ofH in GLn(k̃) is included in k×NSLn(C)(H).
It follows that N

GLn(k̃)
(H) ⊂ k̃×NSLn(C)(H). The other inclusion is obvious.

�

For any algebraic subgroup G of GLn(k), let G◦ be the neutral component
of G and G◦,der be the derived subgroup of G◦. We recall that a linear
algebraic group G is almost simple if it is infinite, non-commutative and
if every proper normal closed subgroup of G is finite. In particular, G is
connected. Moreover, G equals its derived subgroup Gder.

Proposition 1.6. Assume that the difference Galois group G of σq(Y ) = AY

over the σq-field K satisfies the following property: the algebraic group G◦,der
is an irreducible almost simple algebraic subgroup of GLn(k) defined over C.
Then, we have the following alternative:

(1) Galδ(QS/L) is conjugate to a subgroup of k̃×NSLn(C)(G
◦,der(C)) con-

taining G◦,der(C);
(2) Galδ(QS/L) is equal to a subgroup of G(k̃) containing G◦,der(k̃).
Furthermore, the first case holds if and only if there exists B ∈ Kn×n such

that

(1.3) σq(B)A = AB + δ(A)− 1

n
δ(det(A)) det(A)−1A.
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Proof. Let R be the L-σq-algebra generated by the entries of a
fundamental matrix of solutions U ∈ GLn(QS) and by det(U)−1;
this is a PV ring for σq(Y ) = AY over the σq-field L. Us-
ing [CHS08, Corollary 2.5], we see that Gal(QR/L) = G(k̃). So,
Gal(QR/L)◦,der = G◦,der(k̃). Since Galδ(QS/L) is Zariski-dense in
Gal(QR/L) (see Proposition 1.1), we have that Galδ(QS/L)◦δ,derδ∗ is Zariski-
dense in the group Gal(QR/L)◦,der = G◦,der(k̃). By [Cas89, Theorems 19
and 20], Galδ(QS/L)◦δ,derδ is either conjugate to G◦,der(C) or equal to
G◦,der(k̃). Since Galδ(QS/L)◦δ,derδ is a normal subgroup of Galδ(QS/L),
Lemma 1.5 ensures that Galδ(QS/L) is either conjugate to a subgroup of
k̃×NSLn(C)(G

◦,der(C)) containingG◦,der(C) or is equal to a subgroup ofG(k̃)

containing G◦,der(k̃).
The remaining statement is a direct consequence of Proposition 1.4. �

2. Large (σq, δ)-Galois group of q-difference equations

In this section, we focus our attention on q-difference equations over C(z).
Let us consider the field C(z) and the algebraic closure C(z) of C(z) in (the
algebraically closed field) C((z∗)) =

⋃∞
j=1C((z1/j)). Let q be a non zero

complex number such that |q| 6= 1. We choose a consistent system (qj)j≥1
of roots of q; this means that (qj)j≥1 is a sequence of complex numbers such
that, for all positive integer j, qjj = q and, for all positive integers j, k, l, if
j = lk then qlj = qk. This allows us to extend the action of σq to C(z) by
setting σq(f) = f(qjz

1/j) for f ∈ C(z) ∩ C((z1/j)). We have C(z)
σq

= C.
The derivation δ = z d

dz endows C(z) with a structure of (σq, δ)-field. Note
also that C(z) is a (σq, δ)-subfield of C(z) with C(z)σq = C.

Let (C̃, δ) be a δ-field that contains (C, δ) and which is δ-closed. According
to Lemma 1.2, the (σq, δ)-field

L = Frac(C̃⊗C C(z))

is a (σq, δ)-field extension of C(z) such that Lσq = C̃.
Consider the q-difference system

(2.1) σq(Y ) = AY

with A ∈ GLn(C(z)). In what follows, we let S be a (σq, δ)-PV ring over L
for the equation (2.1), QS be the total ring of quotients of S, and we denote
by Galδ(QS/L) the corresponding (σq, δ)-Galois group over L.

The theorem below shows that if the difference Galois group of a q-
difference system is large, the same holds for the parametrized difference
Galois group.

Theorem 2.1. Let G be the difference Galois group of the q-difference sys-
tem (2.1) over the σq-field C(z). Assume that G◦,der is an irreducible almost

∗This is the Kolchin-closure of the derived subgroup of Galδ(QS/L)◦δ where the no-
tation ◦δ means that we consider the identity component of the group for the Kolchin
topology; see [DHR18, Section 4.4.1].
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simple algebraic subgroup of SLn(C). Then, Galδ(QS/L) is a subgroup of
G(C̃) containing G◦,der(C̃).

Before giving the proof of Theorem 2.1, we state and prove some prelimi-
nary results.

Lemma 2.2. Let G be the difference Galois group of (2.1) over the σq-
field C(z). Let H⊂ GLn(C̃) be the difference Galois group of (2.1) over the
σq-field L. Then, H◦(C̃) = G◦(C̃).

Proof. Since C(z) is an algebraic extension of C(z), [Roq18, Theorem 7]
implies that the difference Galois group G′ of (2.1) over the σq-field C(z)
has the same connected component as G. By [CHS08, Corollary 2.5], the
group H is isomorphic to G′(C̃). Therefore, the group H◦ is isomorphic to
G′◦(C̃) = G◦(C̃). �

Remark 2.3. As a straightforward consequence of Lemma 2.2, we obtain
that if G◦,der is an irreducible almost simple algebraic subgroup of GLn(C)

then H◦,der equals G◦,der(C̃) and is an irreducible almost simple algebraic
subgroup of GLn(C̃).

Lemma 2.4. Assume that the system (2.1), has a solution u = (u1, . . . , un)t

with coefficients in C((z∗)). Then, there exists a (σq, δ)-PV ring T over L
of (2.1) that contains the L-δ-algebra L{u1, . . . , un}δ.

Proof. The result is obvious if u = (0, . . . , 0)t. We shall now assume that
u 6= (0, . . . , 0)t. We equip C((z∗)) with the structure of (σq, δ)-field given by
σq(f(z)) = f(qz) and δ = z d

dz . It is easily seen that we have C((z∗))σq = C.
We let F = C(z)〈u1, . . . , un〉δ be the δ-subfield of C((z∗)) generated over
C(z) by the series u1, . . . , un; this is a (σq, δ)-subfield of C((z∗)) such that
F σq = C. By Lemma 1.2, C̃⊗C F is an integral domain and its field of frac-
tions L1 = L〈u1, . . . , un〉δ is a (σq, δ)-field such that L1

σq = C̃. We consider a
total (σq, δ)-PV extension QS1 for (2.1) over L1 and we let U ∈ GLn(QS1) be
a fundamental matrix of solutions of this difference system. We can assume
that the first column of U is u. Let T be the L-(σq, δ)-algebra generated by
the entries of U and by det(U)−1. Since the total ring of quotient QT of
T is contained in QS1 and QσqS1

= C̃, the σq-constant field of QT is C̃. By
[HS08, Proposition 6.17], the ring T is is a (σq, δ)-PV ring for (2.1) over L
that contains L{u1, . . . , un}δ by construction. �

Lemma 2.5. Let us consider a vector u = (u1, . . . , un)t with coefficients in
C((z∗)) which is solution of (2.1). Assume moreover that each ui satisfies
some nonzero linear differential equation with coefficients in C(z). Then, the
ui actually belong to C(z).

Proof. According to the cyclic vector lemma, there exists P ∈ GLn(C(z))
such that Pu = (f, σq(f), . . . , σq

n−1(f))t for some f ∈ C((z∗)), which is a
solution of a nonzero linear q-difference equation of order n with coefficients
in C(z). Moreover, f satisfies a nonzero linear differential equation with
coefficients in C(z), because it is a C(z)-linear combination of the ui. Let
j ∈ N∗ such that f ∈ C((z1/j)). Up to taking a ramification of the variable
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z, it follows from [Ram92, Theorem 7.6] that f belongs to C(z1/j). Hence,
the entries of u = P−1(Pu) = P−1(f, σq(f), . . . , σq

n−1(f))t actually belong
to C(z1/j) ⊂ C(z) as expected. �

Proof of Theorem 2.1. Using Lemma 2.2 and Proposition 1.6, we are re-
duced to proving that the (σq, δ)-Galois group over the (σq, δ)-ring L of
σq(Y ) = AY is not conjugate to a subgroup of C̃ · NSLn(C)(G

◦,der(C)).
Suppose to the contrary that it is conjugate to a subgroup of C̃ ·
NSLn(C)(G

◦,der(C)). Let n
√

detA be a n-th root of detA in C(z). We con-
sider A′ = ( n

√
detA)−1A ∈ SLn(C(z)). Let C({z}) be the field of fraction

of the ring of convergent power series C{z}. Since C(z) ⊂
∞⋃
j=1

C({z1/j}),

up to taking a ramification of the variable z, we can apply Lemma B.2 to
the system σq(Y ) = A′Y and we get that there exist c ∈ C× and r ∈ Q
such that σq(Y ) = A′′Y , with A′′ = czrA′ ∈ GLn(C(z)), has a nonzero so-

lution u = (u1, . . . , un)t with coefficients in
∞⋃
j=1

C({z1/j}) ⊂ C((z∗)). In

virtue of Lemma 2.4, there exists a (σq, δ)-PV ring S over the (σq, δ)-ring
L for σq(Y ) = A′′Y containing the entries of u. We let U ′′ ∈ GLn(S) be a
fundamental matrix of solutions of σq(Y ) = A′′Y whose first column is u.

We claim that the neutral component of the derived groups of the dif-
ference Galois groups of the systems σq(Y ) = AY and σq(Y ) = A′′Y over
L coincide and are therefore equal to G◦,der(C̃). Indeed, we first note that
A′′ = hA for some h ∈ L× and we let R be a Picard-Vessiot ring over

L for the system σq(Y ) =

(
A 0
0 h

)
Y . There exists U ∈ GLn(R) and

v ∈ R× such that σq(U) = AU and σq(v) = hv. Then, L[U, 1
det(U) ] ⊂ R

(resp. L[vU, 1
vn det(U) ] ⊂ R) is a Picard-Vessiot ring for σq(Y ) = AY (resp

σq(Y ) = A′′Y ) over L. In the representation attached to U and vU , one
can easily conclude to the equality of the derived groups, and therefore, the
equality of the neutral component of the derived groups. This proves the
claim.

Now, since the (σq, δ)-Galois group of σq(Y ) = AY over L is conjugate
to a subgroup of C̃ · NSLn(C)(G

◦,der(C)), Proposition 1.6 ensures that there

exists B ∈ C(z)
n×n

such that

(2.2) σq(B)A = AB + δ(A)− 1

n
δ(det(A)) det(A)−1A.

An easy computation shows that

(2.3) σq(B)A′′ = A′′B + δ(A′′)− 1

n
δ(det(A′′)) det(A′′)−1A′′.

Since the determinant d = det(U ′′) satisfies the q-difference equation
σq(d) = (detA′′)d = (czr)nd, we obtain the integrability of the system of
equations {

σq(Y ) = A′′Y

δ(Y ) = (B + δd
nd)Y.
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So, there exists D ∈ GLn(C̃) such that V = U ′′D ∈ GLn(S) satisfies

(2.4)

{
σq(V ) = A′′V

δ(V ) = (B + δd
nd)V.

We recall that σq ◦ δ = δ ◦ σq. Note that δd
d ∈ S is such that

σq
(
δd
d

)
= δd

d + nr. So, L{ δdd }δ ⊂ S is a (σq, δ)-PV ring over the (σq, δ)-ring
L. The corresponding (σq, δ)-Galois group is Kolchin-connected because it is
a δ-subgroup of the additive group Ga(C̃) and, hence, according to [Cas72,
Proposition 11], it is the vector space of solutions of a linear differential op-
erator. Therefore, L{ δdd }δ is an integral domain and, hence, we can consider
its field of fraction L〈 δdd 〉δ ⊂ QS .

Note that, since σq
(
δd
d

)
= δd

d + nr, we have σq
(
δ
(
δd
d

))
= δ( δdd ), and

therefore, δ
(
δd
d

)
∈ Sσq = C̃. Consequently, L〈 δdd 〉δ = L( δdd ).

Using (2.4), we get δ(U ′′)D+U ′′δ(D) = δ(U ′′D) = δ(V ) = (B+ δ(d)
nd )U ′′D

so

δ(U ′′) =

(
B +

δ(d)

nd

)
U ′′ − U ′′δ(D)D−1.

The previous formula implies that the L( δdd )-vector subspace ofQS generated
by the entries of U ′′ and all their successive δ-derivatives is of finite dimen-
sion. In particular, any ui satisfies a nonzero linear δ-equation Li(y) = 0
with coefficients in L[ δdd ].

We claim that any ui satisfies a nonzero linear δ-equation with coefficients
in L.

If nr = 0, we have σq
(
δd
d

)
= δd

d + nr = δd
d , and therefore δd

d ∈ S
σq = C̃,

which proves our claim.
Assume that nr 6= 0. The equation Li(y) = 0 can be rewritten as∑ν
j=0 Li,j(y)( δdd )j = 0 where the Li,j(y) are linear δ-operators with coef-

ficients in L, not all zero.
Let us now prove that δd

d is transcendental over L〈u1, . . . , un〉δ. Indeed,
suppose to the contrary that there is a non zero relation

(2.5)
κ∑
k=0

ak

(
δd

d

)k
= 0

with κ ≥ 1 and a0, . . . , aκ−1, aκ = 1 ∈ L〈u1, . . . , un〉δ. We can and will
assume that κ ≥ 1 is minimal. Applying σq to equation (2.5), we get

(2.6)
κ∑
k=0

σq(ak)

(
δd

d
+ nr

)k
= 0.

Since κ is minimal and aκ = σq(aκ) = 1, the coefficients of any
(
δd
d

)k in
(2.5) and (2.6) are equal. In particular, equating the coefficients of

(
δd
d

)κ−1,
we get

aκ−1 = σq(aκ−1) + κnr.

Since aκ−1 ∈ C((z∗)), the term of degree 0 in aκ−1 − σq(aκ−1) is equal to
0 and, hence, is not equal to κnr 6= 0. A contradiction proving that δd

d is
transcendental over L〈u1, . . . , un〉δ.
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It follows that δd
d is transcendental over L〈u1, . . . , un〉δ and that all the

Li,j(ui) are equal to zero. This proves our claim, that is, any ui satisfies
some nonzero linear δ-equations with coefficients in L.

Since the ui belong to C((z∗)), we obtain that any ui satisfies a nonzero
linear δ-equation with coefficients in C(z). Since C(z) is an algebraic exten-
sion of C(z), we get that any ui satisfies a nonzero linear δ-equation with
coefficients in C(z).

The vector u is a solution of σq(Y ) = A′′Y . Then, letting p be a denomi-
nator of r and considering the pn-th tensor power of this q-difference system,
we get that u⊗pn satisfies a linear q-difference equation with coefficients in
C(z). Since any ui satisfies a nonzero linear δ-equation with coefficients in
C(z), we find that u⊗pn satisfies a nonzero linear δ-equation with coefficients
in C(z). It follows from Lemma 2.5 that the entries of u⊗pn belong to C(z)

and, hence, any ui belongs to C(z). Therefore, the first column of U ′′ is
fixed by the difference Galois group of σq(Y ) = A′′Y over L and this con-
tradicts the fact that this group contains G◦,der(C̃), which is irreducible by
hypothesis. �

3. Applications

3.1. User friendly criterias for transcendence. The goal of this subsec-
tion is to use Theorem 2.1, in order to give transcendence criteria. We refer
to Section 2 for the notations used in this section.

Corollary 3.1. Let G be the difference Galois group of the q-difference sys-
tem (2.1) over the σq-field C(z). Let us assume that (2.1) admits a non zero
vector solution u = (u1, . . . , un)t with entries in C((z∗)).

• Assume that n ≥ 2 and G◦,der = SLn(C). Then, the series u1, . . . , un
are δ-algebraically independent over C(z). In particular, any ui is δ-
transcendental over C(z).
• Assume that n ≥ 3 and G◦,der = SOn(C). Then, the series
u1, . . . , un−1 are δ-algebraically independent over C(z).
• Assume that n is even and G◦,der = Spn(C). Then, the series
u1, . . . , un are δ-algebraically independent over C(z).

Proof. Thanks to Lemma 2.4, there exists a (σq, δ)-PV ring S for the system
(2.1) over L containing L{u1, . . . , un}δ. Let U ∈ GLn(S) be a fundamental
matrix of solutions of the system (2.1) whose first column is u. Since G◦,der
is equal to SOn(C), (resp. SLn(C), resp. Spn(C)), with Theorem 2.1, we
find that the (σq, δ)-Galois group of (2.1) contains SOn(C̃), (resp. SLn(C̃),
resp. Spn(C̃)). The results of Section 1.4 yield the desired conclusion. �

Consider now the following q-difference equation

(3.1) an(z)y(qnz) + an−1(z)y(qn−1z) + · · ·+ a0(z)y(z) = 0

for some integer n ≥ 1, and some a0(z), . . . , an(z) ∈ C(z) with
a0(z)an(z) 6= 0. In what follows, by “difference Galois group of equation
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(3.1)”, we mean the difference Galois group of the associated system
(3.2)

σq(Y ) = AY, with A =


0 1 0 · · · 0

0 0 1
. . .

...
...

...
. . . . . . 0

0 0 · · · 0 1
− a0
an
− a1
an
· · · · · · −an−1

an

 ∈ GLn(C(z)).

Corollary 3.2. Let G be the difference Galois group of the q-difference sys-
tem (3.2) over the σq-field C(z). Let us assume that (3.1) admits a non zero
solution g ∈ C((z∗)).

• Assume that n ≥ 2 and G◦,der = SLn(C). Then,
g(z), g(qz), . . . , g(qn−1z) are δ-algebraically independent over C(z).
• Assume that n ≥ 3 and G◦,der = SOn(C). Then,
g(z), g(qz), . . . , g(qn−2z) are δ-algebraically independent over C(z).
• Assume that n is even and G◦,der = Spn(C). Then, the series
g(z), g(qz), . . . , g(qn−1z) are δ-algebraically independent over C(z).

Proof. Let us note that if g(z) ∈ C((z∗)) is a nonzero solution of (3.1), then
u1 = (g(z), g(qz), . . . , g(qn−1z))t is a nonzero solution of (3.2) with entries
in C((z∗)). This is a direct consequence of Corollary 3.1. �

3.2. Generalized Hypergeometric series. In this subsection, we follow
the notations of [Roq11, Roq12] and we assume that 0 < |q| < 1. Once for
all, we fix a determination log(q) of the logarithm of q and, for all α ∈ C,
we set qα := eα log(q). Note that for all α, β ∈ C, we have qα+β = qαqβ . Let
us fix n, s ∈ N∗, let a = (a1, . . . , an) ∈ (qR)n, b = (b1, . . . , bs) ∈ (qR \ q−N)s,
λ ∈ C×, and consider the q-difference operator:

(3.3) zλ
n∏
i=1

(aiσq − 1)−
s∏
j=1

(
bj
q
σq − 1

)
.

When b1 = q, this operator admits as solution the power series:

nΦs(a, b, λ, q; z) =
∞∑
m=0

(a; q)m
(b; q)m

λmzm

=
∞∑
m=0

n∏
i=1

(1− ai)(1− aiq) . . . (1− aiqm−1)

s∏
j=1

(1− bj)(1− bjq) . . . (1− bjqm−1)
λmzm.

Until the end of the subsection, let us assume that s = n ≥ 2 and that
a = (a1, . . . , an) ∈ (qQ)n, b = (b1, . . . , bs) ∈ (qQ \ q−N)s.

According to [Roq11, Propositions 6 and 7], the operator (3.3) is irre-
ducible over C(z) if and only if, for all (i, j) ∈ {1, . . . , n}2, ai 6∈ bjqZ. We
say that (3.3) is q-Kummer induced if it is irreducible, and there exists a
divisor d 6= 1 of n, and two permutations µ, ν of {1, . . . , n}, such that, for
all i ∈ {1, . . . , n}, ai ∈ aµ(i)q1/dqZ, and bi ∈ bν(i)q1/dqZ.
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Theorem 3.3 ([Roq11, Theorem 6]). Let us assume that (3.3) is irreducible
and not q-Kummer induced. Let G be the difference Galois group of the q-
difference system (3.3) over the σq-field C(z). Then, G◦,der is either SLn(C),
SOn(C) (only when n is odd), or Spn(C) (only when n is even). Moreover,
G◦,der is SOn(C) (resp. Spn(C)) if and only if

•
∏n
i=1 ai ∈ qZ

∏n
j=1 bj;

• there exists c ∈ C∗, there exist two permutations µ1, µ2 of {1, . . . , n},
such that, for all i, j ∈ {1, . . . , n}, caiaµ1(i) ∈ qZ, cbjbµ2(j) ∈ qZ;
• n is odd (resp. even).

Theorem 3.3 and Corollary 3.2 yield the following result.

Corollary 3.4. Let us assume that (3.3) is irreducible and not q-Kummer
induced. Let G be the difference Galois group of the q-difference system (3.3)
over the σq-field C(z) and let Gδ, be the δ-Galois group of the q-difference
system (3.3) over the field L.

• Assume that G◦,der = SLn(C) (resp. that n is odd and
G◦,der = SOn(C), resp. that n is even and G◦,der = Spn(C)). Then,
Gδ contains SLn(C̃), (resp. SOn(C̃), resp. Spn(C̃)).
• If we further assume that b1 = q, then we obtain that the series
nΦn(a, b, λ, q; z), . . . , σq

κ (nΦn(a, b, λ, q; z)) with κ = n − 1 (resp.
κ = n− 2, resp. κ = n − 1) are δ-algebraically independent over
C(z).

Proof. The first point is a straightforward consequence of Theorems 2.1,
and 3.3. We conclude with Corollary 3.2. �

3.3. Irregular generalized Hypergeometric functions. In this subsec-
tion, we assume that n > s, n ≥ 2. Let a = (a1, . . . , an) ∈ (qR)n,
b = (b1, . . . , bs) ∈ (qR \ q−N)s, λ ∈ C×, 0 < |q| < 1.

Theorem 3.5 ([Roq12, Page 1]). Let G be the difference Galois group of
the q-difference system (3.3) over the σq-field C(z). For (i, j) ∈ {1, . . . , n}×
{1, . . . , s}, let αi, βj ∈ R such that ai = qαi and bi = qβj . Assume that for
all (i, j) ∈ {1, . . . , n} × {1, . . . , s}, αi − βj /∈ Z, and that the algebraic group
generated by Diag(e2iπα1 , . . . , e2iπαn) is connected. Then, G = GLn(C).

Corollary 3.6. Let Gδ, be the δ-Galois group of the q-difference system (3.3)
over the field L. Assume that for all (i, j) ∈ {1, . . . , n} × {1, . . . , s}, we have
αi−βj /∈ Z, and that the algebraic group generated by Diag(e2iπα1 , . . . , e2iπαn)

is connected. Then, Gδ = GLn(C̃). Furthermore, if b1 = q, then the series
nΦs(a, b, λ, q; z), . . . , σq

n−1 (nΦs(a, b, λ, q; z)) are δ-algebraically independent
over C(z).

Proof. Theorems 2.1 and 3.5 ensure that Gδ contains SLn(C̃). So, the group
Gδ is equal to GMSLn(C̃), where GM ⊂ C̃× is the δ-Galois group of the
q-difference equation σqy = det(A)y = (−1)nzλ+(−1)s+1

zλ
∏n
i=1 ai

y, and A is the matrix
associated to (3.3). It is easily seen that there do not exist c ∈ C×, m ∈ Z,
and f ∈ C(z)× such that det(A) = cz−1

σq(f)
f . By [HS08, Corollary 3.4],

we deduce that GM = C̃× and then Gδ = GLn(C̃). We conclude with
Corollary 3.2. �
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Part 2. q-difference relations for solutions of q-difference
equations

4. Parametrized difference Galois theory

4.1. Difference algebra. We refer to [OW15] for more details on what
follows. By a (σq, σq)-ring, we mean a ring equipped with two commuting
endomorphisms σq and σq, such that σq is an automorphism. We do not
make any assumption on σq. The definition of (σq, σq)-fields, K-(σq, σq)-
algebras for K a (σq, σq)-field and (σq, σq)-ideals are straightforward.

We say that a K-(σq, σq)-algebra R is σq-finitely generated if there ex-
ist a1, . . . , an such that R is generated as K-algebra by the ai’s and their
transforms via σq. We then write R = K{a1, . . . , an}σq . We say that a
K-(σq, σq)-field extension R is σq-finitely generated if there exist a1, . . . , an
such that R is generated as K-field extension by the ai’s and their transforms
via σq. We then write R = K〈a1, . . . , an〉σq .

Let (k, σq) be a difference field. Let R be a k-σq-algebra. If R is a field,
we say that R is inversive if σq is surjective on R. We call R σq-separable if
σq is injective on R⊗k k̃ for every σq-field extension k̃/k.

The ring of σq-polynomials in the differential indeterminates y1, . . . , yn
and with coefficients in (k, σq), denoted by k{y1, . . . , yn}σq , is the ring of
polynomials in the indeterminates {σqjyi |j ∈ N, 1 ≤ i ≤ n} with coefficients
in k. Let R be a K-σq-algebra and let a1, . . . , an ∈ R. If there exists a
nonzero σq-polynomial P ∈ K{y1, . . . , yn}σq such that P (a1, . . . , an) = 0,
then we say that a1, . . . , an are σq-algebraically dependent over K. Other-
wise, we say that a1, . . . , an are σq-transcendental overK, or σq-algebraically
independent over K. Following [Bou03, A.V.141], we say that a zero char-
acteristic field extension k̃|k is a regular field extension if k is relatively
algebraically closed in k̃.

We would like to prove some lemmas about the extension of constants.

Lemma 4.1. Let F be a (σq, σq)-field and let k = F σq be the field of σq-
constants of F . We assume that k is an inversive σq-field. Let k̃ be a
regular σq-field extension of k considered as a field of σq-constants. Then,
the ring k̃⊗kF is an integral domain whose fraction field F̃ is a (σq, σq)-field
extension of F such that F̃ σq = k̃.

Proof. Since k̃ is a regular extension of k, the ring k̃ ⊗k F is an integral
domain. Moreover since k̃ is a σq-separable σq-field extension of k by
[DVHW14b, Corollary A.14], the operator σq is injective on k̃ ⊗k F and
thus extends to F̃ . The rest of the proof is essentially [DHR18, Lemma 2.3].

�

Lemma 4.2. Let F be a (σq, σq)-field and let k = F σq be the field of σq-
constants of F . We assume that k is an inversive σq-field. Let k̃ be a regular
σq-field extension of k considered as a field of σq-constants. By Lemma 4.1,
we can consider the (σq, σq)-field F̃ = Frac(k̃ ⊗k F ). Let A ∈ GLn(F ) and
let Vk (resp. V

k̃
) be the solution space of σq(Y ) = AY in Fn (resp. in F̃n).

Then, V
k̃

= Vk ⊗k k̃.
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Proof. Obviously, we haveVk⊗kk̃ ⊂ V
k̃
. Let f ∈ V

k̃
be a non zero solution.

Set S = F ⊗k k̃. Let us consider

a = {r ∈ S|rf ∈ S}.

Since σq(f) = Af , the ideal a is a non zero σq-ideal of S. By [vdPS97,
Lemma 1.11], the ring S is σq-simple. Therefore 1 ∈ a and f ∈ S. Let
(ei)i∈I be a basis of k̃ over k and let us write f =

∑
i∈I fiei with fi ∈ F .

Then, σq(f) = Af implies σq(fi) = Afi, which ends the proof. �

4.2. Parametrized Difference Galois theory. In this section, we study
the σq-algebraic relations satisfied by the solutions of q-difference equations
over C(z). We consider the subfield C(z∗) =

⋃∞
j=1C(z1/j) of the field

C((z∗)) =
⋃∞
j=1C((z1/j)). Let q (resp. q) be a non zero complex num-

ber such that |q| 6= 1 (resp. |q| 6= 1). We choose a consistent system (qj)j≥1
(resp.(qj)j≥1) of roots of q (resp. q); This allows us to extend the action
of σq (resp. σq) to C((z∗)) as in §2. Then, C(z∗) is a (σq, σq)-subfield of
C((z∗)) with C(z∗)σq = C((z∗))σq = C.

Given a (σq, σq)-field K and A ∈ GLn(K), the σq-Galois theory devel-
oped in [OW15] aims at understanding the algebraic relations between the
solutions of σq(Y ) = AY and their successive transforms with respect to σq
from a Galoisian point of view. In this article, we will restrict ourselves to
the case where the base field is C(z∗). In particular, our base field is an
inversive σq and σq-field, that is σq and σq are automorphisms of C(z∗). In
this part of the paper, the word parametrized refers to the parametric action
of the discrete operator σq whereas in the first part, it was related to the
parametric action of the derivative. Therefore the word parametrized does
not refer to the same parametric action depending on the part of the paper.
Since the two parts are almost independent, this convention will not lead to
confusions. It will also avoid heavy terminology.

The following definition concerns the notion of “minimal ring of solution”
in the context of parametrized difference equations. It summarizes in our
context [OW15, Definitions 2.2, 2.6, 2.18 and Proposition 2.21].

Definition 4.3. Let A ∈ GLn(C(z∗)). A C(z∗)-(σq, σq)-pseudofield exten-
sion QS , see Remark 4.4 below, is a (σq, σq)-Picard-Vessiot extension for
σq(Y ) = AY over C(z∗) if there exists a fundamental matrix U ∈ GLn(QS)
such that σq(U) = AU , QS = C(z∗)〈U〉σq and QσqS = C. The (σq, σq)-
algebra S = C(z∗){U, 1

det(U)}σq is called (σq, σq)-Picard-Vessiot ring for
σq(Y ) = AY over C(z∗). In particular, S is σq-simple, i.e., it has no proper
σq-ideal and QS is the total ring of quotients of S.

Remark 4.4. In the above definition, the term pseudofield needs to be ex-
plained. We say that a σq-ring L is a pseudofield if there exist orthogonal
idempotent elements e1, . . . , er such that

• L = Le1 ⊕ Le2 ⊕ . . .⊕ Ler,
• σq(ei) = ei+1modr for any i = 1, . . . , r,
• Lei is a field for any i = 1, . . . , r.
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Therefore, the notation QS = C(z∗)〈U〉σq is somehow abusive since
C(z∗)〈U〉σq is not the σq-field generated by U but the pseudofield gener-
ated by U and its transforms with respect to σq. Nonetheless, we prefer to
abuse notation rather than introducing one more complicated notation.

We have the following result:

Lemma 4.5. Let A ∈ GLn(C(z∗)) and let QS be a (σq, σq)-Picard-Vessiot
extension for σq(Y ) = AY over C(z∗). If QS is a field then C(z∗) is relatively
algebraically closed in QS.

Proof. Let g ∈ QS be algebraic over C(z∗). Let U be a fun-
damental solution matrix such that QS = C(z∗)〈U〉σq . There ex-
ists l ∈ N∗ such that g ∈ C(z∗)(U, σq(U), . . . , σq

l(U)). Since g

is algebraic over C(z1/t) for some t ∈ N∗ and C(z1/t) is a σq-field,
any transform σq

i(g) for i ∈ N∗ is algebraic over C(z1/t). Since
C(z1/t)(U, σq(U), . . . , σq

l(U)) is a finitely generated field extension, the rela-
tive algebraic closure of C(z1/t) inside C(z1/t)(U, σq(U), . . . , σq

l(U)) is finite.
Moreover, C(z1/t)(U, σq(U), . . . , σq

l(U)) is a σq-field. This proves that the
σq-field extension C(z1/t) ⊂ C(z1/t)〈g〉σq is finite. By [vdPS97, Proof of
Proposition 12.2], there exists m ∈ N∗ such that C(z1/t)〈g〉σq ⊂ C(z1/tm).
This proves that C(z∗) is relatively algebraically closed in QS . �

The following proposition shows that, up to considering iterates of the
operators σq and σq, one can always reduce our study to the case where the
(σq, σq)-Picard-Vessiot extension QS is a field and the base field C(z∗) is rel-
atively algebraically closed in QS . This allows us to bypass some difficulties
in difference algebra, that are due to algebraic extensions.

Proposition 4.6. Let A ∈ GLn(C(z∗)) and let (u1, . . . , un) ∈ (F ∗)n with
F a (σq, σq)-field extension of K such that (u1, . . . , un)t is a solution of
σq(Y ) = AY and F σq = C.
(1) There exist positive integers r, s and a (σq

r, σq
s)-Picard-Vessiot extension

LA for the system σq
r(Y ) = σq

r−1(A) . . . σq(A)AY over C(z∗) that contains
u1, u2, . . . , un, such that LA is a field and C(z∗) is relatively algebraically
closed in LA.
(2) If A ∈ GLn(C(z)) and G denotes the difference Galois group of
the system σq(Y ) = AY over C(z), then the difference Galois group of
σq
r(Y ) = σq

r−1(A) . . . σq(A)AY over C(z∗) coincides with the connected
component of G. It is therefore connected.

Proof. (1) Let us note that without loss of generality, we can assume that
F = C(z∗)〈u1, . . . , un〉σq . Since F σq = C is algebraically closed and σq is sur-
jective on C, there exists a (σq, σq)-Picard-Vessiot extension QS = F 〈U〉σq
for the system σq(Y ) = AY over F by [OW15, Corollary 2.29]. Since
(u1, . . . , un) ∈ Fn, we can assume that it is the first column of U . More-
over by [OW15, Lemma 2.11 and Proposition 2.21], the endomorphism σq
is injective on QS . Let e1, . . . , er be the orthogonal idempotents relative
to the pseudofield structure of QS as in Remark 4.4. It is easily seen that
σq
r(ei) = ei for any i = 1, . . . , r. Moreover, since σq is injective on QS , it
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permutes the orthogonal idempotents ei so that there exists a positive in-
teger s dividing r! such that σqs(ei) = ei for any i = 1, . . . , r. This proves
that QS = K1 ⊕ . . .⊕Kr where Ki = eiQS is a (σq

r, σq
s)-field extension of

F . If we denote by π : QS → K1 the projection of QS on K1, it is a surjec-
tive (σq

r, σq
s)-morphism. Then, denoting U1 = π(U) ∈ GLn(K1), we find

that K1 = F 〈U1〉σqs . Since QσqS = C is algebraically closed, the elements
of QS fixed by any iterates of σq are in C by [OW15, Remark 2.25] so that
K
σqr

1 = C. To conclude note that LA = C(z∗)〈U1〉σqs ⊂ K1 is a (σq
r, σq

s)-
field extension of C(z∗) that is σqs-generated by the entries of the funda-
mental solution matrix U1 of the system σq

r(Y ) = σq
r−1(A) . . . σq(A)AY .

This proves that LA is a (σq
r, σq

s)-Picard-Vessiot extension that is a field.
Finally, we apply Lemma 4.5 to LA replacing σq and σq by their suitable
iterates.
(2) Since C(z∗) is an algebraic extension of C(z), [Roq18, Theorem 7] implies
that the difference Galois group G′ of σq(Y ) = AY over the σq-field C(z∗)
has the same connected component as G. Let QR = C(z∗)(U1) ⊂ LA.
By [OW15, Lemma 2.20] the field QR is a Picard-Vessiot extension for
σq
r(Y ) = σq

r−1(A) . . . σq(A)AY in the sense of §1.2.2. By [Roq18, Theo-
rem 12], the Galois group H of σqr(Y ) = σq

r−1(A) . . . σq(A)AY over C(z∗)
is a normal algebraic subgroup of G′ and the quotient G′/H is finite. To con-
clude, we need to prove thatH is connected. LetH◦ be its connected compo-
nent, the fieldQH◦

R is a finite extension of C(z∗) by the Galois correspondence
for difference Galois group [vdPS97, Theorem 1.29]. Since C(z∗) is relatively
algebraically closed in the field LA, we find that QRH

◦
= C(z∗)H = C(z∗)

so that H◦ = H by applying the Galois correspondence again.
�

Unlike differential algebraic groups, a σq-algebraic group is not entirely
determined by its set of points in some difference closure. This comes es-
sentially from the fact that there are many new type of nilpotent elements
in difference algebra. For instance, any element b such that σqn(b) = 0.
This last equation implies b = 0 if and only if σq is injective, which is not
necessarily the case in arbitrary σq-rings. The following example illustrates
the fact that one has to consider points of σq-algebraic groups in arbitrary
σq-rings and not only in σq-fields.

Example 4.7. Consider the following system of difference equations
(S1) = {y2 = 1} and (S2) = {y2 = 1 and σq(y) = y} over C. We denote
by VS1(R) (resp. VS2(R)) the zeros of (S1) (resp. (S2)) in some C-σq-
algebra R. Then, VS1(k) = VS2(k) = {1,−1} for any σq-field extension k
of C. However, if we consider the ring of sequences (an)n∈Z ∈ CZ with the
action of σq given by the shift operator, then VS1(CZ) = {(an)n∈Z|an =
1 or − 1 for all n ∈ Z} whereas VS2(CZ) is the union of the constant se-
quence 1 and the constant sequence −1.

Therefore, we need to adopt the following functorial approach. We denote
by AlgC,σq the category of C-σq-algebras and by Sets the category of sets.

Definition 4.8 ([OW15], Definition 2.50). Let A ∈ GLn(C(z∗)) and let
QS = C(z∗)〈U〉σq be a σq-PV extension for σq(Y ) = AY over C(z∗). Set
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S = C(z∗){U, 1
det(U)}σq . Then, the σq-Galois group of QS over C(z∗) is

defined as the functor:

Galσq(QS/C(z∗)) : AlgC,σq → Sets

B 7→ Autσq(S ⊗C B/C(z∗)⊗C B),

where, σq acts as the identity on B and Aut(σq ,σq)(S ⊗C B/C(z∗) ⊗C B) is
the group of automorphisms of S ⊗C B inducing the identity on C(z∗)⊗C B
and commuting with σq and σq.

It is proved in [OW15, Lemma 2.51] that this functor is represented by
a finitely σq-generated C-σq-Hopf algebra C{Galσq(QS/C(z∗))} (see Defi-
nition A.1). Therefore, Galσq(QS/C(z∗)) is a σq-algebraic group (see Def-
inition A.2). For a brief introduction to σq- algebraic groups, we refer to
Section A. Any algebraic group G over C gives rise to a σq-algebraic group
G over C by Proposition A.5. We would like to recall that, since they are
not defined with respect to the same geometry, the σq-algebraic group G
should not be confused with the algebraic group G.

In the notation of Definition 4.8, if B is a C-σq-algebra, then the ma-
trix U ⊗ 1 ∈ GLn(S ⊗C B) is a fundamental matrix of solutions of σq(Y ) =
AY in S ⊗C B. Then, for any φ ∈ Galσq(QS/C(z∗))(B), the matrix
φ(U ⊗ 1) is also a fundamental matrix of solutions of σq(Y ) = AY in
S ⊗C B. Thus, there exists [φ]U ∈ GLn((S ⊗C B)σq) = GLn,C(B) such that
φ(U ⊗ 1) = (U ⊗ 1)[φ]U . Here GLn,C is the σq-algebraic group correspond-
ing to the general linear algebraic group of size n over C (see Example A.4).

Proposition 4.9. The functor ρU :

Galσq(QS/C(z∗)) → GLn,C
φ ∈ Galσq(QS/C(z∗))(B) 7→ [φ]U ∈ GLn,C(B),

where B ∈ AlgC,σq is a σq-closed embedding (see [DVHW14b, Definition
A.3]).

Proof. The proof is the exact analogue of [DVHW14b, Proposition 2.5] and
its proof is between the lines of [OW15, Lemma 2.51]. �

This proposition allows to identify the σq-Galois group with a σq-subgroup
of GLn,C via the choice of a fundamental matrix of solutions U . Another
choice of fundamental matrix of solutions leads to a conjugate representation.
Therefore, Galσq(QS/C(z∗)) is entirely determined by a σq-Hopf ideal I of
C{GLn,C} = C{X, 1

det(X)}σq (see Example A.4). The elements of I are σq-
polynomials and we call them the defining equations of Galσq(QS/C(z∗)) in
GLn,C.

In σq-Galois theory, one has a complete Galois correspondence ([OW15,
Theorem 2.52 and Lemma 2.53]). We only recall the following results.
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Proposition 4.10. Let A ∈ GLn(C(z∗)) and let QS be a (σq, σq)-Picard-
Vessiot extension of σq(Y ) = AY over C(z∗). Then,

QGalσq (QS/C(z∗))
S =

{x =
r

s
∈ QS |∀B ∈ AlgC,σq , ∀g ∈ Galσq(QS/C(z∗))(B),

g(r ⊗ 1).(s⊗ 1) = (r ⊗ 1).(g(s⊗ 1))} = C(z∗).

Moreover, we have σq-dim(Galσq(QS/C(z∗))) = σq-trdeg(QS/C(z∗)) (for
precise definitions see [DVHW14b, §A.7]).

The last equality means that the complexity of the defining equa-
tions of Galσq(QS/C(z∗)) corresponds precisely to the complexity of the
σq-difference algebraic relations satisfied by the solutions of the system
σq(Y ) = AY in QS .

The relation between the (σq, σq)-Picard-Vessiot theory and the non
parametrized Picard-Vessiot theory as developed in [vdPS97] is explained
below.

Proposition 4.11. Let A ∈ GLn(C(z∗)) and let QS be a σq-PV extension
of σq(Y ) = AY over C(z∗). Set R = C(z∗)[U, 1

det(U) ] ⊂ QS and denote by
QR the total ring of quotients of R. The following holds:

• The C(z∗)-σq-algebra QR is a Picard-Vessiot extension for
σq(Y ) = AY over C(z∗) as in §1.2.2;
• The σq-Galois group Galσq(QS/C(z∗)) is a Zariski dense subgroup
of Gal(QR/C(z∗)) (see Proposition A.5).

Proof. The first statement is [OW15, Lemma 2.20] and the second statement
is a discrete analogue of [DVHW14b, Proposition 2.15]. �

If the matrix A ∈ GLn(C(z)) and the (σq, σq)-Picard-Vessiot extension
QS is a field, one can relate the difference Galois group of σq(Y ) = AY over
C(z) and the difference Galois group of the system over C(z∗) as follows.

Lemma 4.12. Let A ∈ GLn(C(z)) and let QS be a σq-PV extension of
σq(Y ) = AY over C(z∗). If QS is a field, then the difference Galois group
of σq(Y ) = AY over C(z∗) equals the connected component of the difference
Galois group of the system over C(z).

Proof. The proof is completely analogous to the last paragraph of the proof
of Proposition 4.6 and relies on the fact that C(z∗) has no non trivial finite
σq-field extensions. �

4.3. Discrete Isomonodromy. In σq-Galois theory, one can define a no-
tion of discrete isomonodromy as follows.

Definition 4.13. Let A ∈ GLn(C(z∗)). The system σq(Y ) = AY is called
σq-isomonodromic if there exist B ∈ GLn(C(z∗)) and d ∈ N∗ such that

(4.1) σq(B)A = σq
d(A)B.
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Remark 4.14. Our definition is slightly more general than in [OW15, Defini-
tion 2.54], where σq-isomonodromic means that there exists B ∈ GLn(C(z∗))
such that σq(B)A = σq(A)B, i.e., d = 1 in our definition. However, we can
apply most of the results of [OW15] by replacing σq by σqd.

We have the following Galoisian interpretation of σq-isomonodromy. We
say that a σq-subgroup H ⊂ GLn,k defined over a σq-field k is σqd-constant
if, for all k-σq-algebras S, we have σqd(g) = g, for all g ∈ H(S). This
is equivalent to the fact that the defining ideal IH ⊂ k{X, 1

det(X)}σq of
H ⊂ GLn,k contains the polynomial σqd(X)−X (see Example A.6).

Proposition 4.15. Let A ∈ GLn(C(z∗)) and let QS be a σq-PV exten-
sion for σq(Y ) = AY over C(z∗). Assume that QS is a field. The sys-
tem σq(Y ) = AY is σq-isomonodromic over C(z∗) if and only if there ex-
ists a regular σq-field extension C̃ of C and an integer d ≥ 1 such that
Galσq(QS/C(z∗))C̃

† is conjugated to a σqd-constant subgroup of GL
n,C̃.

We refer to [OW15, Theorem 2.55] for an analogous result in a different
setting.

Note that, since C is a σq-inversive field, [DVHW14b, Corollary A.14]
implies that any field extension of C is σq-separable (see Section 4.1).

Before proving Proposition 4.15, we need an intermediate lemma about
extension of σq-constants. We have the following result:

Lemma 4.16. Let C̃ be a σq-field extension of C and let QS/C(z∗) be a
σq-PV extension for σq(Y ) = AY . By Lemma 4.1, we may consider C̃(z∗)

(resp. Q̃S) the (σq, σq)-field attached to C(z∗)⊗C C̃ (resp. QS ⊗C C̃). Then
Q̃S is a (σq, σq)-Picard-Vessiot extension for σq(Y ) = AY over C̃(z∗) and
the σq-Galois group G̃ of Q̃S/C̃(z∗) is obtained from the σq-Galois group G
of QS/C(z∗) by base extension, i.e., G̃ = GC̃.

Proof of Lemma 4.16. As Q̃S
σq

= C̃ = C̃(z∗)
σq
, it is clear that Q̃S |C̃(z∗) is

a (σq, σq)-Picard-Vessiot extension. Let S ⊂ QS , (resp. S̃ ⊂ Q̃S), denotes
the corresponding (σq, σq)-Picard-Vessiot ring. Then S̃ is obtained from
S⊗C C̃ by localizing at the multiplicatively closed set of all non-zero divisors
of C(z∗)⊗C C̃. It follows that, for every C̃-σq-algebra B,

GC̃(B) = Aut(σq ,σq)(S ⊗C B|C(z∗)⊗C B)

= Aut(σq ,σq)
(

(S ⊗C C̃)⊗C̃ B
∣∣∣(C(z∗)⊗C C̃)⊗C̃ B

)
,

i.e.,
GC̃(B) = Aut(σq ,σq)(S̃ ⊗C̃ B|C̃(z∗)⊗C̃ B) = G̃(B).

This ends the proof. �

Proof of Proposition 4.15. In [OW15, Theorem 2.55], it is proved that if the
system is σq-isomonodromic then there exists a σq-field extension C̃ of C and

†The subscript C̃ means that we consider the base change of Galσq(QS/C(z∗)) over C
to C̃.
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an integer d ≥ 1 such that Galσq(QS/C(z∗))C̃ is conjugated to a σqd-constant
subgroup of GL

n,C̃ (see Remark 4.14). In the proof of [OW15, Theorem 2.55],

we note that any σq-field extension C̃ of C that contains a fundamental
matrix of solutions of a given equation of the form σq

d(Y ) = DY for some
given D ∈ GLn(C) is convenient. We claim that we can find among these
extensions a regular one. Indeed consider C̃ = C(X0, . . . , Xd−1) where the
Xi’s are n× n-matrices of indeterminate. We can endow C̃ with a structure
of σq-extension of C by setting σq(Xi) = Xi+1 for i = 0, . . . , d − 1 and
σq(Xd−1) = DX0. Then, X0 ∈ GLn(C̃) is a solution of σqd(X0) = DX0 and
since C̃ is a pure extension of C, it is also a regular extension.

Conversely, let us assume that there exists a regular σq-field extension C̃
of C and an integer d ≥ 1 such that Galσq(QS/C(z∗))C̃ is conjugated to a
σq

d-constant subgroup of GL
n,C̃. Endow C̃ with a structure of σq-constants

field and consider the (σq, σq)-fields Q̃S and C̃(z∗) as in Lemma 4.16. We find
that the σq-Galois group of Q̃S over C̃(z∗) equals Galσq(QS/C(z∗))C̃ and is
thus conjugate to a σqd-constant group over C̃. By [OW15, Theorem 2.55],
the system σq(Y ) = AY is σq-isomonodromic over C̃(z∗), i.e., there exist
B̃ ∈ GLn(C̃(z∗)) and d ∈ N× such that σq(B̃) = σq

d(A)B̃A−1. By Lemma

4.2, the solution space in C̃(z∗)
n×n

of the q-difference equation σq(Y ) =

σq
d(A)Y A−1 is generated as a C̃-vector space by the solution space of the

equation in C(z∗)n×n. Since the condition det(Y ) 6= 0 is an open condition,
there exists B ∈ GLn(C(z∗)) such that σq(B) = σq

d(A)BA−1 and the system
σq(Y ) = AY is σq-isomonodromic over C(z∗). �

4.4. Transcendence results. Let A ∈ GLn(C(z∗)) and consider

(4.2) σqY = AY.

Let QS be a (σq, σq)-Picard-Vessiot extension of σq(Y ) = AY over C(z∗).
Let U ∈ GLn(QS) be a fundamental matrix of solutions of the system (4.2),
and let Galσq(QS/C(z∗)) be the σq-Galois group of QS identified with a
σq-subgroup of GLn,C via the faithful representation attached to the funda-
mental matrix of solutions U .

Let SLn,C (when n ≥ 2), SOn,C (when n ≥ 3) and Spn,C (when n is even)
be the σq-algebraic groups over C corresponding respectively to the special
linear group, the special orthogonal group and the symplectic group (see
Section A).

Proposition 4.17. Assume that n ≥ 2. Assume that QS is a field. Let
u = (u1, . . . , un) be a row (resp. column) vector of U . If there exists
C̃ ∈ GLn(C) such that the image of the σq-Galois group by the represen-
tation ρUC̃ associated to the fundamental matrix of solutions UC̃ contains

• SLn,C or Spn,C, then u1, . . . , un are σq-algebraically independent over
C(z∗);
• SOn,C, then any n − 1 distinct elements among the ui’s are σq-
algebraically independent over C(z∗).
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Proof. The proof is a discrete analogue of the proof of Proposition 1.3. We
just explain the strategy of the proof in the SLn,C-case to show where one
has to adapt the proof to the discrete parameter case. Let X = (Xi,j)1≤i,j≤n
be σq-indeterminates. Let I be the kernel of the unique morphism of K-
σq-algebras K{X, 1

det(X)}σq → S = C(z∗){U, 1
det(U)}σq such that X 7→ U .

We denote by (x1, . . . , xn) = (X1,1, . . . , X1,n) the first row of X. The σq-
algebraic relations with coefficients in C(z∗) between u1, . . . , un correspond
to the elements of I ∩ K{x1, . . . , xn}σq . So everything amounts to prove
that I ∩ K{x1, . . . , xn}σq = {0}. In order to proving this, we will relate
I to the ideal defining the σq-algebraic group Galσq(QS/C(z∗)). Such a
relation follows from the fact that the σq-PV ring S is the coordinate ring
of a Galσq(QS/C(z∗))-torsor over C(z∗).

We shall now give the details of the proof, still in the SLn,C-case. As
above, we let I be the kernel of the unique morphism of C(z∗)-σq-algebras
ϕ : C(z∗){X, 1

det(X)}σq → S such that X 7→ U and we denote by V the
σq-algebraic variety over C(z∗) defined by I. On the other hand, we let
G be the image of Galσq(QS/C(z∗)) by the representation ρU , we let L be
the σq-ideal of C{X, 1

det(X)}σq of the equations of G and we let G be the
σq-algebraic variety over C(z∗) defined by L; in other words, G is the σq-
algebraic group over C(z∗) obtained from G by extension of scalars from C
to C(z∗). Both V and G can be seen in GLn,C(z∗). The following map is
well-defined and makes V a G-torsor over C(z∗), see [OW15, Lemmas 2.49
and 2.51]:

V ×K G → V ×K V
(v,M) 7→ (v, vM).

The (σq, σq)-Picard-Vessiot extension QS is a σq-field extension of C(z∗).
The injection of S into QS yields to a point of V(QS). This proves that the
torsor V is trivial over QS . There exists Z0 ∈ V(QS) such that the σq-ideals
(I) and (L) of QS{X, 1

det(X)}δ defining VQS and GQS satisfy

(I) = {P (Z−10 X) | P ∈ (L)}.

Since the image of Galσq(QS/C(z∗)) by the representation ρUC̃ contains
SLn,C, we see that G contains H = C̃SLn,CC̃

−1(= SLn,C)). Hence, (I) is
contained in the σq-ideal {det(X)− det(Z0)} of QS{X, 1

det(X)}σq generated
by det(X)− det(Z0) (see [Wib21, Example 6.21]).

We claim the equality of ideals

{det(X)− det(Z0)}σq ∩QS{x1, . . . , xn}σq = {0}.

Indeed, let us consider

P = P (X) = P (x1, . . . , xn) ∈ {det(X)− det(Z0)} ∩ QS{x1, . . . , xn}σq .

Let K̃ be any σq-field extension of QS . For any non zero vector
(a1, . . . , an) ∈ K̃n \ {(0, . . . , 0)}, there exists a matrix A ∈Mn(K̃) with first
row (a1, . . . , an) such that det(A) = det(Z0), so P (a1, . . . , an) = P (A) = 0
because P ∈ {det(X) − det(Z0)}σq . Therefore, P vanishes on
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K̃n \ {(0, . . . , 0)} and, hence, P = 0 by [Lev06, Theorem 2.6.5]. We now
have the desired result because

I ∩ C(z∗){x1, . . . , xn}σq ⊂ (I) ∩QS{x1, . . . , xn}σq
⊂ {det(X)− det(Z0)}σq ∩QS{x1, . . . , xn}σq = {0}.

�

5. q-difference equations of rank one

We recall that q,q ∈ C× with |q|, |q| 6= 1. From now, we assume that q
and q are multiplicatively independent, that is for any `,m ∈ Z, q`qm =
1⇒ ` = m = 0. In other words, log(q/q) /∈ Q. The goal of the section is to
compute the σq-Galois group of order one equation. For any a(z) ∈ C(z),
we denote by div a(z) the divisor of a(z) on C×, i.e.,

div a(z) =
∑
α∈C×

vα(a(z)) [α]

where vα(a(z)) denotes the valuation of a(z) at α. Let π : C× → C×/qZ be
the natural projection. For any a(z) ∈ C(z)×, we set

divq a(z) =
∑
α∈C×

vα(a(z)) [π(α)] .

The proof of the following lemma is inspired by the proof of [vdPS97,
Lemma 2.1].

Lemma 5.1 (Lemme 3.5 in [Har08]). Consider a(z) ∈ C(z)×. Then, the
following properties are equivalent:

(i) there exist c ∈ C×, m ∈ Z and b(z) ∈ C(z)× such that
a(z) = czm b(qz)

b(z) ;
(ii) divq a(z) = 0.

Proposition 5.2. Let a(z), b(z) ∈ C(z)× be such that

a(z)k0a(qz)k1 · · · a(qrz)kr =
b(qz)

b(z)

for some k0, . . . , kr ∈ Z with k0kr 6= 0. Then, divq a(z) = 0, i.e., in virtue
of Lemma 5.1, there exist c ∈ C×, m ∈ Z and b1(z) ∈ C(z)× such that
a(z) = czm b1(qz)

b1(z)
.

Proof. Assume to the contrary that divq a(z) 6= 0. We set

divq a(z) =
m∑
i=1

ni [ζi]

where the ζi are pairwise distinct elements of C×/qZ and the ni are non zero
integers. We have
(5.1)

0 = divq
b(qz)

b(z)
= divq a(z)k0a(qz)k1 · · · a(qrz)kr =

r∑
j=0

kj

m∑
i=1

ni
[
q−jζi

]
.
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Let
I = {i ∈ {1, . . . ,m} | ζi ∈ qZζ1}.

Let i1, . . . , is be pairwise distinct integers such that I = {i1, . . . , is}. Up to
renumbering, we can assume that

ζi1 ≺ · · · ≺ ζis
where, for any x, y ∈ C×/qZ, x ≺ y means that y = qkx for some k ∈ N∗.
Then, we have q−rζi1 ≺ q−jζik for all j ∈ {0, . . . , r} and k ∈ {1, . . . , s} such
that (j, k) 6= (r, 1). In particular, q−rζi1 6= q−jζi for all j ∈ {0, . . . , r} and
i ∈ I such that (j, i) 6= (r, i1) (indeed, if x ≺ y then x 6= y because q and q
are multiplicatively independent).

Moreover, for j ∈ {0, . . . , r} and i ∈ {1, . . . ,m} \ I, q−rζi1 and q−jζi are
not in the same qZ-orbit and hence are not equal.

So, we have proved that q−rζi1 6= q−jζi for all j ∈ {0, . . . , r} and
i ∈ {1, . . . ,m} such that (j, i) 6= (r, i1). Therefore, the coefficient of [q−rζi1 ]
in equation (5.1) is equal to 0, i.e., krni1 = 0, whence a contradiction. �

The following proposition gives an example of σq-isomonodromic equation
of rank one.

Proposition 5.3. Let a(z) ∈ C(z)×. Let QS be a (σq, σq)-Picard-Vessiot
extension for σq(y) = a(z)y over C(z∗). Let u ∈ Qs be a non zero solution
of σq(y) = a(z)y. Let QS = C(z∗)〈u〉σq . Then, the following statements are
equivalent:

(1) u and all its transforms with respect to σq are algebraically dependent
over C(z∗),

(2) there exist c ∈ C×, m ∈ Z and b(z) ∈ C(z)× such that
a(z) = czm b(qz)

b(z) ,
(3) the group Galσq(QS/C(z∗)) can be embedded as a subgroup of

H ⊂ GL1,C with H a σq-algebraic subgroup defined by

H(B) =

{
λ ∈ GL1,C(B)

∣∣∣∣σq(σq(λ)

λ

)
=
σq(λ)

λ

}
for any B ∈ AlgC,σq .

Moreover, the following statements are equivalent:

(a) there exist c ∈ C×and b(z) ∈ C(z)× such that a(z) = c b(qz)b(z) ,
(b) the group Galσq(QS/C(z∗)) is σq-constant.

Proof. Let us prove (1) ⇒ (2). Relying on the classification of the σq-
algebraic subgroups of GL1,C, [OW15, Theorem 3.1] ensures that the first
statement is equivalent to the existence of b(z) ∈ C(z)×, t ∈ N and
n0, . . . , nt ∈ Z not all zero, such that the following equation holds

(5.2) a(z)n0σq(a(z)n1) · · ·σqt(a(z)nt) =
σq(b(z))

b(z)
.

Proposition 5.2 shows then that the first statement implies the second.
Let us prove (2) ⇒ (3). Assume that the second statement holds. By

[OW15, Proposition 4.9], for any B ∈ AlgC,σq and g ∈ Galσq(QS/C(z∗))(B)
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there exists λg ∈ B× such that g(u) = λg.u. Since a(z) = czm b(qz)
b(z) , an easy

computation gives

σq

(
σq(u)

u
× b

σq(b)

)
=
σq(a)σq(u)σq(b)

auσq(σq(b))

= qm
σq(u)

u

σq(σq(b))bσq(b)

σq(b)σq(b)σq(σq(b))
= qm

σq(u)

u
× b

σq(b)
.

Therefore, if we set h =
σq(b)
b , we find

σq

(
σq(

σq(u)
u )

σq(u)
u

.
h

σq(h)

)
=
σq(

σq(u)
u )

σq(u)
u

.
h

σq(h)
.

Since QσqS = C, there exists d ∈ C such that we have the equal-

ity σq(
σq(u)

u
)

σq(u)

u

= d
σq(h)
h , i.e., σq(

σq(u)

u
)

σq(u)

u

∈ C(z∗) and is left invariant by

the σq-Galois group. This implies that for any B ∈ AlgC,σq and

g ∈ Galσq(QS/C(z∗))(B), we find σq(
σq(λg)
λg

) =
σq(λg)
λg

and we deduce that
the σq-Galois group can be represented as a subgroup of H.

Let us prove (3) ⇒ (1). If the third statement holds, then
Galσq(QS/C(z∗)) is a strict subgroup of GL1,C. By Proposition 4.10, this
implies that u and all its transforms with respect to σq are algebraically
dependent over C(z∗). This proves (1).

Let us prove (a) ⇒ (b). If there exist c ∈ C× and b(z) ∈ C(z)× such
that a(z) = c b(qz)b(z) then σq(a)

a =
σq(h)
h where h(z) =

σq(b(z))
b(z) . Proposition

4.15 allows to conclude that the group Galσq(QS/C(z∗)) is σq-constant. Let
us prove (b)⇒ (a). If the group Galσq(QS/C(z∗)) is σq-constant then u
and all its transforms with respect to σq are algebraically dependent over
C(z∗). By the above, there exist c ∈ C×, m ∈ Z and b(z) ∈ C(z)× such
that a(z) = czm b(qz)

b(z) . However Proposition 4.15 states that there exists
h(z) ∈ C(z∗) such that σq(a)/a = σq(h)/h. An easy computation shows
that m = 0. �

6. Discrete projective isomonodromy

The following proposition allows to characterize the σq-Galois group of a
q-difference system with large difference Galois group. The notion of large
difference Galois group will be made more precise in the proposition, that we
will apply later for the groups SLn(C) (when n ≥ 2), SOn(C) (when n ≥ 3)
and Spn(C) (when n is even).

Proposition 6.1. Let A ∈ GLn(C(z)). Let G be the difference Galois group
of σq(Y ) = AY over the σq-field C(z∗). Assume that its derived subgroup
Gder is an irreducible most simple algebraic subgroup of GLn(C) and has
toric constant centralizer (see Definition A.15). Let QS be a (σq, σq)-Picard-
Vessiot extension of σq(Y ) = AY over C(z∗) and assume that QS is a field.

Then, we have the following alternative:
(1) there exist d ∈ N× and a regular σq-field extension C̃ of C such that

Galσq(QS/C(z∗))C̃ ⊂ GL
n,C̃ is conjugate to a σq-group H such that,
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for all B ∈ AlgC̃,σq and g ∈ H(B), there exists λg ∈ B× such that
σq

d(g) = λgg;
(2) Galσq(QS/C(z∗)) contains Gder, the σq-algebraic group associated

to Gder, see Proposition A.5.

Moreover, if the first case holds then there exist Ũ ∈ GLn(Q̃S), with Q̃S the
fraction field of QS⊗C C̃, see Lemma 4.1, a fundamental matrix of solutions,
d ∈ N× and B ∈ GLn(C̃(z∗)), with C̃(z∗) the fraction field of C(z∗) ⊗C C̃,
g ∈ Q̃S

×
, such that

(6.1) σq
d(Ũ) = gBŨ.

Remark 6.2. Since, we have assumed that the (σq, σq)-Picard-Vessiot exten-
sion is a field the difference Galois group G is connected by Lemma 4.12 and
C(z∗) is relatively algebraically closed in QS by Lemma 4.5.

Proof of Proposition 6.1. Since Galσq(QS/C(z∗)) is Zariski-dense in G, we
find that the derived group D(Galσq(QS/C(z∗))) of Galσq(QS/C(z∗))
is Zariski-dense in Gder by Proposition A.13. Since C(z∗) is rela-
tively algebraically closed in QS , straightforward analogues of [DVHW14a,
Lemma 6.3] and [DVHW14b, Proposition 4.3, (iii)] show that the σq-
algebraic group Galσq(QS/C(z∗)) is absolutely σq-integral, see Defini-
tion A.8. By Lemma A.14, the σq-algebraic group D(Galσq(QS/C(z∗)))
is absolutely σq-integral. Since C is inversive for σq, Theorem A.10
implies the existence of a σq-field extension C̃ of C, such that either
D(Galσq(QS/C(z∗)))C̃ = Gder

C̃, the base change of Gder to C̃ or there
exists an integer d ≥ 1 such that D(Galσq(QS/C(z∗)))C̃ is conjugate to
a σq

d-constant subgroup of Gder
C̃. The group Gder

C̃
is irreducible al-

most simple and has toric constant centralizer. Since D(Galσq(QS/C(z∗)))C̃
is a normal subgroup of Galσq(QS/C(z∗))C̃, Lemma A.16 ensures that
Galσq(QS/C(z∗))C̃ either contains Gder

C̃ or is conjugate to a σq-algebraic
group H over C̃ such that for all B ∈ AlgC̃,σq and g ∈ H(B) there exists
λg ∈ B× such that σqd(g) = λgg.

We shall prove that if the first case holds then there there exist
Ũ ∈ GLn(Q̃S) a fundamental matrix of solutions, a positive integer d and
B ∈ GLn(C̃(z∗)), g ∈ Q̃S

×
, such that

(6.2) σq
d(Ũ) = gBŨ.

Thus, let us assume that there exist a positive integer d and a σq-
field extension C̃ of C such that Galσq(QS/C(z∗))C̃ is conjugate to a
σq-group H such that, for all B ∈ AlgC̃,σq and g ∈ H(B), there exist
λg ∈ GL

1,C̃(B) such that σqd(g) = λgg. By Lemma 4.16, we construct a

(σq, σq)-Picard-Vessiot extension Q̃S for σq(Y ) = AY over C̃(z) such that
Galσq(QS/C(z∗))C̃ = Galσq(Q̃S/C̃(z∗)). By Proposition 4.9, we can choose
Ũ ∈ GLn(Q̃S), a fundamental matrix of solutions, such that for any φ ∈
Galσq(Q̃S/C̃(z∗))(B), we have σqd([φ]

Ũ
) = λφ[φ]

Ũ
and λφ ∈ GL1(B). Then,
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for any φ ∈ Galσq(Q̃S/C̃(z∗))(B), we have φ(σq
d(Ũ).Ũ−1) = λφσq

d(Ũ).Ũ−1.
Let g be a non-zero entry of σqd(Ũ).Ũ−1. It is easy to see that the matrix
B = 1

gσq
d(Ũ).Ũ−1 ∈ GLn(Q̃S) is fixed by Galσq(Q̃S/C̃(z∗)). By Proposi-

tion 4.10, B ∈ GLn(C̃(z∗)). �

7. q-difference equations with power series solutions

Let A ∈ GLn(C(z)). We recall that q,q ∈ C×, |q|, |q| 6= 1, with q and q
multiplicatively independant. Consider the q-difference system

(7.1) σq(Y ) = AY.

The aim of the present section is to study the σq-Galois group of (7.1) under
the following assumption.

Assumptions 7.1. Let G be the Galois group of (7.1) over C(z∗) and let QS
be a σq-Picard-Vessiot extension for (7.1) over C(z∗). Assume that

(1) n ≥ 2.
(2) Gder is either SLn(C), SOn(C) (when n ≥ 3) or Spn(C) (when n is

even);
(3) there exists a non zero vector solution Y0 = (u1, u2, . . . , un)t ∈

(C((z∗)))n;
(4) QS is a field and contains the entries of Y0.

The study of the σq-Galois group will rely on the combination of two
arguments. The first arguments is the classification of Zariski dense σq-
algebraic subgroups of almost simple algebraic groups, that essentially says
that one has a dichotomy: either the σq-Galois group is large or the solutions
of the system satisfy a linear σq-equation. The second argument is more
analytic and allows to conclude that the second case can not happen since
any power series vector Y0, solution of a σq and a σq-linear equation is
rational. In contradiction with the simplicity of the difference Galois group.
The analytic argument is a rephrasing of Schäfke and Singer [SS16], see also
Bezivin and Boutabaa [BB92], for an earlier result which is a little weaker,
i.e., it is assumed that |q|, |q| are multiplicatively independent.

Lemma 7.2. Let us consider a non zero vector u = (u1, . . . , un)t with coeffi-
cients in C((z∗))n such that σq(u) = Au for some A ∈ GLn(C(z∗)). Assume
moreover that each ui satisfies some nonzero linear q-difference equation with
coefficients in C(z∗). Then, the ui actually belong to C(z∗).

Proof of Lemma 7.2. One can find r ∈ N∗ such that u ∈ C((z1/r)),
A ∈ GLn(C(z1/r)) and the σq-equation satisfied by the ui’s has coefficients
in C(z1/r). Setting, x = z1/r and replacing q (resp. q) by qr (resp. by qr)
as defined in §4.2, we see that it is sufficient to prove the lemma for r = 1.

Since u = (u1, . . . , un)t has coefficients in C((z))n, and any entry of u
satisfies some nonzero linear q-difference equation with coefficients in C(z),
according to the cyclic vector lemma, there exists P ∈ GLn(C(z)) such that
Pu = (f, σq(f), . . . , σq

n−1(f))t for some f ∈ C((z)) which is a solution of a
nonzero linear q-difference equation, i.e., a σq-difference equation, of order n
with coefficients in C(z). Moreover, f satisfies a nonzero linear σq-equation
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with coefficients in C(z), because it is a C(z)-linear combination of the ui and
the ui themselves satisfy such equations. It follows from [SS16, Corollary 15],
see also [BB92, Remark 7.5], that f belongs to C(z). Hence, the entries of
u = P−1(Pu) = P−1(f, σq(f), . . . , σq

n−1(f))t actually belong to C(z), as
expected. �

We now split our study depending whether the determinant of the σq-
Galois group of (7.1) over C(z∗) is a strict subgroup of GL1,C or not.
Since the latter is equal to the σq-Galois group of the order one equa-
tion σqY = det(A)Y , following Proposition 5.3 it is a strict subgroup of
GL1,C if and only if there exist b ∈ C(z)×, c ∈ C× and m ∈ Z such that
det(A) = czm b(qz)

b(z) . Let us first consider this situation in Theorem 7.3. See
Theorem 7.5 for the other case.

7.1. σq-algebraic determinant group. The goal of the subsection is to
prove:

Theorem 7.3. Assume that the hypothesis 7.1 holds and that there exist
b ∈ C(z)×, c ∈ C×, and m ∈ Z, such that det(A) = czm b(qz)

b(z) .
Then, the σq-Galois group Galσq(QS/C(z∗)) contains Gder.

Proof of Theorem 7.3. Let QS be a (σq, σq)-Picard-vessiot extension of
σq(Y ) = AY over C(z∗) as in Assumption 7.1. Since Y0 = (u1, . . . , un)t ∈
Q×S , there exists a fundamental matrix of solutions U ∈ GLn(QS) whose
first column is precisely Y0. We let G denote the difference Galois group
of σq(Y ) = AY over the field C(z∗), and we let Galσq(QS/C(z∗)) be the
σq-Galois group over the (σq, σq)-field C(z∗). By assumption, Gder is either
SLn(C) (when n ≥ 2), SOn(C) (when n ≥ 3) or Spn(C) (when n is even).
By Proposition 6.1, we have the following alternative:

(1) there exists a positive integer d and a regular (σq, σq)-field extension
C̃ of C such that Galσq(QS/C(z∗))C̃ is conjugate to a σqd-constant
subgroup of Gder

C̃
;

(2) Galσq(QS/C(z∗)) contains Gder.
Moreover, if the first case holds, then there exist Ũ ∈ GLn(Q̃S), with Q̃S
the fraction field of QS ⊗C C̃, a fundamental matrix of solutions, a positive
integer d and B ∈ GLn(C̃(z∗)), with C̃(z∗), g ∈ Q̃S

×
, such that

(7.2) σq
d(Ũ) = gBŨ.

We claim that the first case can not hold. Suppose to the contrary
that there exists a regular σq-field extension C̃ of C such that there ex-
ist Ũ ∈ GLn(Q̃S) a fundamental matrix of solutions, a positive integer d,
B ∈ GLn(C̃(z∗)) and g ∈ Q̃S

×
, such that (7.2) holds. This means that there

exists C ∈ GLn(Q̃S
σq

) = GLn(C̃) such that Ũ = UC, and therefore

σq
d(U) = gBUCσq

−d(C).

This formula implies that the (finite dimensional) C̃(z∗)〈g〉σq-vector space
generated by the entries of U is stable by σqd. In particular, any ui (recall
that the ui are the entries of the first column Y0 of U) satisfies a nonzero linear
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q-equation Li(y) with coefficients in C̃(z∗)〈g〉σq . We claim that C̃(z∗)〈g〉σq =

C̃(z∗)(g). Indeed, we have σqd(Ũ) = gBŨ and σq(Ũ) = AŨ . Thus,

σq

(
σq

d(det(Ũ))

det(Ũ)

)
=

(
σq

d(σq det(Ũ))

σq(det(Ũ))

)

=

(
σq

d(det(A))

det(A)

)
σq

d(det(Ũ))

det(Ũ)
=

σqd(czm b(qz)
b(z) )

czm b(qz)
b(z)

 σq
d(det(Ũ))

det(Ũ)

= qmd
σq(

σqd(b(z))
b(z) )

σqd(b(z))
b(z)

σq
d(det(Ũ))

det(Ũ)
= qmd

σq(h)

h

σq
d(det(Ũ))

det(Ũ)
,

where h(z) =
σqd(b(z))
b(z) . Using σqd(det(Ũ)) = gn det(B) det(Ũ) in the equal-

ity

σq

(
σq

d(det(Ũ))

det(Ũ)

)
= qmd

σq(h)

h

σq
d(det(Ũ))

det(Ũ)
,

allows us to deduce that σq (gn det(B)) = qmd
σq(h)
h gn det(B). Thus,

we have σq(g
nl) = qmdgnl with l = det(B)/h ∈ C̃(z∗). Hence we have

σq(σq(gnl)) = qmdσq(gnl). Therefore, there exists c ∈ C̃× such that
σq(gnl) = cgnl. Then

(
σq(g)
g

)n
∈ C̃(z∗). As we may see in the proof

of Proposition 6.1, Galσq(QS/C(z∗)) is absolutely σq-integral. By Defini-
tion A.8, it follows that Galσq(Q̃S/C̃(z∗)) = Galσq(QS/C(z∗))C̃ is absolutely
σq-integral too. By [DVHW14b, Proposition 4.3, (iii)], the field extension
C̃(z∗) ⊂ Q̃S is σq-regular in the sense of [DVHW14b, Definition 4.1]. In
particular it is a regular extension and since we are in characteristic zero,
[Bou03, Proposition in A.V.143] proves that C̃(z∗) is relatively algebraically
closed in Q̃S . Thus, σq(g)

g ∈ C̃(z∗) and C̃(z∗)〈g〉σq = C̃(z∗)(g). We claim

that any ui satisfies a nonzero linear q-equation with coefficients in C̃(z∗).
If g ∈ Q̃S is algebraic over C̃(z∗) then g ∈ C̃(z∗), because C̃(z∗) is relatively
algebraically closed in Q̃S . In that case, the claim is obvious. Thus, let us
assume that g is transcendental over C̃(z∗). If m = 0 then σq(gnl) = gnl and
thus gn ∈ C̃(z∗). A contradiction with g transcendental over C(z∗). Let us
write the equation Li(y) = 0 as

∑ν
j=0 Li,j(y)gj = 0 where the Li,j(y) are lin-

ear σq-operators with coefficients in C̃(z∗), not all zero. To prove our claim,
it is sufficient to show that g is transcendental over C̃(z∗){u1, . . . , un}σq . It
is also sufficient to prove that gn is transcendental over C̃(z∗){u1, . . . , un}σq .
Assume that there exists a non zero relation

(7.3)
κ∑
k=0

akg
nk = 0,
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where κ > 1 and a0, . . . , aκ−1, aκ = 1 ∈ C̃(z∗)〈u1, . . . , un〉σq and κ is min-
imal. We recall that σq(gn) = gnqmdl/σq(l). Applying σq to (7.3) and
subtracting qmdκ lκ

σq(lκ)
∗ (7.3), we find a smaller liaison of the form

κ−1∑
k=0

(σq(ak/l
k−κ)− qmd(κ−k)ak/l

k−κ)gnk = 0.

Thus, for all k = 0, . . . , κ − 1, we have σq(ak/lk−κ) − qmd(κ−k)ak/l
k−κ = 0.

Let us state and prove a technical lemma.

Lemma 7.4. Let us fix r ∈ N×. Then, the equation σq(y) = qmdry has no
non zero solution in C̃(z∗)〈u1, . . . , un〉σq .

Proof of Lemma 7.4. We have C̃(z∗)〈u1, . . . , un〉σq ⊂ C̃((z∗)), the fraction
field of C̃⊗C C((z∗)). Suppose to the contrary that the equation has a non
zero solution in C̃((z)). Once again, replacing q and q by some suitable
roots, it suffices to prove Lemma 7.4 in the case where the variable z is non
ramified.

By Lemma 4.2, we can find a non zero solution f in C((z)) Let
f =

∑∞
`=ν y`z

` with yν 6= 0 a non zero solution of σq(y) = qmdry. Taking the
zν coefficients of the two sides of σq(y) = qmdry, we find σq(yν)qν = qmdryν .
Since yν ∈ C,

yνq
ν = qmdryν .

With q and q are multiplicatively independent, one should have
ν = mdr = 0. We recall that m 6= 0, so mdr 6= 0. Consequently, we find a
contradiction and this proves that the equation σq(y) = qmdry has no non
zero solution in C̃(z∗)〈u1, . . . , un〉σq . �

Let us finish the proof of Theorem 7.3. In virtue of Lemma 7.4, for all
k ∈ {0, . . . , κ− 1}, the equation σq(y) = qmd(κ−k)y has no non zero solution
in C̃(z∗){u1, . . . , un}σq . Hence, gnκ = 0. This is a contradiction with the

fact that g is transcendental over C̃(z∗) and proves our claim.
Therefore, the ui satisfy a non zero linear σq-equation over C̃(z∗). Since

C is algebraically closed and ui ∈ C((z∗)), a descent argument shows that
the ui satisfy a non zero linear σq-equation over C(z∗).

It follows from Lemma 7.2 that the ui belong to C(z∗). Hence, the first
column of U is fixed by the Galois group G and this contradicts the hypoth-
esis 7.1, second point. Therefore, Galσq(QS/C(z∗)) contains Gder.

�

7.2. σq-transcendental determinant. Let us recall that the σq-Galois
group of σq(y) = det(A)y over C(z∗) is a strict subgroup of the multiplicative
group GL1,C if and only if there exist b ∈ C(z)×, m ∈ Z, and c ∈ C×, such
that det(A) = czm b(qz)

b(z) .
The goal of the subsection is to prove:

Theorem 7.5. Assume that the hypothesis 7.1 holds and the σq-Galois
group of σq(y) = det(A)y over C(z∗) equals GL1,C. Recall that the vector
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Y0 = (u1, u2, . . . , un)t ∈ (C((z∗)))n is a non zero vector solution of (7.1).
Then, at least one of the ui is σq-transcendental over C(z∗).

We start by a technical lemma.

Lemma 7.6. Let L be a σq-field and let L〈a〉σq and L〈b1, . . . , bn〉σq be two
σq-field extensions of L, both contained in a same σq-field extension of L.
Assume that a is σq-transcendental over L and that any bi is σq-algebraic
over L. Then, the field extensions L〈a〉σq and L〈b1, . . . , bn〉σq are linearly
disjoint over L.

Proof of Lemma 7.6. To the contrary, suppose that L〈a〉σq and
L〈b1, . . . , bn〉σq are not linearly disjoint over L. Then a is σq-algebraic over
L〈b1, . . . , bn〉σq . This implies that the σq-transcendence degree of the field
L〈a, b1, . . . , bn〉σq over L〈b1, . . . , bn〉σq is zero. Since the σq-transcendence
degree of L〈b1, . . . , bn〉σq over L is also zero, by hypothesis, we find that
the σq-transcendence degree of L〈a, b1, . . . , bn〉σq over L is zero by classical
properties of the transcendence degree. This implies that a is σq-algebraic
over L and yields a contradiction. �

Proof of Theorem 7.5. We let G denotes the difference Galois group of
σq(Y ) = AY over the field C(z∗), and we let Galσq(QS/C(z∗)) denote its
σq-Galois group over the (σq, σq)-field C(z∗). By assumption, the σq-Galois
group of σq(y) = det(A)y over C(z∗) equals GL1,C.

We claim that at least one of the ui is σq-transcendental over C(z∗). Sup-
pose to the contrary that all of them are σq-algebraic. In virtue of the results
of Section 4.4, the second case of Proposition 6.1 can not hold. Then, there
exist a regular σq-field extension C̃ of C and Ũ ∈ GLn(Q̃S) a fundamental
matrix of solutions, a positive integer d, g ∈ Q̃S

×
, and B ∈ GLn(C̃(z∗)),

such that
σq

d(Ũ) = gBŨ.

But Ũ = UC, for some C ∈ GLn(Q̃S
σq

) = GLn(C̃). Therefore,

(7.4) σq
d(U) = gBUCσq

−d(C).

This shows that the C̃(z)〈g〉σq-vector subspace of Q̃S generated by the en-
tries of U and all their successive σq-transforms is of finite dimension. In
particular, any ui satisfies a nonzero linear σq-equation Li(y) = 0 with co-
efficients in C̃(z)〈g〉σq . We can assume that the coefficients of Li(y) belong

to C̃(z∗){g}σq . We write Li(y) =
∑

α Li,α(y)gα where Li,α(y) is a linear

σq-operator with coefficients in C̃(z∗), and gα is a monomial in the σqi(g)’s.
We recall that the σq-Galois group of σq(y) = det(A)y over C(z∗) equals

GL1,C. In virtue of Proposition 5.3, det(U) is σq-transcendental over C(z∗).

With (7.4), gn = λ
σqd(det(U))

det(U) for some non zero λ ∈ C̃(z∗). Thus, g is

σq-transcendental over C̃(z∗).
By Lemma 7.6, the σq-fields C̃(z∗)〈g〉σq and C̃(z∗)〈u1, . . . , un〉σq are lin-

early disjoint over C̃(z∗). Since ui satisfies a nonzero linear σq-equation
Li(y) = 0 with coefficients in C̃(z)〈g〉σq it follows that there exists some
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non zero Li,α(y) such that Li,α(ui) = 0. Therefore, the element ui satisfies
a non zero linear σq-equation over C̃(z∗). Since C is algebraically closed
and ui ∈ C((z∗)), a descent argument shows that the element ui satisfies a
non zero linear σq-equation over C(z∗). It follows from Lemma 7.2 that the
element ui belongs to C(z∗). Hence, the first column of U is fixed by the
difference Galois group G and this contradicts the hypothesis 7.1. �

8. Applications

8.1. User friendly criteria for σq-transcendence. The goal of this sub-
section is to use the results of Section 7 in order to give transcendence cri-
terias. We refer to Section 7 for the notations used in this section.

Corollary 8.1. Let A ∈ GLn(C(z)) and let G be the difference Galois group
of the q-difference system σq(Y ) = AY over the σq-field C(z). Assume that
one of the following holds

• n ≥ 2 and G◦,der = SLn(C);
• n ≥ 3 and G◦,der = SOn(C);
• n is even and G◦,der = Spn(C).

Assume that Y0 = (u1, u2, . . . , un)t ∈ (C((z∗)))n is a non zero vector solu-
tion of σq(Y ) = AY . Then, at least one of the ui is σq-transcendental over
C(z∗).

Proof. We first make the following simple remark. Given a σq-field ex-
tension K ⊂ L and f ∈ L. If f is σq

s-transcendental over K then
f is σq-transcendental over K. Indeed if f were σq-algebraic over K
then the transcendence degree of K〈f〉σq over K would be finite. Since
K ⊂ K〈f〉σqs ⊂ K〈f〉σq , the transcendence degree of K〈f〉σqs over K would
be finite and f would be σqs-algebraic over K. A contradiction.

Then, it suffices to prove that at least one of the ui is σqs-transcendental
over K for some positive integer s. Since C((z∗))σq = C, Proposition 4.6
proves that there exist some positive integer r, s and a (σq

r, σq
s)-Picard-

Vessiot extension QS for the system σq
r(Y ) = σq

r−1(A) . . . σq(A)AY = ArY
over C(z∗) such that

• QS is a field;
• C(z∗) is relatively algebraically closed in QS ;
• Y0 ∈ QS is a solution vector of σqr(Y ) = ArY ;
• the difference Galois group of σqr(Y ) = ArY over C(z∗) equals the
connected component of G.

Replacing q (resp. q) by qr (resp. by qs), one can apply Theorems 7.3
and 7.5 to conclude that at least one of the ui is σqs-transcendental over
C(z∗) and thereby σq-transcendental by the above remark. �

Similarly, we may prove the following:

Corollary 8.2. Let G be the difference Galois group of the q-difference sys-
tem (3.2) over the σq-field C(z). Assume that one of the following holds

• n ≥ 2 and G◦,der = SLn(C);
• n ≥ 3 and G◦,der = SOn(C);
• n is even and G◦,der = Spn(C).
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Let us assume that (3.1) admits a non zero solution g ∈ C((z∗)). Then, g(z)
is σq-transcendental over C(z∗).

Proof. We apply Corollary 8.1 to the vector (u1, . . . , un) ∈ C(z∗)n with
ui = σq

i−1(g). To conclude, we just note that, since C(z∗) is an inversive
σq-field, the element ui is σq-transcendental over C(z∗) if and only if g is
σq-transcendental over C(z∗). �

8.2. Hypergeometric series. In this section, we follow the notations of
Section 3.2. We assume that 0 < |q| < 1. Let us fix n ≥ 2, let us consider
a = (a1, . . . , an) ∈ (qQ)n, b = (b1, . . . , bn) ∈ (qQ \ q−N)n, b1 = q, λ ∈ C×.

Corollary 8.3. Let us assume that (3.3) is irreducible and not q-Kummer
induced. Then nΦn(a, b, λ, q; z) is σq-transcendental over C(z∗).

Proof. The conclusion is a direct application of Theorem 3.3 and Corol-
lary 8.2. �

We follow the notations of Section 3.3. We assume that 0 < |q| < 1, n > s,
n ≥ 2. Let a = (a1, . . . , an) ∈ (qR)n, b = (b1, . . . , bs) ∈ (qR \ q−N)s, b1 = q,
λ ∈ C×, 0 < |q| < 1 and consider (3.3).

Corollary 8.4. For (i, j) ∈ {1, . . . , n} × {1, . . . , s}, let αi, βj ∈ R such that
ai = qαi and bi = qβj . Assume that for all (i, j) ∈ {1, . . . , n} × {1, . . . , s},
αi−βj /∈ Z, and that the algebraic group generated by Diag(e2iπα1 , . . . , e2iπαn)
is connected. Then, nΦs(a, b, λ, q; z) is σq-transcendental over C(z∗).

Proof. The conclusion is a direct application of Theorem 3.5 and Corol-
lary 8.2. �

Appendix A. Difference algebraic groups

Let (k, σq) be a difference field. We denote by Algk,σq the category of
k-σq-algebras and by Groups the category of groups. We stress out the
fact that we do not require σq to be an automorphism of k, but only an
endomorphism of k.

Definition A.1. A k-σq-Hopf algebra R is a k-Hopf-algebra, endowed with
a structure of k-σq-algebra, whose structural maps are σq-morphisms. A
σq-Hopf ideal of R is a Hopf ideal, which is stable under the action of σq.

We define a σq-algebraic group over k as follows.

Definition A.2. A functor H from the category Algk,σq to the category of
Groups representable by a σq-finitely generated k-σq-Hopf algebra k{H} is
called a σq-algebraic group. A σq-subgroup G of H is a σq-algebraic group
over k such that G(B) ⊂ H(B) for all B ∈ Algk,σq . It corresponds to a
σq-Hopf ideal IH of k{G} such that k{H} = k{G}/IH .

Remark A.3. We adopt the following convention: if G is an algebraic group
over k, we denote by k[G] its associated Hopf algebra.

The theory of σq-algebraic groups and schemes was initiated by Wibmer
(see for instance [Wib21]). Many of the terminology for σq-algebraic schemes
is borrowed from the usual terminology of schemes, by adding a straightfor-
ward compatibility with the difference operator σq. In order to avoid too
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many definitions, we chose to refer often to [DVHW14b]. However, one has
to take care that the σq-geometry is more subtle, even in the affine case,
than the algebraic geometry.

Example A.4. Let k{X}σq be the k-σq-algebra of polynomials in the n× n-
matrix X of σq-indeterminates. Localizing k{X}σq with respect to det(X),
we find the k-σq-Hopf algebra k{X, 1

det(X)}σq ,that corresponds to the σq-
algebraic group attached to the general linear group GLn,k.

The following proposition shows the connection between algebraic groups
over k and σq-algebraic groups.

Proposition A.5 (§A.4 and §A.5 in [DVHW14b]). Let G be an algebraic
group over k represented by the finitely generated k-Hopf algebra k[G]. Let
H be a σq-algebraic group represented by the σq-finitely generated k-σq-Hopf
algebra k{H}. The following holds.

• The group functor
G : Algk,σq → Sets

B 7→ G(B#)
, with B# the under-

lying k-algebra of B, is representable by a σq-finitely generated k-σq-
Hopf algebra. We call G the σq-algebraic group attached to G.

• We denote by H# the functor Algk → Sets
B 7→ HomAlgk(k{H}#, B)

.

Then,
Hom(H#, G) ' Hom(H,G).

• Assume that H is a σq-subgroup of G. The smallest algebraic group
H over k such that H# → G factors through H → G is called the
Zariski closure of H in G.

Example A.6. Any σq-subgroup H of GLn,k is entirely determined by a σq-
Hopf ideal IH ⊂ k{X, 1

det(X)}σq . The Zariski closure ofH in GLn,k is defined
by the Hopf ideal IH ∩ k[X, 1

det(X) ].

Definition A.7. Let G be a σq-algebraic group over k and let k̃ be a
σq-field extension of k. The base extension of G to k̃ is the functor
Alg

k̃,σq
→ Sets

B 7→ G(B)
, where B is viewed as k-σq-algebra. It is represented

by the k̃-σq-Hopf algebra k{G} ⊗k k̃.

This allows us to define the σq-analogue of the notion of irreducibility.

Definition A.8 (Definition 4.2 and Lemma A.13 in [DVHW14b]). Let G be
a σq-algebraic group over k. Let k̃ be an algebraically closed, inversive field
extension of k. We say that G is absolutely σq-integral if k̃{G}, the σq-Hopf
algebra k̃{G} of G

k̃
is a σq-domain, i.e., k̃{G} is an integral domain and σq

is injective on k̃{G}.

Lemma A.9. Let G and H be absolutely σq-integral σq-algebraic groups
over k. Then, the product G×H is absolutely σq-integral.

Proof. Since the product commutes with base extension, we can directly
assume that k is inversive and algebraically closed. Thus k{G} and k{H}
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are σq-domains. This means for instance that k{H} can be embedded in a
σq-field L. Then, k{G} ⊗k k{H} embeds as σq-ring in k{G} ⊗k L. Since k
is inversive and algebraically closed, [DVHW14b, Lemma A.13] shows that
k{G} is σq-regular, i.e., k{G}⊗k k

′ is a σq-domain for all σq-field extension
k′ of k. Thus k{G}⊗L is a σq-domain and the same holds for k{G}⊗k{H} =
k{G×H}. This ends the proof. �

We would like to classify some σq-subgroups of GLn,k. First, we state
a fundamental classification theorem, which is a σq-analogue of a result of
Cassidy.

Theorem A.10 (Theorem A.25 in [DVHW14a]). Let k be an algebraically
closed, inversive σq-field of characteristic zero and let G be a σq-integral, σq-
algebraic subgroup of GLn,k. Assume that the Zariski closure of G in GLn,k

is an absolutely almost simple algebraic group, properly containing G. Then
there exist a σq-field extension k̃ of k and an integer d ≥ 1 such that G

k̃
is

conjugate to a σqd-constant subgroup of GL
n,k̃

, i.e., there exists P ∈ GLn(k̃)

such that
PGP−1(B) ⊂ {g ∈ GL

n,k̃
(B)|σqd(g) = g}

for all B ∈ Alg
k̃,σq

.

We also have to consider the derived group. In analogy with [Wat79,
§10.1], we define the derived group of a σq-algebraic group as follows.

Definition A.11. LetG be a σq-algebraic group defined over k and let k{G}
be its σq-Hopf algebra. For any n ∈ N, we define a natural transformation
φn from G2n to G as follows. For all B ∈ Algk,σq and x1, . . . , xn, y1, . . . , yn ∈
G(B)2n, we set

φn(x1, . . . , xn, y1, . . . , yn) = x1y1x
−1
1 y−11 . . . xnynx

−1
n y−1n .

Let ψn,G : k{G} → ⊗2nk{G} be the corresponding dual map by Yoneda.
Its kernel will be denoted by In,G. We will also use the notations ψn and
In for ψn,G and In,G respectively if no confusion is likely to arise. Let
ID(G) = ∩n∈NIn. Then ID(G) is a σq-Hopf ideal of k{G} and we defined
the derived group D(G) as the σq-algebraic subgroup of G represented by
k{G}/ID(G).

Proof. Let ∆ denote the co-multiplication map of k{G}. Then, it is clear
that ∆(I2n) ⊂ In ⊗ In since multiplying two products of n commutators
yields a product of 2n commutators. This shows that ID(G) is an Hopf ideal.
For all n ∈ N, the map ψn is a σq-morphism so that In is a σq-ideal. This
proves that ID(G) is a σq-ideal. �

Lemma A.12. For any σq-algebraic group G over k and any σq-field ex-
tension k̃ of k, we have D(G

k̃
) = D(G)

k̃

Proof. The definition of ID(G) commutes with base extension. �

Proposition A.13. Let H be an algebraic group over k and let G ⊂ H be
a Zariski dense σq-algebraic subgroup of H. Then, D(G) is a Zariski dense
subgroup of D(H).
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Proof. Let k{H} be the σq-Hopf algebra of the σq-algebraic group H at-
tached to H as in Proposition A.5. Then, k[H] is a sub-Hopf algebra of
k{H}. This means, in the notation above, that ψn : k[H]→ ⊗2nk[H] is the
restriction of ψn,H : k{H} → ⊗2nk{H}. Thus, if ID(H) ⊂ k[H] denotes the
Hopf ideal of D(H) in H, then ID(H) ∩ k[H] = ID(H). Since G is Zariski
dense in H, the σq-algebraic group Gn is Zariski dense in Hn for any positive
integer n. For all n ∈ N×, we denote by IGn the defining ideal of Gn in Hn.
By the above, one has

IGn ∩ k[Hn] = IGn ∩ ⊗nk[H] = {0}.
We denote by πn : k{Hn} → k{Gn} the surjective morphism of σq-Hopf
algebras whose kernel is IGn . Since the applications ψn,G and ψn,H are
constructed using comultiplication and co-inverse, one finds a commutative
diagram of morphisms of σq-Hopf algebras

k{H} π1 //

ψn,H
��

k{G}

ψn,G
��

⊗2nk{H} π2n // ⊗2nk{G}

Let JD(G) be the defining ideal of D(G) in H, i.e., π1−1(ID(G)). To prove
that D(G) is Zariski dense in D(H), we need to show that

JD(G) ∩ k[H] = ID(H) ∩ k[H] = ID(H).

Let x ∈ ID(H). For any n ∈ N×, we have π2n ◦ ψn,H(x) = 0 = ψn,G ◦ π1(x)
so that π1(x) ∈ In,G and x ∈ JD(G). Thus,

ID(H) ∩ k[H] ⊂ JD(G) ∩ k[H].

Conversely, let x ∈ JD(G) ∩ k[H]. Then, ψn,G ◦ π1(x) = 0 = π2n ◦ ψn,H(x)
so that ψn,H(x) ∈ Ker(π2n) = IG2n . Since x ∈ k[H], we conclude that
ψn,H(x) ∈ k[H2n] ∩ IG2n = {0}. Thus, x ∈ In,H for any n so that x ∈
ID(H) ∩ k[H]. This ends the proof. �

Lemma A.14. The derived group of an absolutely σq-integral σq-algebraic
group G over k is absolutely σq-integral.

Proof. Since by Lemma A.12, the formation of the derived group commutes
with base extension. We can assume that k is algebraically closed and inver-
sive. Since the k-σq-Hopf algebra of D(G) is k{G}/ID(G), the group D(G)
is absolutely σq-integral if and only if ID(G) is σq-prime, i.e., prime and such
that σq(a) ∈ ID(G) implies a ∈ ID(G). By Lemma A.9, we find that for all
n ∈ N, the group G2n is absolutely σq-integral. This means that k{G2n}
is a σq-domain for all n ∈ N. Since In is the kernel of the σq-morphism
ψn : k{G} → k{G2n}, the ideal In is σq-prime for all n ∈ N. This implies
that ID(G) is σq-prime. �

Definition A.15. Let (k, σq) be a σq-field and let G ⊂ GLn,k be an alge-
braic group defined over k. Let d ∈ N×. We consider the σq-subgroup Gσq

d

of G defined by Gσqd(B) = {g ∈ G(B)|σqd(g) = g} for any B ∈ Algk,σq .
We say that G has a toric constant centralizer if, for any d ∈ N×, for any
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B ∈ Algk,σq , the following holds: if h ∈ GLn,k(B) centralizes Gσqd(B) then
h = λIn for some λ ∈ B×.

Lemma A.16. Let (k, σq) be a σq-field and let G ⊂ GLn,k be an algebraic
group defined over k. Assume that G has toric constant centralizer. Let H
be a σq-subgroup of GLn,k such that Gσqd is a normal subgroup of H, i.e.
Gσq

d
(B) is a normal subgroup of H(B) for all B ∈ Algk,σq . Then, for all

B ∈ Algk,σq and g ∈ H(B) there exists λg ∈ B× such that σqd(g) = λgg.

Proof of Lemma A.16. If g normalizes Gσqd(B), for some d ∈ N×, then
σq

d(g)g−1 centralizes Gσqd(B). By assumption, we conclude that σqd(g)g−1

is a scalar matrix. �

Lemma A.17. Let (k, σq) be a σq-field. The algebraic groups SLn,k (when
n ≥ 2), SOn,k (when n ≥ 3) and Spn,k (when n is even) have toric constant
centralizer.

Proof. The algebraic groups SLn,k (when n ≥ 2), SOn,k (when n ≥ 3) and
Spn,k (when n is even) are absolutely almost simple algebraic group. Let
d ∈ N× and let B ∈ Algk,σq .

Let us consider SLn,k with n ≥ 2. Let M ∈ GLn,k(B) that centralizes
SL

σqd

n (B). For i 6= j, the matrices Xi,j = In + Ei,j , where Ei,j are ma-
trices with zeros at every entry except 1 at row i and column j, belong to
SL

σqd

n,k (B) for all B ∈ Algk,σq . Consequently, for all i 6= j, B ∈ Algk,σq ,
MXi,j = Xi,jM . This shows that M = λIn for some λ ∈ B×.

Let us consider SOn,k with n ≥ 3. Let M ∈ GLn,k(B) that central-
izes SO

σqd

n (B). For all 1 ≤ i < j ≤ n, B ∈ Algk,σq , MNi,j = Ni,jM ,
where Ni,j is the diagonal matrix with 1 entry, except the diagonal en-
tries i and j that are equal to −1. It follows that M is diagonal. To
conclude that M = λIn for some λ ∈ B×, we consider the commutation

with Pi = Diag

(
Ii,

(
0 1
−1 0

)
, In−i−2

)
, i ≤ n− 2.

Let us consider Spn,k with n even. Let M ∈ GLn,k(B) that centralizes
Sp

σqd

n (B). For all N ∈ SL
σqd

n/2,k(B), Diag(N, (N−1)t) ∈ Sp
σqd

n,k (B). Then, for

all N ∈ SL
σqd

n/2,k(B), we have MDiag(N, (N−1)t) = Diag(N, (N−1)t)M . Let

M =

(
M1,1 M1,2

M2,1 M2,2

)
, Mi,j are n/2 times n/2 matrices. From the commu-

tation relation we obtain M1,1N = NM1,1. Using the fact that SLn/2,k has
toric constant centralizer, we conclude that M1,1 = λIn/2 for some λ ∈ B×.
Similarly, we find that M2,2 = µIn/2 for some µ ∈ B×. Then, MN = NM

with N =

(
In/2 In/2

0 In/2

)
∈ Sp

σqd

n,k (B). We obtain M2,1 = 0. Similarly with

N =

(
In/2 0
In/2 In/2

)
∈ Sp

σqd

n,k (B), we obtain M1,2 = 0. Finally, with the com-

mutation of M with N =

(
0 In/2
−In/2 0

)
∈ Sp

σqd

n,k , we find M = λIn for

some λ ∈ B×. �
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Appendix B. Convergent power series solution of q-difference
equation

Let K = C({z}) be the field of fraction of the ring of convergent power
series C{z}.

Let A ∈ GLn(K). In [Sau04], the author attaches to a q-difference system
σq(Y ) = AY , a Newton polygon N(A). The slopes of the non-vertical half-
lines defining the border of N(A) are called the slopes of the Newton polygon
and ranked in decreasing order as follows S(A) := {µ1 > µ2 · · · > µr} ⊂ Q.
The Newton polygon and the slopes of the q-difference system are in-
variant under formal gauge transforms, i.e., S(A) = S(σq(P )AP−1) and
N(A) = N(σq(P )AP−1) for any P ∈ GLn(K). The slopes induces a fil-
tration of the q-difference module associated to the q-difference system
σq(Y ) = AY . One has the following proposition:

Proposition B.1 ([RSZ13], §3.3). Let A ∈ GLn(K) and let S(A) := {µ1 >
µ2 · · · > µr} be its set of slopes. Assume that S(A) ⊂ Z. Then, there ex-
ist P ∈ GLn(K), A1, . . . Ar some invertible constant matrices and Ui,j some
matrices with coefficients in K such that

σq(P )AP−1 =



z−µ1A1 . . . . . . . . . . . . . . . U1,r

0
. . . . . . . . . . . . . . .

...
...

. . . z−µiAi . . . Ui,j . . .
...

... . . . 0
. . .

... . . .
...

... . . . . . .
. . . z−µjAj . . .

...
... . . . . . . . . . 0

. . .
...

0 . . . . . . . . . . . . 0 z−µrAr


.

Lemma B.2. Let A ∈ GLn(K).We let l to be the least common multiple
of the denominators of the slopes S(A) := {µ1 > µ2 · · · > µr} of A. Then,
there exist an integer r and a complex number c ∈ C∗ such that the sys-
tem σq(Y ) = czr/`AY has a non zero vector solution Y0 ∈ C({z1/`})n. If
S(A) ⊂ Z, we may further assume that Y0 ∈ Kn ∩Mer(C∗). Moreover if A
is fuchsian, i.e., S(A) = {0}, one can choose r to be 0.

Proof. Assume first that S(A) ⊂ Z. We know, by Proposition B.1, one can
find P ∈ GLn(K) and A1, . . . Ar some invertible constant matrices such that
(B.1)

σq(P )AP−1 =



z−µ1A1 . . . . . . . . . . . . . . . U1,r

0
. . . . . . . . . . . . . . .

...
...

. . . z−µiAi . . . Ui,j . . .
...

... . . . 0
. . .

... . . .
...

... . . . . . .
. . . z−µjAj . . .

...
... . . . . . . . . . 0

. . .
...

0 . . . . . . . . . . . . 0 z−µrAr


.

One can also assume, up to multiply P by a constant matrix, that A1 is
upper triangular. We let d ∈ C∗ be the coefficient on the first row and
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column of A1. An easy computation shows that the vector Z0 :=


1
0
...
0


is a solution of the system σq(Z) = zµ1

d σq(P )AP−1Z. Then, the vector
Y0 := P−1Z0 ∈ Kn is a non zero solution of the system σq(Y ) = zµ1

d AY .
Moreover, one can show, using the fact that σq(Y0) = zµ1

d AY0 that the vector
Y0 defines a meromorphic function on C∗. This proves the result with r = µ1
and c = d−1. If S(A) = {0}, then µ1 = 0 and the result follows in this case
too.

Let us treat the general case. We let l to be the least common multiple
of the denominators of the slopes S(A) := {µ1 > µ2 · · · > µr} of A. By
[RSZ13, Theorem 2.2.1], the variable change z 7→ z1/` transforms σqY = AY

into a q1/`-difference equation with integral slopes {`µ1 > `µ2 · · · > `µr}.
Therefore, appying the integer slopes case, we find the existence of r and a
complex number c ∈ C∗ such that the system σq(Y ) = czr/`AY has a non
zero vector solution Y0 ∈ C({z1/`})n. �
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