Random Walks on Dynamical Random Environments with Non-Uniform Mixing - ANR - Agence nationale de la recherche
Article Dans Une Revue Annals of Probability Année : 2020

Random Walks on Dynamical Random Environments with Non-Uniform Mixing

Résumé

In this paper we study random walks on dynamical random environments in $1 + 1$ dimensions. Assuming that the environment is invariant under space-time shifts and fulfills a mild mixing hypothesis, we establish a law of large numbers and a concentration inequality around the asymptotic speed. The mixing hypothesis imposes a polynomial decay rate of covariances on the environment with sufficiently high exponent but does not impose uniform mixing. Examples of environments for which our methods apply include the contact process and Markovian environments with a positive spectral gap, such as the East model. For the East model we also obtain that the distinguished zero satisfies a Law of Large Numbers with strictly positive speed.
Fichier principal
Vignette du fichier
1805.09750v1.pdf (768.79 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-01804804 , version 1 (06-01-2025)

Identifiants

Citer

Oriane Blondel, Marcelo R. Hilario, Augusto Teixeira. Random Walks on Dynamical Random Environments with Non-Uniform Mixing. Annals of Probability, 2020, 48 (4), ⟨10.1214/19-AOP1414⟩. ⟨hal-01804804⟩
65 Consultations
0 Téléchargements

Altmetric

Partager

More