
HAL Id: hal-01735478
https://hal.univ-cotedazur.fr/hal-01735478

Submitted on 16 Mar 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Programming virtual musical instruments and audio
effects in the Web browser

Michel Buffa, Jerome Lebrun, Jari Kleimola, Oliver Larkin, Stephane Letz

To cite this version:
Michel Buffa, Jerome Lebrun, Jari Kleimola, Oliver Larkin, Stephane Letz. Programming virtual
musical instruments and audio effects in the Web browser. 2018 - International Conference of The Art,
Science, and Engineering of Programming, Apr 2018, Nice, France. �10.13140/RG.2.2.20060.67203�.
�hal-01735478�

https://hal.univ-cotedazur.fr/hal-01735478
https://hal.archives-ouvertes.fr

Programming virtual musical instruments and audio
effects in the Web browser

Michel Buffa, Jérôme Lebrun

Université Côte d’Azur
CNRS, INRIA

(​buffa, lebrun)@i3s.unice.fr

Jari Kleimola, Oliver Larkin
webaudiomodules.org

(​jari, oli)@webaudiomodules.org

Stéphane Letz
GRAME

letz@grame.fr

ABSTRACT

WebAudio is a recent W3C API that brings the world
of computer music applications into the browser. While
JavaScript and Web standards are increasingly flexible
and powerful, C/C++ has been the language of choice
for real-time audio applications and domain specific
languages such as FAUST facilitate rapid development
with high performance. We present here a host Web
application -the Pedal Board project- as well as plugins
(instruments, effects), written in JavaScript, ported from
C/C++, or written using Domain Specific Languages
such as FAUST, and compiled to the new WebAssembly
binary standard that can be executed by recent Web
browsers.

These plugins follow an open standard we are
developing (details on [4]).

1 - INTRODUCTION
This paper presents the actual works conducted

separately by three groups of researchers who had
different initial interests, but converged toward the notion
of interoperable WebAudio plugins and decided to join
forces to work towards an open standard.

Figure 1: the Zita_rev1 reverb written in FAUST

One group has been developing the FAUST [5] DSP
domain specific language since 2002. Hundreds of music
instruments and audio effects coded in FAUST are
available, and the FAUST tool chain can compile them to
different targets, including WebAudio. Figure 1 shows an
example of audio effect (a complex reverberation) written
in FAUST.

Another group has been developing ​Web Audio
Modules (WAMs) since 2014 [3]. ​WAMs are high level
audio plugins for the Web browser and have a C++ API,
like native plugin formats. The WAM team ported to Web
Audio famous commercial synthesizers such as the
Yamaha DX7 or the Oberheim OBXd. See Figure 2.

Figure 2: online WAM instruments

The final group has been developing WebAudio
plugins since 2012, in particular a guitar tube amplifier
simulation and a pedal board for guitarists (see Figure
3). Each pedal, as well as the amp simulator is a plugin.
Some authors of this paper are also ​W3C Advisory
Committee representatives ​who participate in the W3C
WebAudio working group.
All three groups had to deal with the concept of a
WebAudio plugin, and decided to work together to make
their plugins inter-operable. Furthermore, online demos
are actively being developed as proof of concepts . 1

1 ​Try the pedalboard host that works with the plugins made by the three different
groups: ​https://wasabi.i3s.unice.fr/pedalboard​ also in this video:
https://youtu.be/elbjh6tBK6U

mailto:buffa@i3s.unice.fr
https://wasabi.i3s.unice.fr/pedalboard
https://youtu.be/elbjh6tBK6U

WWW2018 Dev. Track Michel Buffa et al.

2 - WEB-AWARE AUDIO PLUGINS

For the WASABI project [6], the WIMMICS team from
INRIA/I3S/CNRS developed as a plugin the first online
digital emulation of a real tube guitar amplifier: the
Marshall JCM 800, a popular amp used by many classic
rock artists (AC/DC, Led Zeppelin, Guns and Roses etc.)
[1, 2], as well as a “host” application for assembling
plugins together. The Pedal Board project is this “host”
Web application that enable the creation of “virtual pedal
boards” similar to the ones guitarists use. The set of
plugins developed is pure JavaScript and rely exclusively
on the Web Audio standard API.

Figure 3: Two WAM synths and a FAUST plugin have
been integrated in the pedal board

In order to develop an open Web Audio plugin
standard, WIMMICS joined with the WAM and the
FAUST teams to make their plugins inter operable in the
pedal board. The final result is the pedal board
application that shows how plugins from different origins
/ authors and written using different programming
languages can be assembled and chained in order to
mix MIDI controllable instruments and effects (Figure 3).

Although we aimed to introduce the functionality
offered by the concept of native audio plugins and hosts
to the Web, the differences of the environment require a
different approach to the API design, and the
development of a new API provided an opportunity to
improve upon some aspects of native APIs. Advantages
of web apps include: simple distribution (no installation,
updates), collaboration (collaborative aspects can be
implemented using WebSockets for example), platform
independence, sandboxing (security). Disadvantages:
efficiency (JavaScript is usually slower than native code,
with issues that may affect real-time audio performance

such as a garbage collector), latency (audio drivers on
Linux/Windows), sandboxing (access to native
resources, local hard disk access is forbidden or limited).
An API should also be “Web aware” and use URLs as
identifiers, should allow host webapps to discover remote
plugins by querying plugin servers. Plugins should be
usable without the need to download them manually, and
the mixture of different JavaScript libraries and
frameworks, should not raise any naming conflict or
dependency problems. We also implemented all plugins
as Web Components. This W3C standard defines a way 2

to easily distribute components with encapsulated
HTML/CSS/JS/WASM code without namespace
conflicts. Where native plugins needed to be downloaded
and installed, URLs make no difference between a local
or a distant plugin, a Web Component plugin could be
used remotely just by its (possibly RESTful) URL
reference. This makes writing a plugin remote server
easy.

7 - CONCLUSION

This paper is the first initiative that involves
synchronising the efforts of three groups of developers
who have been working on various approaches for
implementing high level audio “plugins” in the browser.
We hope it may become a starting point for a new
addition to the WebAudio v2 specification.

ACKNOWLEDGMENTS
ElMahdi Korfed and Guillaume Etevenard who helped
developing the pedal board webapp. French Research
National Agency (ANR) and the WASABI project team
(contract ANR-16-CE23-0017- 01).

REFERENCES
[1] Buffa, M. & Lebrun, J. (2017, Aug). Real time tube guitar amplifier simulation

using WebAudio. In ​Proc. 3rd Web Audio Conference 2017 – Collaborative
Audio #WAC2017, London, United Kingdom​.

[2] Buffa, M. & Lebrun, J. (2017, Aug). Web Audio Guitar Tube Amplifier vs
Native Simulations. In ​Proc. 3rd Web Audio Conference 2017 – Collaborative
Audio #WAC2017, London, United Kingdom​.​ ​〈​http://wac.eecs.qmul.ac.uk/​〉

[3] Kleimola, J. & Larkin, O. (2015). Web audio modules. In ​Proc. the Sound and
Music Computing​, 2015.

[4] Buffa, M. & Lebrun, J., Kleimola J., Larkin O., Letz S.. Towards an open Web
Audio plug-in standard. ​WWW ’18 Companion, Mar 2018, Lyon, France.

[5] Orlarey, Y., Fober, D. & Letz, S. (2004). Syntactical and Semantical aspects of
Faust. ​Soft Computing, 8(9):623–632, 2004.

[6] Buffa, M. & al. (2017, Aug.).WASABI: a Two Million Song Database Project
with Audio and Cultural Metadata plus WebAudio enhanced Client
Applications. In ​Proc. 3​rd Web Audio Conference 2017 – Collaborative Audio
#WAC2017, London, United Kingdom​.

2 ​https://www.webcomponents.org
2

http://wac.eecs.qmul.ac.uk/
http://wac.eecs.qmul.ac.uk/
http://wac.eecs.qmul.ac.uk/
https://www.webcomponents.org/

