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Abstract. We present a framework for simultaneously verifying the
functional correctness and the worst-case asymptotic time complexity
of higher-order imperative programs. We build on top of Separation
Logic with Time Credits, embedded in an interactive proof assistant.
We formalize the O notation, which is key to enabling modular specifi-
cations and proofs. We cover the subtleties of the multivariate case, where
the complexity of a program fragment depends on multiple parameters.
We propose a way of integrating complexity bounds into specifications,
present lemmas and tactics that support a natural reasoning style, and
illustrate their use with a collection of examples.

1 Introduction

A program or program component whose functional correctness has been verified
might nevertheless still contain complexity bugs: that is, its performance, in some
scenarios, could be much poorer than expected.

Indeed, many program verification tools only guarantee partial correctness,
that is, do not even guarantee termination, so a verified program could run
forever. Some program verification tools do enforce termination, but usually
do not allow establishing an explicit complexity bound. Tools for automatic
complexity inference can produce complexity bounds, but usually have limited
expressive power.

In practice, many complexity bugs are revealed by testing. Some have also
been detected during ordinary program verification, as shown by Filliâtre and
Letouzey [14], who find a violation of the balancing invariant in a widely-
distributed implementation of binary search trees. Nevertheless, none of these
techniques can guarantee, with a high degree of assurance, the absence of com-
plexity bugs in software.

To illustrate the issue, consider the binary search implementation in Figure 1.
Virtually every modern software verification tool allows proving that this OCaml
code (or analogous code, expressed in another programming language) satisfies
the specification of a binary search and terminates on all valid inputs. This code
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(* Requires t to be a sorted array of integers.

Returns k such that i <= k < j and t.(k) = v

or -1 if there is no such k. *)

let rec bsearch t v i j =

if j <= i then -1 else

let k = i + (j - i) / 2 in

if v = t.(k) then k

else if v < t.(k) then bsearch t v i k

else bsearch t v (i+1) j

Fig. 1. A flawed binary search. This code is provably correct and terminating, yet
exhibits linear (instead of logarithmic) time complexity for some input parameters.

might even pass a lightweight testing process, as some search queries will be
answered very quickly, even if the array is very large. Yet, a more thorough
testing process would reveal a serious issue: a search for a value that is stored
in the second half of the range [i, j) takes linear time. It would be embarrassing
if such faulty code was deployed, as it would aggravate benevolent users and
possibly allow malicious users to mount denial-of-service attacks.

As illustrated above, complexity bugs can affect execution time, but could
also concern space (including heap space, stack space, and disk space) or other
resources, such as the network, energy, and so on. In this paper, for simplicity,
we focus on execution time only. That said, much of our work is independent of
which resource is considered. We expect that our techniques could be adapted
to verify asymptotic bounds on the use of other non-renewable resources, such
as the network.

We work with a simple model of program execution, where certain opera-
tions, such as calling a function or entering a loop body, cost one unit of time,
and every other operation costs nothing. Although this model is very remote
from physical running time, it is independent of the compiler, operating system,
and hardware [18,24] and still allows establishing asymptotic time complexity
bounds, and therefore, detecting complexity bugs—situations where a program
is asymptotically slower than it should be.

In prior work [11], the second and third authors present a method for ver-
ifying that a program satisfies a specification that includes an explicit bound
on the program’s worst-case, amortized time complexity. They use Separation
Logic with Time Credits, a simple extension of Separation Logic [23] where the
assertion $1 represents a permission to perform one step of computation, and is
consumed when exercised. The assertion $n is a separating conjunction of n such
time credits. Separation Logic with Time Credits is implemented in the second
author’s interactive verification framework, CFML [9,10], which is embedded in
the Coq proof assistant.

Using CFML, the second and third authors verify the correctness and time
complexity of an OCaml implementation of the Union-Find data structure [11].
However, their specifications involve concrete cost functions: for instance, the



precondition of the function find indicates that calling find requires and con-
sumes $(2α(n) + 4), where n is the current number of elements in the data
structure, and where α denotes an inverse of Ackermann’s function. We would
prefer the specification to give the asymptotic complexity bound O(α(n)), which
means that, for some function f ∈ O(α(n)), calling find requires and consumes
$f(n). This is the purpose of this paper.

We argue that the use of asymptotic bounds, such as O(α(n)), is necessary
for (verified or unverified) complexity analysis to be applicable at scale. At a
superficial level, it reduces clutter in specifications and proofs: O(mn) is more
compact and readable than 3mn+ 2n log n+ 5n+ 3m+ 2. At a deeper level, it is
crucial for stating modular specifications, which hide the details of a particular
implementation. Exposing the fact that find costs 2α(n) + 4 is undesirable: if
a tiny modification of the Union-Find module changes this cost to 2α(n) + 5,
then all direct and indirect clients of the Union-Find module must be updated,
which is intolerable. Furthermore, sometimes, the constant factors are unknown
anyway. Applying the Master Theorem [12] to a recurrence equation only yields
an order of growth, not a concrete bound. Finally, for most practical purposes, no
critical information is lost when concrete bounds such as 2α(n) + 4 are replaced
with asymptotic bounds such as O(α(n)). Indeed, the number of computation
steps that take place at the source level is related to physical time only up
to a hardware- and compiler-dependent constant factor. The use of asymptotic
complexity in the analysis of algorithms, initially advocated by Hopcroft and by
Tarjan, has been widely successful and is nowadays standard practice.

One must be aware of several limitations of our approach. First, it is not a
worst-case execution time (WCET) analysis: it does not yield bounds on actual
physical execution time. Second, it is not fully automated. We place emphasis
on expressiveness, as opposed to automation. Our vision is that verifying the
functional correctness and time complexity of a program, at the same time,
should not involve much more effort than verifying correctness alone. Third,
we control only the growth of the cost as the parameters grow large. A loop
that counts up from 0 to 260 has complexity O(1), even though it typically
won’t terminate in a lifetime. Although this is admittedly a potential problem,
traditional program verification falls prey to analogous pitfalls: for instance, a
program that attempts to allocate and initialize an array of size (say) 248 can be
proved correct, even though, on contemporary desktop hardware, it will typically
fail by lack of memory. We believe that there is value in our approach in spite
of these limitations.

Reasoning and working with asymptotic complexity bounds is not as simple
as one might hope. As demonstrated by several examples in §2, typical paper
proofs using the O notation rely on informal reasoning principles which can easily
be abused to prove a contradiction. Of course, using a proof assistant steers us
clear of this danger, but implies that our proofs cannot be quite as simple and
perhaps cannot have quite the same structure as their paper counterparts.

A key issue that we run against is the handling of existential quantifiers.
According to what was said earlier, the specification of a sorting algorithm, say



mergesort, should be, roughly: “there exists a cost function f ∈ O(λn.n log n)
such that mergesort is content with $f(n), where n is the length of the input
list.” Therefore, the very first step in a näıve proof of mergesort must be to
exhibit a witness for f , that is, a concrete cost function. An appropriate witness
might be λn.2n log n, or λn.n log n + 3, who knows? This information is not
available up front, at the very beginning of the proof; it becomes available only
during the proof, as we examine the code of mergesort, step by step. It is not
reasonable to expect the human user to guess such a witness. Instead, it seems
desirable to delay the production of the witness and to gradually construct a cost
expression as the proof progresses. In the case of a nonrecursive function, such
as insertionsort, the cost expression, once fully synthesized, yields the desired
witness. In the case of a recursive function, such as mergesort, the cost expression
yields the body of a recurrence equation, whose solution is the desired witness.

We make the following contributions:

1. We formalize O as a binary domination relation between functions of type
A→ Z, where the type A is chosen by the user. Functions of several variables
are covered by instantiating A with a product type. We contend that, in order
to define what it means for a ∈ A to “grow large”, or “tend towards infinity”,
the type A must be equipped with a filter [6], that is, a quantifier Ua.P .
(Eberl [13] does so as well.) We propose a library of lemmas and tactics that
can prove nonnegativeness, monotonicity, and domination assertions (§3).

2. We propose a standard style of writing specifications, in the setting of the
CFML program verification framework, so that they integrate asymptotic
time complexity claims (§4). We define a predicate, specO, which imposes
this style and incorporates a few important technical decisions, such as the
fact that every cost function must be nonnegative and nondecreasing.

3. We propose a methodology, supported by a collection of Coq tactics, to prove
such specifications (§5). Our tactics, which heavily rely on Coq metavari-
ables, help gradually synthesize cost expressions for straight-line code and
conditionals, and help construct the recurrence equations involved in the
analysis of recursive functions, while delaying their resolution.

4. We present several classic examples of complexity analyses (§6), including:
a simple loop in O(n.2n), nested loops in O(n3) and O(nm), binary search
in O(log n), and Union-Find in O(α(n)).

Our code can be found online in the form of two standalone Coq libraries
and a self-contained archive [16].

2 Challenges in Reasoning with the O Notation

When informally reasoning about the complexity of a function, or of a code
block, it is customary to make assertions of the form “this code has asymptotic
complexity O(1)”, “that code has asymptotic complexity O(n)”, and so on. Yet,
these assertions are too informal: they do not have sufficiently precise meaning,
and can be easily abused to produce flawed paper proofs.



Incorrect claim: The OCaml function waste has asymptotic complexity O(1).

let rec waste n =

if n > 0 then waste (n-1)

Flawed proof:
Let us prove by induction on n that waste(n) costs O(1).

– Case n ≤ 0: waste(n) terminates immediately. Therefore, its cost is O(1).

– Case n > 0: A call to waste(n) involves constant-time processing, followed with a
call to waste(n− 1). By the induction hypothesis, the cost of the recursive call is
O(1). We conclude that the cost of waste(n) is O(1) +O(1), that is, O(1).

Fig. 2. A flawed proof that waste(n) costs O(1), when its actual cost is O(n).

Incorrect claim: The OCaml function f has asymptotic complexity O(1).

let g (n, m) =

for i = 1 to n do

for j = 1 to m do () done

done

let f n = g (n, 0)

Flawed proof:

– g(n,m) involves nm inner loop iterations, thus costs O(nm).

– The cost of f(n) is the cost of g(n, 0), plus O(1). As the cost of g(n,m) is O(nm),
we find, by substituting 0 for m, that the cost of g(n, 0) is O(0). Thus, f(n) is O(1).

Fig. 3. A flawed proof that f(n) costs O(1), when its actual cost is O(n).

A striking example appears in Figure 2, which shows how one might “prove”
that a recursive function has complexity O(1), whereas its actual cost is O(n).
The flawed proof exploits the (valid) relation O(1) +O(1) = O(1), which means
that a sequence of two constant-time code fragments is itself a constant-time
code fragment. The flaw lies in the fact that the O notation hides an existential
quantification, which is inadvertently swapped with the universal quantification
over the parameter n. Indeed, the claim is that “there exists a constant c such
that, for every n, waste(n) runs in at most c computation steps”. However,
the proposed proof by induction establishes a much weaker result, to wit: “for
every n, there exists a constant c such that waste(n) runs in at most c steps”.
This result is certainly true, yet does not entail the claim.

An example of a different nature appears in Figure 3. There, the auxiliary
function g takes two integer arguments n and m and involves two nested loops,
over the intervals [1, n] and [1,m]. Its asymptotic complexity is O(n+nm), which,
under the hypothesis that m is large enough, can be simplified to O(nm). The
reasoning, thus far, is correct. The flaw lies in our attempt to substitute 0 for m
in the bound O(nm). Because this bound is valid only for sufficiently large m, it
does not make sense to substitute a specific value for m. In other words, from the
fact that “g(n,m) costs O(nm) when n and m are sufficiently large”, one cannot



Incorrect claim: The OCaml function h has asymptotic complexity O(nm2).

1 let h (m , n ) =
2 for i = 0 to m−1 do

3 let p = ( if i = 0 then pow2 n else n∗i ) in

4 for j = 1 to p do ( ) done

5 done

Flawed proof:

– The body of the outer loop (lines 3-4) has asymptotic cost O(ni). Indeed, as soon
as i > 0 holds, the inner loop performs ni constant-time iterations. The case where
i = 0 does not matter in an asymptotic analysis.

– The cost of h(m,n) is the sum of the costs of the iterations of the outer loop:∑m−1
i=0 O(ni) = O

(
n ·
∑m−1

i=0 i
)

= O(nm2).

Fig. 4. A flawed proof that h(m,n) costs O(nm2), when its actual cost is O(2n +nm2).

deduce anything about the cost of g(n, 0). To repair this proof, one must take
a step back and prove that g(n,m) has asymptotic complexity O(n + nm) for
sufficiently large n and for every m. This fact can be instantiated with m = 0,
allowing one to correctly conclude that g(n, 0) costs O(n). We come back to this
example in §3.3.

One last example of tempting yet invalid reasoning appears in Figure 4. We
borrow it from Howell [19]. This flawed proof exploits the dubious idea that “the
asymptotic cost of a loop is the sum of the asymptotic costs of its iterations”. In
more precise terms, the proof relies on the following implication, where f(m,n, i)
represents the true cost of the i-th loop iteration and g(m,n, i) represents an
asymptotic bound on f(m,n, i):

f(m,n, i) ∈ O(g(m,n, i)) ⇒
∑m−1

i=0 f(m,n, i) ∈ O
(∑m−1

i=0 g(m,n, i)
)

As pointed out by Howell, this implication is in fact invalid. Here, f(m,n, 0) is 2n

and f(m,n, i) when i > 0 is ni, while g(m,n, i) is just ni. The left-hand side of

the above implication holds, but the right-hand side does not, as 2n +
∑m−1

i=1 ni
is O(2n + nm2), not O(nm2). The Summation lemma presented later on in this
paper (Lemma 8) rules out the problem by adding the requirement that f be a
nondecreasing function of the loop index i. We discuss in depth later on (§4.5)
why cost functions should and can be monotonic.

The examples that we have presented show that the informal reasoning style
of paper proofs, where the O notation is used in a loose manner, is unsound.
One cannot hope, in a formal setting, to faithfully mimic this reasoning style. In
this paper, we do assign O specifications to functions, because we believe that
this style is elegant, modular and scalable. However, during the analysis of a
function body, we abandon the O notation. We first synthesize a cost expression
for the function body, then check that this expression is indeed dominated by
the asymptotic bound that appears in the specification.



3 Formalizing the O Notation

3.1 Domination

In many textbooks, the fact that f is bounded above by g asymptotically, up
to constant factor, is written “f = O(g)” or “f ∈ O(g)”. However, the former
notation is quite inappropriate, as it is clear that “f = O(g)” cannot be literally
understood as an equality. Indeed, if it truly were an equality, then, by symmetry
and transitivity, f1 = O(g) and f2 = O(g) would imply f1 = f2. The latter
notation makes much better sense: O(g) is then understood as a set of functions.
This approach has in fact been used in formalizations of the O notation [3].
Yet, in this paper, we prefer to think directly in terms of a domination preorder
between functions. Thus, instead of “f ∈ O(g)”, we write f � g.

Although the O notation is often defined in the literature only in the special
case of functions whose domain is N, Z or R, we must define domination in
the general case of functions whose domain is an arbitrary type A. By later
instantiating A with a product type, such as Zk, we get a definition of domination
that covers the multivariate case. Thus, let us fix a type A, and let f and g inhabit
the function type A→ Z.3

Fixing the type A, it turns out, is not quite enough. In addition, the type A
must be equipped with a filter [6]. To see why that is the case, let us work
towards the definition of domination. As is standard, we wish to build a notion
of “growing large enough” into the definition of domination. That is, instead of
requiring a relation of the form |f(x)| ≤ c |g(x)| to be “everywhere true”, we
require it to be “ultimately true”, that is, “true when x is large enough”.4 Thus,
f � g should mean, roughly:

“up to a constant factor, ultimately, |f | is bounded above by |g|.”

That is, somewhat more formally:

“for some c, for every sufficiently large x, |f(x)| ≤ c |g(x)|”

In mathematical notation, we would like to write: ∃c. Ux. |f(x)| ≤ c |g(x)|.
For such a formula to make sense, we must define the meaning of the formula
Ux.P , where x inhabits the type A. This is the reason why the type A must be
equipped with a filter U, which intuitively should be thought of as a quantifier,
whose meaning is “ultimately”. Let us briefly defer the definition of a filter (§3.2)
and sum up what has been explained so far:

Definition 1 (Domination). Let A be a filtered type, that is, a type A equipped
with a filter UA. The relation �A on A→ Z is defined as follows:

f �A g ≡ ∃c. UA x. |f(x)| ≤ c |g(x)|
3 At this time, we require the codomain of f and g to be Z. Following Avigad and

Donnelly [3], we could allow it to be an arbitrary nondegenerate ordered ring. We
have not yet needed this generalization.

4 When A is N, provided g(x) is never zero, requiring the inequality to be “everywhere
true” is in fact the same as requiring it to be “ultimately true”. Outside of this special
case, however, requiring the inequality to hold everywhere is usually too strong.



3.2 Filters

Whereas ∀x.P means that P holds of every x, and ∃x.P means that P holds
of some x, the formula Ux.P should be taken to mean that P holds of every
sufficiently large x, that is, P ultimately holds.

The formula Ux.P is short for U (λx.P ). If x ranges over some type A, then
U must have type P(P(A)), where P(A) is short for A → Prop. To stress this
better, although Bourbaki [6] states that a filter is “a set of subsets of A”, it is
crucial to note that P(P(A)) is the type of a quantifier in higher-order logic.

Definition 2 (Filter). A filter [6] on a type A is an object U of type P(P(A))
that enjoys the following four properties, where Ux.P is short for U (λx.P ):

(1) (P1 ⇒ P2)⇒ Ux.P1 ⇒ Ux.P2 (covariance)
(2a) Ux.P1 ∧ Ux.P2 ⇒ Ux.(P1 ∧ P2) (stability under binary intersection)
(2b) Ux.True (stability under 0-ary intersection)
(3) Ux.P ⇒ ∃x.P (nonemptiness)

Properties (1)–(3) are intended to ensure that the intuitive reading of Ux.P
as: “for sufficiently large x, P holds” makes sense. Property (1) states that if
P1 implies P2 and if P1 holds when x is large enough, then P2, too, should
hold when x is large enough. Properties (2a) and (2b), together, state that if
each of P1, . . . , Pk independently holds when x is large enough, then P1, . . . , Pk

should simultaneously hold when x is large enough. Properties (1) and (2b)
together imply ∀x.P ⇒ Ux.P . Property (3) states that if P holds when x is large
enough, then P should hold of some x. In classical logic, it would be equivalent
to ¬(Ux.False).

In the following, we let the metavariable A stand for a filtered type, that is, a
pair of a carrier type and a filter on this type. By abuse of notation, we also write
A for the carrier type. (In Coq, this is permitted by an implicit projection.) We
write UA for the filter.

3.3 Examples of Filters

When U is a universal filter, Ux.Q(x) is (by definition) equivalent to ∀x.Q(x).
Thus, a predicate Q is “ultimately true” if and only if it is “everywhere true”.
In other words, the universal quantifier is a filter.

Definition 3 (Universal filter). Let T be a nonempty type. Then λQ.∀x.Q(x)
is a filter on T .

When U is the order filter associated with the ordering ≤, the formula
Ux.Q(x) means that, when x becomes sufficiently large with respect to ≤, the
property Q(x) becomes true.

Definition 4 (Order filter). Let (T,≤) be a nonempty ordered type, such that
every two elements have an upper bound. Then λQ.∃x0.∀x ≥ x0. Q(x) is a filter
on T .



The order filter associated with the ordered type (Z,≤) is the most natural
filter on the type Z. Equipping the type Z with this filter yields a filtered type,
which, by abuse of notation, we also write Z. Thus, the formula UZ x.Q(x) means
that Q(x) becomes true “as x tends towards infinity”.

By instantiating Definition 1 with the filtered type Z, we recover the classic
definition of domination between functions of Z to Z:

f �Z g ⇐⇒ ∃c. ∃n0. ∀n ≥ n0. |f(n)| ≤ c |g(n)|

We now turn to the definition of a filter on a product type A1×A2, where A1

and A2 are filtered types. Such a filter plays a key role in defining domination
between functions of several variables. The following product filter is the most
natural construction, although there are others:

Definition 5 (Product filter). Let A1 and A2 be filtered types. Then

λQ.∃Q1, Q2.

 UA1 x1. Q1

∧ UA2 x2. Q2

∧ ∀x1, x2. Q1(x1) ∧Q2(x2)⇒ Q(x1, x2)

is a filter on the product type A1 ×A2.

To understand this definition, it is useful to consider the special case where
A1 and A2 are both Z. Then, for i ∈ {1, 2}, the formula UAi

xi. Qi means
that the predicate Qi contains an infinite interval of the form [ai,∞). Thus,
the formula ∀x1, x2. Q1(x1) ∧ Q2(x2) ⇒ Q(x1, x2) requires the predicate Q to
contain the infinite rectangle [a1,∞) × [a2,∞). Thus, a predicate Q on Z2 is
“ultimately true” w.r.t. to the product filter if and only if it is “true on some
infinite rectangle”. In Bourbaki’s terminology [6, Chapter 1, §6.7], the infinite
rectangles form a basis of the product filter.

We view the product filter as the default filter on the product type A1×A2.
Whenever we refer to A1×A2 in a setting where a filtered type is expected, the
product filter is intended.

We stress that there are several filters on Z, including the universal filter
and the order filter, and therefore several filters on Zk. Therefore, it does not
make sense to use the O notation without specifying which filter one considers.
Consider again the function g(n,m) in Figure 3 (§2). One can prove that g(n,m)
has complexity O(nm+n) with respect to the standard filter on Z2. With respect
to this filter, this complexity bound is equivalent to O(mn), as the functions
λ(m,n).mn + n and λ(m,n).mn dominate each other. Unfortunately, this does
not allow deducing anything about the complexity of g(n, 0), since the bound
O(mn) holds only when n and m grow large. An alternate approach is to prove
that g(n,m) has complexity O(nm+n) with respect to a stronger filter, namely
the product of the standard filter on Z and the universal filter on Z. With respect
to that filter, the functions λ(m,n).mn+ n and λ(m,n).mn are not equivalent.
This bound does allow instantiating m with 0 and deducing that g(n, 0) has
complexity O(n).



3.4 Properties of Domination

Many properties of the domination relation can be established with respect to an
arbitrary filtered type A. Here are two example lemmas; there are many more.
As before, f and g range over A → Z. The operators f + g, max(f, g) and f.g
denote pointwise sum, maximum, and product, respectively.

Lemma 6 (Sum and Max Are Alike). Assume f and g are ultimately non-
negative, that is, UA x. f(x) ≥ 0 and UA x. g(x) ≥ 0 hold. Then, we have
max(f, g) �A f + g and f + g �A max(f, g).

Lemma 7 (Multiplication). f1 �A g1 and f2 �A g2 imply f1.f2 �A g1.g2.

Lemma 7 corresponds to Howell’s Property 5 [19]. Whereas Howell states this
property on Nk, our lemma is polymorphic in the type A. As noted by Howell,
this lemma is useful when the cost of a loop body is independent of the loop
index. In the case where the cost of the i-th iteration may depend on the loop
index i, the following, more complex lemma is typically used instead:

Lemma 8 (Summation). Let f, g range over A → Z → Z. Let i0 ∈ Z.
Assume the following three properties:

1. UA a. ∀i ≥ i0. f(a)(i) ≥ 0.
2. UA a. ∀i ≥ i0. g(a)(i) ≥ 0.
3. for every a, the function λi.f(a)(i) is nondecreasing on the interval [i0,∞).

Then,
λ(a, i).f(a)(i) �A×Z λ(a, i).g(a)(i)

implies
λ(a, n).

∑n
i=i0

f(a)(i) �A×Z λ(a, n).
∑n

i=i0
g(a)(i).

Lemma 8 uses the product filter on A × Z in its hypothesis and conclusion.
It corresponds to Howell’s property 2 [19]. The variable i represents the loop
index, while the variable a collectively represents all other variables in scope, so
the type A is usually instantiated with a tuple type (an example appears in §6).

An important property is the fact that function composition is compatible,
in a certain sense, with domination. This allows transforming the parameters
under which an asymptotic analysis is carried out (examples appear in §6). Due
to space limitations, we refer the reader to the Coq library for details [16].

3.5 Tactics

Our formalization of filters and domination forms a stand-alone Coq library [16].
In addition to many lemmas about these notions, the library proposes automated
tactics that can prove nonnegativeness, monotonicity, and domination goals.
These tactics currently support functions built out of variables, constants, sums
and maxima, products, powers, logarithms. Extending their coverage is ongoing
work. This library is not tied to our application to the complexity analysis of
programs. It could have other applications in mathematics.



4 Specifications with Asymptotic Complexity Claims

In this section, we first present our existing approach to verified time complexity
analysis. This approach, proposed by the second and third authors [11], does not
use the O notation: instead, it involves explicit cost functions. We then discuss
how to extend this approach with support for asymptotic complexity claims. We
find that, even once domination (§3) is well-understood, there remain nontrivial
questions as to the style in which program specifications should be written. We
propose one style which works well on small examples and which we believe
should scale well to larger ones.

4.1 CFML With Time Credits For Cost Analysis

CFML [9,10] is a system that supports the interactive verification of OCaml
programs, using higher-order Separation Logic, inside Coq. It is composed of a
trusted standalone tool and a Coq library. The CFML tool transforms a piece
of OCaml code into a characteristic formula, a Coq formula that describes the
semantics of the code. The characteristic formula is then exploited, inside Coq,
to state that the code satisfies a certain specification (a Separation Logic triple)
and to interactively prove this statement. The CFML library provides a set of
Coq tactics that implement the reasoning rules of Separation Logic.

In prior work [11], the second and third authors extend CFML with time
credits [2,22] and use it to simultaneously verify the functional correctness and
the (amortized) time complexity of OCaml code. To illustrate the style in which
they write specifications, consider a function that computes the length of a list:

let rec length l =

match l with

| [] -> 0

| _ :: l -> 1 + length l

About this function, one can prove the following statement:

∀(A : Type)(l : listA). { $(|l|+ 1) } (length l) {λy. [ y = |l| ]}

This is a Separation Logic triple {H} (t) {Q}. The postcondition λy. [ y = |l| ]
asserts that the call length l returns the length of the list l.5 The precondition
$(|l|+ 1) asserts that this call requires |l|+ 1 credits. This triple is proved in a
variant of Separation Logic where every function call and every loop iteration
consumes one credit. Thus, the above specification guarantees that the execution
of length l involves no more than |l| + 1 function calls or loop iterations. Our
previous paper [11, Def. 2] gives a precise definition of the meaning of triples.

As argued in prior work [11, §2.7], bounding the number of function calls
and loop iterations is equivalent, up to a constant factor, to bounding the num-
ber of reduction steps of the program. Assuming that the OCaml compiler is

5 The square brackets denote a pure Separation Logic assertion. |l| denotes the length
of the Coq list l. CFML transparently reflects OCaml integers as Coq relative integers
and OCaml lists as Coq lists.



complexity-preserving, this is equivalent, up to a constant factor, to bounding
the number of instructions executed by the compiled code. Finally, assuming
that the machine executes one instruction in bounded time, this is equivalent,
up to a constant factor, to bounding the execution time of the compiled code.
Thus, the above specification guarantees that length runs in linear time.

Instead of understanding Separation Logic with Time Credits as a variant
of Separation Logic, one can equivalently view it as standard Separation Logic,
applied to an instrumented program, where a pay() instruction has been in-
serted at the beginning of every function body and loop body. The proof of the
program is carried out under the axiom {$1} (pay()) {λ .>}, which imposes the
consumption of one time credit at every pay() instruction. This instruction has
no runtime effect: it is just a way of marking where credits must be consumed.

For example, the OCaml function length is instrumented as follows:

let rec length l =

pay();

match l with [] -> 0 | _ :: l -> 1 + length l

Executing “length l” involves executing pay() exactly |l| + 1 times. For this
reason, a valid specification of this instrumented code in ordinary Separation
Logic must require at least |l|+ 1 credits in its precondition.

4.2 A Modularity Challenge

The above specification of length guarantees that length runs in linear time,
but does not allow predicting how much real time is consumed by a call to
length. Thus, this specification is already rather abstract. Yet, it is still too
precise. Indeed, we believe that it would not be wise for a list library to publish
a specification of length whose precondition requires exactly |l| + 1 credits.
Indeed, there are implementations of length that do not meet this specification.
For example, the tail-recursive implementation found in the OCaml standard
library, which in practice is more efficient than the näıve implementation shown
above, involves exactly |l|+ 2 function calls, therefore requires |l|+ 2 credits. By
advertising a specification where |l| + 1 credits suffice, one makes too strong a
guarantee, and rules out the more efficient implementation.

After initially publishing a specification that requires $(|l|+ 1), one could of
course still switch to the more efficient implementation and update the published
specification so as to require $(|l|+ 2) instead of $(|l|+ 1). However, that would
in turn require updating the specification and proof of every (direct and indirect)
client of the list library, which is intolerable.

To leave some slack, one should publish a more abstract specification. For
example, one could advertise that the cost of length l is an affine function of
the length of the list l, that is, the cost is a · |l|+ b, for some constants a and b:

∃(a, b : Z). ∀(A : Type)(l : listA). {$(a · |l|+ b)} (length l) {λy. [ y = |l| ]}

This is a better specification, in the sense that it is more modular. The näıve
implementation of length shown earlier and the efficient implementation in



OCaml’s standard library both satisfy this specification, so one is free to choose
one or the other, without any impact on the clients of the list library. In fact,
any reasonable implementation of length should have linear time complexity
and therefore should satisfy this specification.

That said, the style in which the above specification is written is arguably
slightly too low-level. Instead of directly expressing the idea that the cost of
length l is O(|l|), we have written this cost under the form a · |l| + b. It is
preferable to state at a more abstract level that cost is dominated by λn.n: such
a style is more readable and scales to situations where multiple parameters and
nonstandard filters are involved. Thus, we propose the following statement:

∃cost : Z→ Z.
{

cost �Z λn. n
∀(A : Type)(l : listA). {$cost(|l|)} (length l) {λy. [ y = |l| ]}

Thereafter, we refer to the function cost as the concrete cost of length, as
opposed to the asymptotic bound, represented here by the function λn. n. This
specification asserts that there exists a concrete cost function cost , which is
dominated by λn. n, such that cost(|l|) credits suffice to justify the execution
of length l. Thus, cost(|l|) is an upper bound on the actual number of pay()
instructions that are executed at runtime.

The above specification informally means that length l has time complexity
O(n) where the parameter n represents |l|, that is, the length of the list l. The
fact that n represents |l| is expressed by applying cost to |l| in the precondition.
The fact that this analysis is valid when n grows large enough is expressed by
using the standard filter on Z in the assertion cost �Z λn. n.

In general, it is up to the user to choose what the parameters of the cost
analysis should be, what these parameters represent, and which filter on these
parameters should be used. The example of the Bellman-Ford algorithm (§6)
illustrates this.

4.3 A Record For Specifications

The specifications presented in the previous section share a common structure.
We define a record type that captures this common structure, so as to make
specifications more concise and more recognizable, and so as to help users adhere
to this specification pattern.

Record specO (A : filterType) (le : A → A → Prop)
(bound : A → Z) (P : (A → Z) → Prop)

:= { cost : A → Z;
cost_spec : P cost;
cost_dominated : dominated A cost bound;
cost_nonneg : ∀x, 0 ≤ cost x;
cost_monotonic : monotonic le Z.le cost; }.

Fig. 5. Definition of specO.



This type, specO, is defined in Figure 5. The first three fields in this record
type correspond to what has been explained so far. The first field asserts the
existence of a function cost of A to Z, where A is a user-specified filtered type.
The second field asserts that a certain property P cost is satisfied; it is typically a
Separation Logic triple whose precondition refers to cost. The third field asserts
that cost is dominated by the user-specified function bound. The need for the
last two fields is explained further on (§4.4, §4.5).

Using this definition, our proposed specification of length (§4.2) is stated in
concrete Coq syntax as follows:

Theorem length_spec:
specO Z_filterType Z.le (fun n ⇒ n) (fun cost ⇒
∀A (l:list A), triple (length l)
PRE ($ (cost |l|))
POST (fun y ⇒ [ y = |l| ]))

The key elements of this specification are Z_filterType, which is Z, equipped
with its standard filter; the asymptotic bound fun n ⇒ n, which means that
the time complexity of length is O(n); and the Separation Logic triple, which
describes the behavior of length, and refers to the concrete cost function cost.

One key technical point is that specO is a strong existential, whose witness
can be referred to via to the first projection, cost. For instance, the concrete
cost function associated with length can be referred to as cost length_spec.
Thus, at a call site of the form length xs, the number of required credits is
cost length_spec |xs|.

In the next subsections, we explain why, in the definition of specO, we require
the concrete cost function to be nonnegative and monotonic. These are design
decisions; although these properties may not be strictly necessary, we find that
enforcing them greatly simplifies things in practice.

4.4 Why Cost Functions Must Be Nonnegative

There are several common occasions where one is faced with the obligation of
proving that a cost expression is nonnegative. These proof obligations arise from
several sources.

One source is the Separation Logic axiom for splitting credits, whose state-
ment is $(m+ n) = $m ? $n, subject to the side conditions m ≥ 0 and n ≥ 0.
Without these side conditions, out of $0, one would be able to create $1 ? $(−1).
Because our logic is affine, one could then discard $(−1), keeping just $1. In
short, an unrestricted splitting axiom would allow creating credits out of thin
air.6 Another source of proof obligations is the Summation lemma (Lemma 8),
which requires the functions at hand to be (ultimately) nonnegative.

6 Another approach would be to define $n only for n ∈ N, in which case an unrestricted
axiom would be sound. However, as we use Z everywhere, that would be inconvenient.
A more promising idea is to view $n as linear (as opposed to affine) when n is
negative. Then, $(−1) cannot be discarded, so unrestricted splitting is sound.



Now, suppose one is faced with the obligation of proving that the expression
cost length_spec |xs| is nonnegative. Because length_spec is an existential
package (a specO record), this is impossible, unless this information has been
recorded up front within the record. This is the reason why the field cost_nonneg

in Figure 5 is needed.
For simplicity, we require cost functions to be nonnegative everywhere, as

opposed to within a certain domain. This requirement is stronger than neces-
sary, but simplifies things, and can easily be met in practice by wrapping cost
functions within “max(0,−)”. Our Coq tactics automatically insert “max(0,−)”
wrappers where necessary, making this issue mostly transparent to the user. In
the following, for brevity, we write c+ for max(0, c), where c ∈ Z.

4.5 Why Cost Functions Must Be Monotonic

One key reason why cost functions should be monotonic has to do with the
“avoidance problem”. When the cost of a code fragment depends on a local
variable x, can this cost be reformulated (and possibly approximated) in such
a way that the dependency is removed? Indeed, a cost expression that makes
sense outside the scope of x is ultimately required.

The problematic cost expression is typically of the form E[|x|], where |x|
represents some notion of the “size” of the data structure denoted by x, and E is
an arithmetic context, that is, an arithmetic expression with a hole. Furthermore,
an upper bound on |x| is typically available. This upper bound can be exploited
if the context E is monotonic, i.e., if x ≤ y implies E[x] ≤ E[y]. Because the
hole in E can appear as an actual argument to an abstract cost function, we
must record the fact that this cost function is monotonic.

To illustrate the problem, consider the following OCaml function, which
counts the positive elements in a list of integers. It does so, in linear time,
by first building a sublist of the positive elements, then computing the length of
this sublist.

let count_pos l =

let l’ = List.filter (fun x -> x > 0) l in

List.length l’

How would one go about proving that this code actually has linear time
complexity? On paper, one would informally argue that the cost of the sequence
pay(); filter; length is O(1) + O(|l|) + O(|l′|), then exploit the inequality
|l′| ≤ |l|, which follows from the semantics of filter, and deduce that the cost
is O(|l|).

In a formal setting, though, the problem is not so simple. Assume that we
have two specification lemmas length_spec and filter_spec for List.length
and List.filter, which describe the behavior of these OCaml functions and
guarantee that they have linear-time complexity. For brevity, let us write just
g and f for the functions cost length_spec and cost filter_spec. Also, at
the mathematical level, let us write l↓ for the sublist of the positive elements
of the list l. It is easy enough to check that the cost of the expression “pay();



let l’ = ... in List.length l’” is 1 + f(|l|) + g(|l′|). The problem, now, is
to find an upper bound for this cost that does not depend on l′, a local variable,
and to verify that this upper bound, expressed as a function of |l|, is dominated
by λn. n. Indeed, this is required in order to establish a specO statement about
count_pos.

What might this upper bound be? That is, which functions cost of Z to Z
are such that (A) 1+f(|l|)+g(|l′|) ≤ cost(|l|) can be proved (in the scope of the
local variable l′) and (B) cost �Z λn. n holds? Three potential answers come to
mind:

1. Within the scope of l′, the equality l′ = l↓ is available, as it follows from
the postcondition of filter. Thus, within this scope, 1 + f(|l|) + g(|l′|) is
provably equal to let l′ = l↓ in 1 + f(|l|) + g(|l′|), that is, 1 + f(|l|) + g(|l↓|).
This remark may seem promising, as this cost expression does not depend
on l′. Unfortunately, this approach falls short, because this cost expression
cannot be expressed as the application of a closed function cost to |l|. Indeed,
the length of the filtered list, |l↓|, is not a function of the length of l. In short,
substituting local variables away in a cost expression does not always lead
to a usable cost function.

2. Within the scope of l′, the inequality |l′| ≤ |l| is available, as it follows from
l′ = l↓. Thus, inequality (A) can be proved, provided we take:

cost = λn. max
0≤n′≤n

1 + f(n) + g(n′)

Furthermore, for this definition of cost , the domination assertion (B) holds
as well. The proof relies on the fact the functions g and ĝ, where ĝ is
λn. max0≤n′≤n g(n′) [19], dominate each other. Although this approach
seems viable, and does not require the function g to be monotonic, it is a bit
more complicated than we would like.

3. Let us now assume that the function g is monotonic, that is, nondecreasing.
As before, within the scope of l′, the inequality |l′| ≤ |l| is available. Thus, the
cost expression 1 + f(|l|) + g(|l′|) is bounded by 1 + f(|l|) + g(|l|). Therefore,
inequalities (A) and (B) are satisfied, provided we take:

cost = λn. 1 + f(n) + g(n)

We believe that approach 3 is the simplest and most intuitive, because it
allows us to easily eliminate l′, without giving rise to a complicated cost function,
and without the need for a running maximum.

However, this approach requires that the cost function g, which is short for
cost length_spec, be monotonic. This explains why we build a monotonicity
condition in the definition of specO (Figure 5, last line). Another motivation for
doing so is the fact that some lemmas (such as Lemma 8, which allows reasoning
about the asymptotic cost of an inner loop) also have monotonicity hypotheses.

The reader may be worried that, in practice, there might exist concrete cost
functions that are not monotonic. This may be the case, in particular, of a cost



function f that is obtained as the solution of a recurrence equation. Fortunately,
in the common case of functions of Z to Z, the “running maximum” function f̂
can always be used in place of f : indeed, it is monotonic and has the same
asymptotic behavior as f . Thus, we see that both approaches 2 and 3 above
involve running maxima in some places, but their use seems less frequent with
approach 3.

5 Interactive Proofs of Asymptotic Complexity Claims

To prove a specification lemma, such as length_spec (§4.3) or loop_spec (§4.4),
one must construct a specO record. By definition of specO (Figure 5), this means
that one must exhibit a concrete cost function cost and prove a number of prop-
erties of this function, including the fact that, when supplied with $(cost . . .),
the code runs correctly (cost_spec) and the fact that cost is dominated by the
desired asymptotic bound (cost_dominated).

Thus, the very first step in a näıve proof attempt would be to guess an
appropriate cost function for the code at hand. However, such an approach would
be painful, error-prone, and brittle. It seems much preferable, if possible, to enlist
the machine’s help in synthesizing a cost function at the same time as we step
through the code—which we have to do anyway, as we must build a Separation
Logic proof of the correctness of this code.

To illustrate the problem, consider the recursive function p, whose integer
argument n is expected to satisfy n ≥ 0. For the sake of this example, p calls an
auxiliary function g, which we assume runs in constant time.

let rec p n =

if n <= 1 then () else begin g(); p(n-1) end

Suppose we wish to establish that p runs in linear time. As argued at the
beginning of the paper (§2, Figure 2), it does not make sense to attempt a proof
by induction on n that “p n runs in time O(n)”. Instead, in a formal framework,
we must exhibit a concrete cost function cost such that cost(n) credits justify
the call p n and cost grows linearly, that is, cost �Z λn. n.

Let us assume that a specification lemma g_spec for the function g has
been established already, so the number of credits required by a call to g is
cost g_spec (). In the following, we write G as a shorthand for this constant.

Because this example is very simple, it is reasonably easy to manually come
up with an appropriate cost function for p. One valid guess is λn. 1+Σn

i=2(1+G).
Another valid guess, obtained via a simplification step, is λn. 1+(1+G)(n−1)+.
Another witness, obtained via an approximation step, is λn. 1 + (1 + G)n+.
As the reader can see, there is in fact a spectrum of valid witnesses, ranging
from verbose, low-level to compact, high-level mathematical expressions. Also,
it should be evident that, as the code grows larger, it can become very difficult
to guess a valid concrete cost function.

This gives rise to two questions. Among the valid cost functions, which one
is preferable? Which ones can be systematically constructed, without guessing?



Among the valid cost functions, there is a tradeoff. At one extreme, a low-level
cost function has exactly the same syntactic structure as the code, so it is easy to
prove that it is an upper bound for the actual cost of the code, but a lot of work
may be involved in proving that it is dominated by the desired asymptotic bound.
At the other extreme, a high-level cost function can be essentially identical to the
desired asymptotic bound, up to explicit multiplicative and additive constants,
so the desired domination assertion is trivial, but a lot of accounting work may
be involved in proving that this function represents enough credits to execute
the code. Thus, by choosing a cost function, we shift some of the burden of the
proof from one subgoal to another. From this point of view, no cost function
seems inherently preferable to another.

From the point of view of systematic construction, however, the answer is
more clear-cut. It seems fairly clear that it is possible to systematically build a
cost function whose syntactic structure is the same as the syntactic structure of
the code. This idea goes at least as far back as Wegbreit’s work [26]. Coming up
with a compact, high-level expression of the cost, on the other hand, seems to
require human insight.

To provide as much machine assistance as possible, our system mechanically
synthesizes a low-level cost expression for a piece of OCaml code. This is done
transparently, at the same time as the user constructs a proof of the code in
Separation Logic. Furthermore, we take advantage of the fact that we are using
an interactive proof assistant: we allow the user to guide the synthesis process.
For instance, the user controls how a local variable should be eliminated, how the
cost of a conditional construct should be approximated (i.e., by a conditional or
by a maximum), and how recurrence equations should be solved. In the following,
we present this semi-interactive synthesis process. We first consider straight-line
(nonrecursive) code (§5.1), then recursive functions (§5.2).

5.1 Synthesizing Cost Expressions For Straight-Line Code

The CFML library provides the user with interactive tactics that implement the
reasoning rules of Separation Logic. We set things up in such a way that, as
these rules are applied, a cost expression is automatically synthesized.

To this end, we use specialized variants of the reasoning rules, whose premises
and conclusions take the form {$n ? H} (e) {Q}. Furthermore, to simplify the
nonnegativeness side conditions that must be proved while reasoning, we make all
cost expressions obviously nonnegative by wrapping them in max(0,−). Recall
that c+ stands for max(0, c), where c ∈ Z. Our reasoning rules work with triples
of the form {$ c+ ? H} (e) {Q}. They are shown in Figure 6.

Because we wish to synthesize a cost expression, our Coq tactics maintain
the following invariant: whenever the goal is {$ c+ ? H} (e) {Q}, the cost c is
uninstantiated, that is, it is represented in Coq by a metavariable, a placeholder.
This metavariable is instantiated when the goal is proved by applying one of
the reasoning rules. Such an application produces new subgoals, whose precon-
ditions contain new metavariables. As this process is repeated, a cost expression
is incrementally constructed.



WeakenCost
{$ c+2 ? H} (e) {Q} c+2 ≤ c1

{$ c1 ? H} (e) {Q}

Seq

{$ c+1 ? H} (e1) {Q′} {$ c+2 ? Q
′()} (e2) {Q}

{$ (c+1 + c+2 )+ ? H} (e1; e2) {Q}

Let
{$ c+1 ? H} (e1) {Q′} ∀x. {$ c+2 ? Q

′(x)} (e2) {Q}
{$ (c+1 + c+2 )+ ? H} (let x = e1 in e2) {Q}

Val
H 
 Q(v)

{$ 0+ ? H} (v) {Q}

If
b = true⇒ {$ c+1 ? H} (e1) {Q}
b = false⇒ {$ c+2 ? H} (e2) {Q}

{$ (if b then c1 else c2)+ ? H} (if b then e1 else e2) {Q}

Pay
H 
 Q()

{$ 1+ ? H} (pay()) {Q}

For
∀i. a ≤ i < b ⇒ {$ c(i)+ ? I(i)} (e) {I(i+ 1)} H 
 I(a) ? Q

{$ (Σa≤i<b c(i)
+)+ ? H} (for i = a to b− 1 do e done) {I(b) ? Q}

Fig. 6. The reasoning rules of Separation Logic, specialized for cost synthesis.

The rule WeakenCost is a special case of the consequence rule of Separation
Logic. It is typically used once at the root of the proof: even though the initial
goal {$ c1 ? H} (e) {Q} may not satisfy our invariant, because it lacks a −+

wrapper and because c1 is not necessarily a metavariable, WeakenCost gives
rise to a subgoal {$ c+2 ? H} (e) {Q} that satisfies it. Indeed, when this rule is
applied, a fresh metavariable c2 is generated. WeakenCost can also be explicitly
applied by the user when desired. It is typically used just before leaving the scope
of a local variable x to approximate a cost expression c+2 that depends on x with
an expression c1 that does not refer to x.

The Seq rule is a special case of the Let rule. It states that the cost of a
sequence is the sum of the costs of its subexpressions. When this rule is applied
to a goal of the form {$ c+ ? H} (e) {Q}, where c is a metavariable, two new
metavariables c1 and c2 are introduced, and c is instantiated with c+1 + c+2 .

The Let rule is similar to Seq, but involves an additional subtlety: the cost c2
must not refer to the local variable x. Naturally, Coq enforces this condition: any
attempt to instantiate the metavariable c2 with an expression where x occurs
fails. In such a situation, it is up to the user to use WeakenCost so as to avoid
this dependency. The example of count_pos (§4.5) illustrates this issue.

The Val rule handles values, which in our model have zero cost. The symbol 

denotes entailment between Separation Logic assertions.

The If rule states that the cost of an OCaml conditional expression is a
mathematical conditional expression. Although this may seem obvious, one sub-
tlety lurks here. Using WeakenCost, the cost expression if b then c1 else c2 can
be approximated by max(c1, c2). Such an approximation can be beneficial, as
it leads to a simpler cost expression, or harmful, as it causes a loss of informa-
tion. In particular, when carried out in the body of a recursive function, it can



lead to an unsatisfiable recurrence equation. We let the user decide whether this
approximation should be performed.

The Pay rule handles the pay() instruction, which is inserted by the CFML
tool at the beginning of every function and loop body (§4.1). This instruction
costs one credit.

The For rule states that the cost of a for loop is the sum, over all values of
the index i, of the cost of the i-th iteration of the body. In practice, it is typically
used in conjunction with WeakenCost, which allows the user to simplify and
approximate the iterated sum Σa≤i<b c(i)

+. In particular, if the synthesized
cost c(i) happens to not depend on i, or can be approximated so as to not
depend on i, then this iterated sum can be expressed under the form c(b− a)+.
A variant of the For rule, not shown, covers this common case. There is in
principle no need for a primitive treatment of loops, as loops can be encoded in
terms of higher-order recursive functions, and our program logic can express the
specifications of these combinators. Nevertheless, in practice, primitive support
for loops is convenient.

This concludes our exposition of the reasoning rules of Figure 6. Coming back
to the example of the OCaml function p (§5), under the assumption that the cost
of the recursive call p(n-1) is f(n− 1), we are able, by repeated application of
the reasoning rules, to automatically find that the cost of the OCaml expression:

if n <= 1 then () else begin g(); p(n-1) end

is: 1 + if n ≤ 1 then 0 else (G+ f(n− 1)). The initial 1 accounts for the implicit
pay(). This may seem obvious, and it is. The point is that this cost expression
is automatically constructed: its synthesis adds no overhead to an interactive
proof of functional correctness of the function p.

5.2 Synthesizing and Solving Recurrence Equations

There now remains to explain how to deal with recursive functions. Suppose
S(f) is the Separation Logic triple that we wish to establish, where f stands for
an as-yet-unknown cost function. Following common informal practice, we would
like to do this in two steps. First, from the code, derive a “recurrence equation”
E(f), which in fact is usually not an equation, but a constraint (or a conjunction
of constraints) bearing on f . Second, prove that this recurrence equation admits
a solution that is dominated by the desired asymptotic cost function g. This
approach can be formally viewed as an application of the following tautology:

∀E. (∀f.E(f)→ S(f)) → (∃f.E(f) ∧ f � g) → (∃f.S(f) ∧ f � g)

The conclusion S(f)∧ f � g states that the code is correct and has asymptotic
cost g. In Coq, applying this tautology gives rise to a new metavariable E, as
the recurrence equation is initially unknown, and two subgoals.

During the proof of the first subgoal, ∀f.E(f) → S(f), the cost function f
is abstract (universally quantified), but we are allowed to assume E(f), where
E is initially a metavariable. So, should the need arise to prove that f satisfies a



certain property, this can be done just by instantiating E. In the example of the
OCaml function p (§5), we prove S(f) by induction over n, under the hypothesis
n ≥ 0. Thus, we assume that the cost of the recursive call p(n-1) is f(n−1), and
must prove that the cost of p n is f(n). We synthesize the cost of p n as explained
earlier (§5.1) and find that this cost is 1 + if n ≤ 1 then 0 else (G + f(n − 1)).
We apply WeakenCost and find that our proof is complete, provided we are
able to prove the following inequation:

1 + if n ≤ 1 then 0 else (G+ f(n− 1)) ≤ f(n)

We achieve that simply by instantiating E as follows:

E := λf. ∀n. n ≥ 0 → 1 + if n ≤ 1 then 0 else (G+ f(n− 1)) ≤ f(n)

This is our “recurrence equation”—in fact, a universally quantified, conditional
inequation. We are done with the first subgoal.

We then turn to the second subgoal, ∃f.E(f)∧f � g. The metavariable E is
now instantiated. The goal is to solve the recurrence and analyze the asymptotic
growth of the chosen solution. There are at least three approaches to solving
such a recurrence.

First, one can guess a closed form that satisfies the recurrence. For example,
the function f := λn. 1 + (1 +G)n+ satisfies E(f) above. But, as argued earlier,
guessing is in general difficult and tedious.

Second, one can invoke Cormen et al.’s Master Theorem [12] or the more
general Akra–Bazzi theorem [21,1]. Unfortunately, at present, these theorems
are not available in Coq, although an Isabelle/HOL formalization exists [13].

The last approach is Cormen et al.’s substitution method [12, §4]. The idea
is to guess a parameterized shape for the solution; substitute this shape into the
goal; gather a set of constraints that the parameters must satisfy for the goal
to hold; finally, show that these constraints are indeed satisfiable. In the above
example, as we expect the code to have linear time complexity, we propose that
the solution f should have the shape λn.(an++b), where a and b are parameters,
about which we wish to gradually accumulate a set of constraints. From a formal
point of view, this amounts to applying the following tautology:

∀P. ∀C. (∀ab. C(a, b)→ P (λn.(an+ + b))) → (∃ab. C(a, b)) → ∃f.P (f)

This application again yields two subgoals. During the proof of the first subgoal,
C is a metavariable and can be instantiated as desired (possibly in several steps),
allowing us to gather a conjunction of constraints bearing on a and b. During the
proof of the second subgoal, C is fixed and we must check that it is satisfiable.
In our example, the first subgoal is:

E(λn.(an+ + b)) ∧ λn.(an+ + b) �Z λn.n

The second conjunct is trivial. The first conjunct simplifies to:

∀n. n ≥ 0 → 1 + if n ≤ 1 then 0 else (G+ a(n− 1)+ + b) ≤ an+ + b



By distinguishing the cases n = 0, n = 1, and n > 1, we find that this property
holds provided we have 1 ≤ b and 1 ≤ a+ b and 1 +G ≤ a. Thus, we prove this
subgoal by instantiating C with λ(a, b).(1 ≤ b ∧ 1 ≤ a+ b ∧ 1 +G ≤ a).

There remains to check the second subgoal, that is, ∃ab.C(a, b). This is easy;
we pick, for instance, a := 1 +G and b := 1. This concludes our use of Cormen
et al.’s substitution method.

In summary, by exploiting Coq’s metavariables, we are able to set up our
proofs in a style that closely follows the traditional paper style. During a first
phase, as we analyze the code, we synthesize a cost function and (if the code
is recursive) a recurrence equation. During a second phase, we guess the shape
of a solution, and, as we analyze the recurrence equation, we synthesize a con-
straint on the parameters of the shape. During a last phase, we check that this
constraint is satisfiable. In practice, instead of explicitly building and applying
tautologies as above, we use the first author’s procrastination library [16],
which provides facilities for introducing new parameters, gradually gathering
constraints on these parameters, and eventually checking that these constraints
are satisfiable.

6 Examples

Binary Search. We prove that binary search has time complexity O(log n),
where n = j − i denotes the width of the search interval [i, j). The code is as
in Figure 1, except that the flaw is fixed by replacing i+1 with k+1 on the last
line. As outlined earlier (§5), we synthesize the following recurrence equation on
the cost function f :

f(0) + 3 ≤ f(1) ∧ ∀n ≥ 0. 1 ≤ f(n) ∧ ∀n ≥ 2. f(n/2) + 3 ≤ f(n)

We apply the substitution method and search for a solution of the form
λn. if n ≤ 0 then 1 else a log n+b, which is dominated by λn. log n. Substituting
this shape into the above constraints, we find that they boil down to (4 ≤ b)∧(0 ≤
a ∧ 1 ≤ b) ∧ (3 ≤ a). Finally, we guess a solution, namely a := 3 and b := 4.

Dependent Nested Loops. Many algorithms involve dependent nested
for loops, that is, nested loops, where the bounds of the inner loop depend on
the outer loop index, as in the following simplified example:

for i = 1 to n do

for j = 1 to i do () done

done

For this code, the cost function λn.
∑n

i=1(1 +
∑i

j=1 1) is synthesized. There

remains to prove that it is dominated by λn.n2. We could recognize and prove

that this function is equal to λn.n(n+3)
2 , which clearly is dominated by λn.n2.

This works because this example is trivial, but, in general, computing explicit
closed forms for summations is challenging, if at all feasible.

A higher-level approach is to exploit the fact that, if f is monotonic, then∑n
i=1 f(i) is less than n.f(n). Applying this lemma twice, we find that the above



cost function is less than λn.
∑n

i=1(1 + i) which is less than λn.n(1 +n) which is
dominated by λn.n2. This simple-minded approach, which does not require the
Summation lemma (Lemma 8), is often applicable. The next example illustrates
a situation where the Summation lemma is required.

A Loop Whose Body Has Exponential Cost. In the following simple
example, the loop body is just a function call:

for i = 0 to n-1 do b(i) done

Thus, the cost of the loop body is not known exactly. Instead, let us assume
that a specification for the auxiliary function b has been proved and that its cost
is O(2i), that is, cost b �Z λi. 2i holds. We then wish to prove that the cost
of the whole loop is also O(2n).

For this loop, the cost function λn.
∑n

i=0(1 + cost b (i)) is automatically
synthesized. We have an asymptotic bound for the cost of the loop body, namely:
λi. 1 + cost b (i) �Z λi. 2i. The side conditions of the Summation lemma
(Lemma 8) are met: in particular, the function λi. 1 + cost b (i) is monotonic.
The lemma yields λn.

∑n
i=0(1 + cost b (i)) �Z λn.

∑n
i=0 2i. Finally, we have

λn.
∑n

i=0 2i = λn. 2n+1 − 1 �Z λn. 2n.

The Bellman-Ford Algorithm. We verify the asymptotic complexity of
an implementation of Bellman-Ford algorithm, which computes shortest paths
in a weighted graph with n vertices and m edges. The algorithm involves an
outer loop that is repeated n − 1 times and an inner loop that iterates over all
m edges. The specification asserts that the asymptotic complexity is O(nm):

∃cost : Z2 → Z.
{

cost �Z2 λ(m,n). nm
{$cost(#edges(g),#vertices(g))} (bellmanford g) {. . .}

By exploiting the fact that a graph without duplicate edges must satisfy m ≤ n2,
we prove that the complexity of the algorithm, viewed as a function of n, isO(n3).

∃cost : Z→ Z.
{

cost �Z λn. n3

{$cost(#vertices(g))} (bellmanford g) {. . .}

To prove that the former specification implies the latter, one instantiates m
with n2, that is, one exploits a composition lemma (§3.4). In practice, we publish
both specifications and let clients use whichever one is more convenient.

Union-Find. Charguéraud and Pottier [11] use Separation Logic with Time
Credits to verify the correctness and time complexity of a Union-Find implemen-
tation. For instance, they prove that the (amortized) concrete cost of find is
2α(n)+4, where n is the number of elements. With a few lines of proof, we derive
a specification where the cost of find is expressed under the form O(α(n)):

specO Z_filterType Z.le (fun n ⇒ alpha n) (fun cost ⇒
∀D R V x, x \in D → triple (UnionFind_ml.find x)
PRE (UF D R V ? $(cost (card D)))
POST (fun y ⇒ UF D R V ? [ R x = y ])).



Union-Find is a mutable data structure, whose state is described by the
abstract predicate UF D R V. In particular, the parameter D represents the domain
of the data structure, that is, the set of all elements created so far. Thus, its
cardinal, card D, corresponds to n. This case study illustrates a situation where
the cost of an operation depends on the current state of a mutable data structure.

7 Related Work

Our work builds on top of Separation Logic [23] with Time Credits [2], which
has been first implemented in a verification tool and exploited by the second
and third authors [11]. We refer the reader to their paper for a survey of the
related work in the general area of formal reasoning about program complexity,
including approaches based on deductive program verification and approaches
based on automatic complexity analysis. In this section, we restrict our attention
to informal and formal treatments of the O notation.

The O notation and its siblings are documented in several textbooks [15,7,20].
Out of these, only Howell [19,20] draws attention to the subtleties of the multi-
variate case. He shows that one cannot take for granted that the properties of
the O notation, which in the univariate case are well-known, remain valid in the
multivariate case. He states several properties which, at first sight, seem natural
and desirable, then proceeds to show that they are inconsistent, so no definition
of the O notation can satisfy them all. He then proposes a candidate notion of
domination between functions whose domain is Nk. His notation, f ∈ Ô(g), is

defined as the conjunction of f ∈ O(g) and f̂ ∈ O(ĝ), where the function f̂ is
a “running maximum” of the function f , and is by construction monotonic. He
shows that this notion satisfies all the desired properties, provided some of them
are restricted by additional side conditions, such as monotonicity requirements.

In this work, we go slightly further than Howell, in that we consider functions
whose domain is an arbitrary filtered type A, rather than necessarily Nk. We give
a standard definition of O and verify all of Howell’s properties, again restricted
with certain side conditions. We find that we do not need Ô, which is fortunate, as
it seems difficult to define f̂ in the general case where f is a function of domain A.
The monotonicity requirements that we impose are not exactly the same as
Howell’s, but we believe that the details of these administrative conditions do
not matter much, as all of the functions that we manipulate in practice are
everywhere nonnegative and monotonic.

Avigad and Donnelly [3] formalize the O notation in Isabelle/HOL. They
consider functions of type A → B, where A is arbitrary and B is an ordered
ring. Their definition of “f = O(g)” requires |f(x)| ≤ c|g(x)| for every x, as
opposed to “when x is large enough”. Thus, they get away without equipping
the type A with a filter. The price to pay is an overly restrictive notion of
domination, except in the case where A is N, where both ∀x and Ux yield the
same notion of domination—this is Brassard and Bratley’s “threshold rule” [7].
Avigad and Donnelly suggest defining “f = O(g) eventually” as an abbreviation



for ∃f ′, (f ′ = O(g) ∧ Ux.f(x) = f ′(x)). In our eyes, this is less elegant than
parameterizing O with a filter in the first place.

Eberl [13] formalizes the Akra–Bazzi method [1,21], a generalization of the
well-known Master Theorem [12], in Isabelle/HOL. He creates a library of Lan-
dau symbols specifically for this purpose. Although his paper does not mention
filters, his library in fact relies on filters, whose definition appears in Isabelle’s
Complex library. Eberl’s definition of the O symbol is identical to ours. That
said, because he is concerned with functions of type N → R or R → R, he does
not define product filters, and does not prove any lemmas about domination in
the multivariate case. Eberl sets up a decision procedure for domination goals,
like x ∈ O(x3), as well as a procedure that can simplify, say, O(x3+x2) to O(x3).

TiML [25] is a functional programming language where types carry time
complexity annotations. Its type-checker generates proof obligations that are
discharged by an SMT solver. The core type system, whose metatheory is formal-
ized in Coq, employs concrete cost functions. The TiML implementation allows
associating a O specification with each toplevel function. An unverified compo-
nent recognizes certain classes of recurrence equations and automatically applies
the Master Theorem. For instance, mergesort is recognized to be O(mn log n),
where n is the input size and m is the cost of a comparison. The meaning of the
O notation in the multivariate case is not spelled out; in particular, which filter
is meant is not specified.

Boldo et al. [4] use Coq to verify the correctness of a C program which
implements a numerical scheme for the resolution of the one-dimensional acoustic
wave equation. They define an ad hoc notion of “uniform O” for functions of
type R2 → R, which we believe can in fact be viewed as an instance of our
generic definition of domination, at an appropriate product filter. Subsequent
work on the Coquelicot library for real analysis [5] includes general definitions of
filters, limits, little-o and asymptotic equivalence. A few definitions and lemmas
in Coquelicot are identical to ours, but the focus in Coquelicot is on various
filters on R, whereas we are more interested in filters on Zk.

The tools RAML [17] and Pastis [8] perform fully automated amortized time
complexity analysis of OCaml programs. They can be understood in terms of
Separation Logic with Time Credits, under the constraint that the number of
credits that exist at each program point must be expressed as a polynomial over
the variables in scope at this point. The a priori unknown coefficients of this
polynomial are determined by an LP solver. Pastis produces a proof certificate
that can be checked by Coq, so the trusted computing base of this approach is
about the same as ours. RAML and Pastis offer much stronger automation than
our approach, but have weaker expressive power. It would be very interesting to
offer access to a Pastis-like automated system within our interactive system.
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