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ABSTRACT

Whole transcriptome sequencing (RNA-seq) has be-
come a standard for cataloguing and monitoring RNA
populations. One of the main bottlenecks, however,
is to correctly identify the different classes of RNAs
among the plethora of reconstructed transcripts, par-
ticularly those that will be translated (mRNAs) from
the class of long non-coding RNAs (lncRNAs). Here,
we present FEELnc (FlExible Extraction of LncR-
NAs), an alignment-free program that accurately an-
notates lncRNAs based on a Random Forest model
trained with general features such as multi k-mer fre-
quencies and relaxed open reading frames. Bench-
marking versus five state-of-the-art tools shows that
FEELnc achieves similar or better classification per-
formance on GENCODE and NONCODE data sets.
The program also provides specific modules that en-
able the user to fine-tune classification accuracy, to
formalize the annotation of lncRNA classes and to
identify lncRNAs even in the absence of a training
set of non-coding RNAs. We used FEELnc on a real
data set comprising 20 canine RNA-seq samples pro-
duced by the European LUPA consortium to sub-

stantially expand the canine genome annotation to
include 10 374 novel lncRNAs and 58 640 mRNA tran-
scripts. FEELnc moves beyond conventional cod-
ing potential classifiers by providing a standard-
ized and complete solution for annotating lncRNAs
and is freely available at https://github.com/tderrien/
FEELnc.

INTRODUCTION

The development of high-throughput RNA sequencing
(RNA-seq) has revealed the presence of many RNAs in dif-
ferent organisms such as mammals (1–3), insects (4,5) and
plants (6,7). Particularly, whole transcriptome sequencing
sheds light on the pervasive transcription of the genomes
with messenger RNAs (mRNAs) only representing a small
fraction of the genome, outnumbered by a vast repertoire of
small (miRNAs, snRNAs. . . ) and long non-coding RNAs
(lncRNAs) (1). LncRNAs, basically defined as transcripts
longer than 200 nucleotides and without any protein-coding
capabilities, have been involved in many aspects of normal
and pathological cells. From the pioneer discovery of the
Xist lncRNA involved in X chromosome inactivation in pla-
cental females (8) to the more recent links between lncR-
NAs and cancers (9,10), lncRNAs have emerged as key ac-
tors of the cell machinery with diverse modes of action such
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as gene expression regulation, control of translation or im-
printing.

Following RNA sequencing, the computational recon-
struction of transcripts models either by genome-guided
(11,12) or de novo assembly (13) usually produces tens of
thousands of known and novel transcript models. Among
this wealth of assembled transcripts, it remains crucial to
annotate the different classes of RNAs and especially to
distinguish protein-coding from non-coding RNAs. To this
aim, several bioinformatic tools have been developed in or-
der to compute a coding potential score (hereafter termed
CPS) used to discriminate the coding status of the RNA
gene models. Broadly, they can be divided into programs
using sequence alignments, either between species (14) or
alignments to protein databases (15), and alignment-free
software (16–18). The alignment-dependent methods, al-
though very specific in terms of performance, are often very
time- and resource-consuming. For instance, the PhyloCSF
program requires a multispecies sequence alignment to pre-
dict the likelihood of a sequence to be a conserved protein-
coding transcript based on the evolution of the codon sub-
stitution frequencies (14). It is thus dependent on the quality
of the input alignments and may also be biased toward mis-
classifying species-specific or lowly conserved coding and
non-coding transcripts (19). In contrast, the alignment-free
methods compute a CPS only depending on intrinsic fea-
tures of the input RNA sequences. One of the main fea-
tures is given by the length of the longest open reading
frame (ORF) (20,21) since a transcript harboring a long
ORF will most likely be translated into a protein. How-
ever, the definition of the longest ORF can vary between
programs, especially when it involves the strict inclusion of
either or both start and stop codons. This is particularly im-
portant to model since some transcripts from reference an-
notations and/or newly assembled transcripts are not full-
length. For instance, the number of protein-coding tran-
scripts in the human EnsEMBL (v83) annotation (22) lack-
ing a start codon or a stop codon is 7677 (∼10%) and 16
649 (∼25%), respectively. A complementary feature to dis-
criminate mRNAs from non-coding RNAs is the relative
frequency of oligonucleotides or k-mer (where k denotes
the size of the oligonucleotide). Some tools already use k-
mer frequencies but are often limited to one and/or small
k-mers (generally k ≤ 6), whereas longer k-mers could help
resolve ambiguities by taking into account lncRNA-specific
repeats or spatial information (23,24). Finally, common to
all methods is the lack of an explicit modeling and cut-off
definition for ‘non-model’ organisms (25), for which it can
be crucial to train the programs with species-specific data
and to automatically derive a CPS cut-off which provides
better discriminative power.

Here, we present FEELnc, for FlExible Extraction of
LncRNAs, a new tool to annotate lncRNAs from RNA-
seq assembled transcripts. FEELnc is an all-in-one solu-
tion from the filtering of non-lncRNA-like transcript mod-
els, to the computation of a coding potential score and
the formalization of the definition of the lncRNA classes.
Based on a relaxed definition of ORFs and a very fast
analysis of small and large k-mer frequencies (from k =
1 to 12), the program implements an alignment-free strat-
egy using Random Forests (26) to classify lncRNAs and

mRNAs. We benchmarked FEELnc and five existing pro-
grams (PhyloCSF (14), CPC (15), CPAT (16), PLEK (17)
and CNCI (18)) using known sets of lncRNAs annotated
in multiple organisms (GENCODE for human and mouse
(27) and NONCODE for other species (28)), and showed
that FEELnc performance metrics outperformed or are
similar to state-of-the-art programs. We developed FEELnc
to be used on ‘non-model’ organisms for which no set of
lncRNAs is available by deriving species-specific lncRNA
models from mRNA sequences and automatically comput-
ing the CPS cut-off that maximizes classification perfor-
mances. FEELnc also allows users to provide their own
specificity thresholds in order to annotate high-confidence
sets of lncRNAs and mRNAs and to define a class of tran-
scripts with ambiguous status. Finally, as part of the LUPA
consortium (29), we produced 20 RNA sequencing data sets
from 16 different canine tissues and applied FEELnc on
the reconstructed models to annotate 10 374 lncRNA and
58 640 mRNA new transcripts from known and novel loci.
We also classified lncRNAs into 5033 long intergenic non-
coding RNAs (lincRNAs) and 5341 genic sense or antisense
lncRNAs based on the FEELnc classifier module. The num-
ber of lncRNA transcripts detected by our data consider-
ably expands the canine genome annotation providing an
extended resource which will help deciphering genotype to
phenotype relationships (30).

MATERIALS AND METHODS

Data set

For the sake of reproducibility, all data sets and scripts used
to generate the benchmark files are available in Supplemen-
tary Data.

Human long non-coding and protein-coding genes were
obtained from the manually curated GENCODE ver-
sion 24 annotation (EnsEMBL v83 corresponding to the
GRCh38 human genome assembly) selecting the long non-
coding gene biotypes ‘lincRNA’ and ‘antisense’, and ‘pro-
tein coding’ for coding genes. From each of this set, 10 000
transcripts were extracted and further divided into two sets
of 5000 transcripts, that are used for the learning and the
testing steps, denoted HL and HT data sets, respectively.
Importantly, only one transcript per locus was extracted
for all biotypes in order not to create a bias by introduc-
ing two isoforms of the same gene in both the HL and HT
sets. For mouse, we used the GENCODE version M4 anno-
tation (EnsEMBL v79) and derived the learning and test-
ing sets in the same way as for human (denoted ML and
MT). Due to the lower number of GENCODE lncRNAs
annotated in mouse compared to human, each file contains
∼2000 lncRNAs and 5000 mRNAs. For ‘non-model organ-
isms’, lncRNAs belonging to the lincRNA and antisense
classes (NONCODE codes 0001 and 1000, respectively)
were downloaded from the latest version of the NONCODE
database (NONCODE 2016) (28) while mRNAs were re-
trieved from the EnsEMBL database (v84). A summary of
the number of mRNAs/lncRNAs per species is available in
Supplementary Table S1.

Whole transcriptome sequencing of dog RNA samples
(n = 20) was performed by the LUPA consortium. These
biological samples, corresponding to 16 unique tissues
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and 7 breeds, were obtained from the ‘Cani-DNA CRB’
biobank at the University Rennes1, CNRS-IGDR, France
(http://dog-genetics.genouest.org), the biobank at Univer-
sity of Copenhagen, Denmark, the biobank at University
of Helsinky, Finland and the Vetsuisse Biobank at Univer-
sity of Bern, Switzerland. The dog owners consented to the
use of the data for research purposes anonymously. RNAs
were extracted from tissues using the NucleoSpin RNA
kit (Macherey–Nagel) according to the manufacturer’s in-
structions. Polyadenylated RNAs were captured by oligo-
dT beads and RNA-seq libraries were constructed via the Il-
lumina TruSeq™ Stranded mRNA Sample Preparation Kit.
Sequencing was done in paired-end and stranded fashion
on the HiSeq2000 platform using v3 chemistry (TruSeq PE
Cluster Kit v3-cBot-HS, TruSeq SBS Kit v3-HS, TruSeq
SR Cluster Kit v3-cBot-HS) to a depth of about 50 mil-
lion reads per tissue (Supplementary Table S2). The RNA-
seq data are available in the short read archive (SRA) un-
der NCBI bioproject PRJNA327075 and SRA accession
SRP077559.

FEELnc filter module (FEELncfilter)

The first FEELnc module aims at identifying non-lncRNA
transcripts from the reconstructed transcript models given
by genome-guided transcriptome assemblers such as Cuf-
flinks (11) or more recently StringTie (12). To achieve this
goal, FEELnc flags every assembled transcript that over-
laps any exon of the reference annotation in sense. To deal
with the plethora of input models inherent to high-depth
RNA-seq experiments, the comparison of transcript inter-
vals is parallelized through the Parallel:ForkManager Perl
module. Importantly, FEELnc allows the user to parame-
ter the percentage of overlap and also the transcript bio-
type (e.g. ‘protein coding’ or ‘pseudogene’) to be considered
from the reference annotation. Indeed, transcripts match-
ing protein-coding exons should be flagged as they likely
indicate novel mRNA isoforms. FEELncfilter also filters out
short transcripts (default 200 nt) and can deal with single-
exon transcripts depending on whether the protocol used to
construct libraries is stranded or not. For instance, the mod-
ule allows the removal of intergenic single-exon models as
they may correspond to mapping artifacts due to repeat se-
quences and for which the checking of the consensus splice
sites could not be assessed (27).

FEELnc coding potential module (FEELnccodpot)

FEELnccodpot predictors. The second FEELnc module
aims at computing a coding potential score given the as-
sembled sequences following transcriptome reconstruction.
To deal with the incompleteness of ORF annotation where
both the reference and the reconstructed transcripts may
not be full-length, FEELnc computes all ORFs and anno-
tates five ORF types from the stricter ‘type 0’ which corre-
sponds to the longest ORF having both a start and a stop
codon, to the more relaxed ‘type 4’ that is the whole input
RNA sequence (see Supplementary Data for detailed de-
scription of the ORF types). Because the size of the protein-
coding ORF is generally correlated with the length of the in-
put RNA sequence, we used the ORF coverage, i.e. the pro-
portion of the transcript size covered by an ORF, as the first

predictor to discriminate mRNAs/lncRNAs in the FEELnc
model.

The second predictor of FEELnc relies on the compu-
tation of the multi k-mer frequencies between mRNAs and
lncRNAs. Biases in nucleotide frequencies and codon us-
age have already been described in the literature as impor-
tant discriminative features between coding and non-coding
RNAs (21,31). Within the framework of FEELnc, we devel-
oped an extremely fast and exact k-mer counter called KIS
(for K-mer in short) that relies on the open-source GATB
library (32). For example, KIS can compute all 6-mers (hex-
amers) and 12-mers of the human GRCh38 genome assem-
bly (∼3 billions k-mers) in ∼2 min and 2 min 50 s, respec-
tively (on a linux RedHat station with one core Intel(R)
Xeon(R) CPU X5550 @ 2.67GHz). Due to the high speed
of KIS, a major contribution of this work was to be able to
combine different lists of k-mers, including longer k-mers, in
order to better discriminate lncRNAs from mRNAs. Specif-
ically, we assigned a score for each sequence K (e.g. TGC)
of size k (e.g. 3) based on the occurrence of this sequence in
each predicted mRNA ORF sequence and lncRNA whole
sequence from the learning data set. This score Sk

K , similar
to the one used in Claverie et al. in (33), is computed for
each K of size k as follows:

Sk
K = Fm

K

Fm
K +Flnc

K
, with Fm

K andFlnc
K the observed frequencies

ofK in mRNA ORFs and in lncRNA sequences for the two
learning sets, respectively. Note that these k-mer profiles are
made on a subset of the learning set (10% by default) and
the transcripts used to compute the k-mer profiles are re-
moved from the random forest model in order to avoid over-
fitting.

Once the k-mer profiles are made, i.e. all Sk
K have been

computed for all k-mer, FEELnc associates a k-mer score
Vk

X for each remaining ORFs X as follows:

Vk
X =

∑4k
K=1 Sk

K ×NX
K

∑4k
j=1 NX

j

, with NX
K the number of occurrences

of K in the ORF X and
∑4k

j = 1 NX
j the total number of k-

mer of size k. Using this scoring method, a k-mer score is
associated to each sequence for each k-mer size selected in
the model.

FEELnc coding potential also uses the total RNA se-
quence length as a predictor of the model since lncRNAs
have been shown to be significantly shorter than mRNAs
(34,35). For illustration purposes, a distribution of the
FEELnc predictor scores with ‘type 3’ ORF (i.e. longest
ORF having either or both a start and a stop codon) and
multi k-mer scores with k in {1, 2, 3, 6, 9, 12} is given in
Supplementary Figure S1 for the 5000 mRNAs and 5000
lncRNAs of the HL data set.

Random forest classification and optimized coding potential
cut-offs. The aforementioned predictor scores are incor-
porated into a machine learning method––Random Forest
(RF) (26)––that computes a coding potential score (CPS)
for each input training transcripts. As also shown by oth-
ers with respect to lncRNAs annotation, RF often outper-
forms other machine learning techniques especially due to
the random sampling of features to build the ensemble of
trees (36,37). In addition, our RF model which is based
on the randomForest R package (38), can deal with im-
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balanced training set by down-sampling the majority class
(most likely mRNAs in many organisms). In fact, the CPS
in our RF model corresponds to the proportion of all trees
(500 trees by default) which ‘vote’ for the input sequence to
be coding or non-coding. A proportion close to 0 will indi-
cate a non-coding RNA and close to 1 an mRNA.

To define an optimal CPS cut-off, FEELnc automati-
cally extracts CPS that maximizes both sensitivity (Sn) and
specificity (Sp) (see performance section) based on a 10-fold
cross-validation. Using the ROCR package (39), FEELnc
provides users with a two-graph ROC curve in order to dis-
play the performances of the model and to visualize the op-
timal CPS (Figure 1 A).

Even if this approach aims at providing the highest per-
formances, it could sometimes misclassify coding and/or
non-coding transcripts whose CPS is closed to the opti-
mized threshold (40). To take this into account, FEELnc
allows fixing two minimal specificity cut-offs for lncRNAs
and mRNAs (this approach is termed ‘two cut-offs’). This
naturally leads to the annotation of two high-confident
classes of lncRNAs and mRNAs and also to the definition
of a third class of ambiguous transcripts (i.e. transcripts
whose the CPS is between the two cut-offs) that are named
TUCp (34,40) for Transcripts of Unknown Coding poten-
tial (Figure 1A).

FEELnc without long non-coding training set. One issue
when using machine learning algorithms is the require-
ment of both a positive and negative sets (here mRNA
and lncRNA) to train the model. While the former is of-
ten available for most organisms, the latter is usually not
especially for non-model organisms (25). To model non-
coding RNAs in the absence of a true set of lncRNAs, we
assessed three strategies called intergenic, shuffle and cross-
species. As DNA composition varies between species, a first
naive approach consists in extracting decoy sequences from
the genome of interest to model species-specific non-coding
sequences. More precisely, we extracted random intergenic
sequences of length L (L is given by the distribution of
the mRNA sizes) as the non-coding training set. The shuf-
fle strategy employs a more sophisticated method which is
based on the idea that lncRNAs are derived from ‘debris’
of protein-coding genes (41,42), as exemplified by the Xist
lncRNA that emerged from the disruption of the mRNA
gene Lnx3 (43). To this end, we shuffled mRNA sequences
from the reference annotation using the Ushuffle program
(44), while preserving a given k-mer frequency of the input
sequences. Note, however, that shuffling sequences and pre-
serving frequencies for one fixed k-mer does not constrain
the frequencies of the other k-mers. In addition, when k in-
creases, it is possible that Ushuffle could not permute some
input sequences because of the constraint to preserve the
given k-mer frequencies. Finally, the cross-species strategy
makes use of lncRNA sets annotated in other species to ex-
tract non-coding predictors and train the RF model. For
the latter strategy, we trained the FEELnc model using hu-
man mRNAs and species-specific lncRNAs (NONCODE
lncRNA catalogues being available in 13 different species).
For all strategies, we assessed the performance on the HT
data sets.

Performance evaluation. We evaluated the performance of
FEELnc and five other state-of-the-art programs: CNCI
(version 2 Feb 28, 2014) (18), CPC (version 0.9-r2) (15),
CPAT (version 1.2.1) (16), PhyloCSF (version 20121028-
exe) (14) and PLEK (version 1.2) (17), by computing clas-
sical performance metrics:

- Sensitivity (Sn) or True Positive Rate = T P
T P+F N ;

- Specificity (Sp) or True Negative Rate = TN
F P+TN ;

- Precision (Prec) or Positive Predicted Value = T P
T P+F P ;

- Accuracy (Acc) = T P+TN
T P+F P+TN+F N ;

With TP: True Positive, TN: True Negative, FP: False
Positive and FN: False Negative.

In addition, we used two complementary metrics in order
to capture the global performance of the tools in a single
measure (45):

- F-score = 2 × precision×sensi tivi ty
precision+sensi tivi ty , which is a statistic mea-

suring the harmonic mean of precision and sensitivity;
- MCC (Matthews Correlation Coefficient) =

T P×TN−F P×F N√
(T P+F P)(T P+F N)(TN+F P)(TN+F N)

, which is particularly

useful when the two classes are of very different sizes
(which is often the case for mRNAs and lncRNAs in
non-model organisms) and which could be seen as a
correlation coefficient between the true classes and the
predicted classes (46).

For each performance metric, we considered lncRNAs
as the negative class and mRNAs as the positive class.
Note that, as a binary classification, the mRNA speci-
ficity corresponds to the lncRNA sensitivity (and con-
versely). Moreover, for the CPAT and PLEK programs,
which allow training their models, we used species-specific
set of mRNAs/lncRNAs for training (called CPATtrain and
PLEKtrain). Nevertheless, contrary to FEELnc, PLEK and
CPAT required us to a priori extract the CDS of the mRNA
input file to learn the coding parameters. For CPATtrain, we
referred to the optimal CPS cut-off mentioned on their web-
site (16) to discriminate between coding and non-coding
RNAs. A detailed description of the command lines used
to run each program is given in Supplementary Data.

FEELnc classifier module (FEELncclassifier)

Given a known reference annotation, it is essential to clas-
sify newly annotated lncRNAs based on their closest an-
notated transcripts. It will potentially guide researchers
towards functional annotation and relationships between
lncRNAs and their annotated partners (lncRNA/mRNA
pairs for instance). For this purpose, the FEELnc classifier
module (FEELncclassifier) employs a sliding window strategy
(whose length is fixed by the user) around each lncRNAs to
report all the reference transcripts located within the win-
dow. Not only does the FEELnc classifier annotate lincR-
NAs and antisense lncRNAs but it also formalizes the defi-
nition of lncRNA subclasses with respect to annotated tran-
scripts (Figure 1B). First, these rules involve the direction
(sense or antisense) and the type of interactions (genic or
intergenic). Then, within each type of interaction, a subtype
level allows to narrow down the classification (e.g. divergent
for lincRNAs or containing for genic lncRNAs). Finally, a
location level is added informing about the position of the
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Figure 1. FEELnccodpot and FEELncclassifier description. (A) Two graph ROC curves for automatic detection of optimized CPS threshold and user speci-
ficity threshold, the latter defining two conservative sets of lncRNAs and mRNAs and a class of transcripts with ambiguous biotypes termed TUCp
(Transcripts of Unknown Coding potential). B) Sub classification of intergenic and genic lncRNA/transcripts interactions by the FEELncclassifier module.

lncRNA with respect to the annotated transcripts (e.g. up-
stream for lincRNA or exonic for genic lncRNAs). In ad-
dition, the FEELncclassifier can be used with all transcript
biotypes (e.g. short ncRNAs such as snoRNAs) from a ref-
erence annotation and therefore is capable of annotating
lncRNAs that are host genes for short RNAs (47) (hence
the ‘genic sense exonic’ class).

Because one lncRNA could belong to different classes
depending on which reference transcript is considered, our
approach reports all interactions within the defined window
and defines a best partner transcript using the following pri-
orities: for genic lncRNAs, the exonic class has priority over
the intronic class and the intronic over the containing, while
for lincRNAs, the nearest reference transcript is selected.

Reads mapping and transcript model reconstruction of canine
RNA-seq samples

The processing of RNA-seq reads from the mapping of the
reads to the transcript model reconstruction was performed
using standard bioinformatic pipeline (48). Such genome-
guided transcript model reconstruction has already been
validated as for instance in the canine genome (49). Briefly,
the mapping of the canine RNA-seq reads was done using
the STAR v2.5.0a program (50) while Cufflinks v2.2.1 (11)
was used to reconstruct transcript models for each sample
separately using the dog genome annotation by EnsEMBL
and by the Broad (49) as a guide. Finally, the cuffmerge tool,
from the Cufflinks package, was used to compute a single
consensus file with all reconstructed transcript models (all
command lines and parameters used for each tool are also
provided in Supplementary Data).

RESULTS

FEELnc modules to annotate lncRNAs

Starting from assembled transcripts and a reference anno-
tation, the FEELnc pipeline is composed of three indepen-
dent modules to classify and annotate lncRNAs (Figure 2).
The FEELncfilter module filters out input transcript mod-
els reconstructed via a genome-guided assembly strategy
that do not correspond to potential novel lncRNA candi-
dates. Due to its ability to take into account reference tran-
script biotypes (See Methods), the module allows to keep
novel transcript models overlapping other referenced ncR-
NAs for instance, as these models may correspond to long
non-coding RNAs that are host genes for small RNAs (51).
After the FEELncfilter module, the remaining transcripts are
thus candidates to be new lncRNAs or mRNAs.

The second module (FEELnccodpot) computes a coding
potential score for every candidate transcript based on a
RF model trained with several predictors such as ORF cov-
erage, multi k-mer frequencies and RNA sizes (see Meth-
ods for details about predictors). Using the gold-standard
GENCODE human learning set (HL) for training, we eval-
uated the performance of FEELnc on 5000 lncRNAs and
5000 mRNAs of the test data set with respect to the five
ORF types and multi k-mer combinations. Remarkably, we
observed that ‘type 1’ and ‘type 3’ ORFs, which extract
the longest ORF even in the absence of stop codon, con-
sistently display better achievements (mean MCC = 0.816)
than ‘type 0’ and ‘type 2’ ORFs (mean MCC = 0.67 and
0.68, respectively) whichever combination of k-mers is con-
sidered (Supplementary Figure S2). In addition, the multi
k-mer strategy improves the performance of the program
with a MCC performance starting at 0.80 when only using
6-mers but reaching 0.85 with a combination of {1, 2, 3, 6, 9,
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Figure 2. General overview of the FEELnc pipeline. The FEELnc filter module (FEELncfilter) identifies newly assembled RNA-seq transcripts and removes
non-lncRNA transcripts. The FEELnc coding potential module (FEELnccodpot) computes a coding potential score (CPS) and automatically defines the
optimal CPS score cut-off to discriminate lncRNAs versus mRNAs (and eventually TUCPs). The FEELnc classifier module (FEELncclassifier) annotates
lncRNA classes based on RNA partners from the reference annotation.

12}-mers (with a fixed ORF type 3, Supplementary Figure
S2).

In addition to measuring performance, we conducted sev-
eral evaluations to assess the robustness of the FEELnc pre-
dictions. First, we showed that FEELnc was not biased by
unbalanced or low numbers of transcripts in the input train-
ing set with sensitivity and specificity values higher than
0.9 using only 400 mRNAs and lncRNAs (Supplementary
Figure S3). Second, FEELnc performed similarly or better
than other methods to classify very small or long mRNAs
and lncRNAs (Supplementary Figure S4). Third, in order
to model incomplete RNA reconstructions, we removed the
10%, 25% and 50% of either 5′-end or 3′-end of transcript
sequences from the HT data set. Even if FEELnccodpot per-
formance decreased with increasing degradation percent-
ages (MCCs = 0.827, 0.749 and 0.53 for 10%, 25% and 50%,
respectively), it performed better than other tested meth-
ods (Supplementary Figure S5). Fourth, we observed simi-
lar high performance with mouse GENCODE data set ML
and MT (see materials) composed of 5000 mRNAs and

2000 lncRNAs where FEELnc achieves 0.938 in sensitivity,
0.941 in specificity and an MCC of 0.856. Finally, among
the manually curated list of 35 ‘well-characterized’ lncR-
NAs from Chen et al. (52), FEELnc correctly classifies 33
(95%) of them as non-coding. The two discordant lncRNAs
are PWRN1, which has a CPS (0.374) just above the opti-
mized cut-off (0.372), and FIRRE, which exhibits the high-
est CPS (0.58 when the median CPS for the 35 lncRNAs is
0.088). This high coding potential score for FIRRE lncRNA
can be explained by a large and complete ORF (546 nt, i.e.
58% of the total RNA sequence) and a high level of se-
quence similarity with the FAM195A protein-coding gene.

The third FEELnc module (FEELncclassifier) formalizes
the annotation of lncRNAs based on neighboring genes
in order to predict lncRNA functions and RNA partners
(see classes in methods). To illustrate the outcome of the
FEELncclassifier, we applied it on the human EnsEMBL v83
annotation composed of 24 659 lncRNAs (‘lincRNA’ and
‘antisense’ biotypes) and 79 901 mRNA transcripts (‘pro-
tein coding’ biotype). For instance, FEELncclassifier anno-
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tates 5544 lncRNAs as ‘intergenic antisense upstream’ which
correspond to divergent lincRNAs (i.e. transcribed in head
to head orientation with the RNA partner) among which
28.3% (n = 1572) are less than 1kb from their mRNA part-
ner Transcription Start Sites (TSSs). This class directly pin-
points to lincRNAs potentially sharing a bi-directional pro-
moter with their mRNA partners (53,54). On the other
hand, 408 lincRNAs located less than 5kb from their
mRNA partner, belong to the ‘sense intergenic upstream’
class and may correspond to dubious lncRNAs that are ac-
tually 5′UTR extensions of the neighboring protein-coding
RNAs. FEELncclassifier also annotates 5006 lncRNAs in the
‘antisense exonic’ class as potential candidates for comple-
mentary interactions with the mRNA transcribed in oppo-
site direction (55,56).

Benchmarking FEELnc and existing tools

We next compared the performance of FEELnc with
five state-of-the-art programs either alignment-free (CPAT,
CNCI and PLEK) or alignment-based (PhyloCSF and
CPC). Similarly to FEELnc, we used the balanced human
learning data set (HL) composed of 5000 lncRNAs and
5000 mRNAs (see Methods) to construct the models for
CPAT and PLEK (denoted CPATtrain and PLEKtrain). We
also used default pre-built models for PLEK and CPAT
although some of the transcripts from the human GEN-
CODE data set test file (HT) could have been used for build-
ing these models. For all programs, performance metrics
were calculated according to the HT data set. This showed
that FEELnc had the highest classification power (AUC, i.e.
Area Under the Curve value = 0.97) compared to the oth-
ers tools as illustrated by the ROC curves (Figure 3A). Ac-
cordingly, FEELnc displays the highest sensitivity (0.923)
and the second highest specificity (0.915) among all tools
while PLEK displays the highest specificity (0.985) and pre-
cision (0.981). In general, alignment-based methods have
lower classification metrics than alignment-free programs
as they usually depend on the quality of the input cross-
species alignments or the completeness of species-specific
protein databases. Finally, FEELnc also shows the highest
classification accuracy (0.919), F-score (0.919) and MCC
values (0.838) indicating that it performs well on the human
GENCODE data set in comparison to other tools (Table 1).

We further investigated the performance on the mouse
data sets composed of 2000 lncRNAs and 5000 mRNAs
in order to replicate the analysis in another organism us-
ing an unbalanced data set. For this benchmark, we in-
cluded the same programs except PhyloCSF due to the
labor-intensive task to extract input cross-species multiple
alignments. Again, FEELnc displays the highest classifica-
tion accuracy, F-score and MCC (Table 2) while CPC shows
the best specificity (0.992) and precision (0.996) despite a
weak sensitivity (0.744). As in human, the CPAT program
performs well even if we consider both the re-trained and
prebuilt models. Interestingly, CPAT used with the trained
mouse model has only slightly better performance than used
with the human prebuilt model. This suggests that within-
species training achieves relatively few performance gains
compared to cross-species training with a closely related
model species.

Finally, we assessed the computational time of each pro-
gram including the time required for computing the model
for training-based tools on a linux RedHat station (Intel(R)
Xeon(R) CPU X5550 @ 2.67GHz). FEELnc took ∼46 min
to classify the 10 000 human lncRNAs and mRNAs while
PLEK was the fastest (6 min as compared to ∼10 h when
we trained its model) and CPC the longest (∼2 days; with
default parameters).

Annotating lncRNAs without a species-specific training set of
lncRNAs

In the absence of a species-specific lncRNAs set, machine
learning strategies require to simulate non-coding RNA se-
quences to train the model. In order to evaluate the in-
tergenic and shuffle strategies on the human training sets
(see Materials and Methods), we computed their predic-
tor scores in comparison with the true set of 5000 HL
lncRNAs. For the shuffle strategy, it is essential to deter-
mine a priori which given k-mer frequencies should be pre-
served by Ushuffle to maximize classification accuracy. We
thus shuffled HL mRNA sequences for different sizes of k
and showed that preserving 7-mer frequencies gave the best
MCC values on the HT set while sustaining a high number
of permuted sequences (Supplementary Figure S6). We then
compared the intergenic versus shuffle-derived lncRNAs
and observed that the cumulative distribution of FEELnc
predictor values for the shuffle strategy tended to be closer
to the one observed in the true set of human lncRNAs
compared to the intergenic approach (Figure 3B). This re-
sult was confirmed by assessing performance of these two
strategies on the HT data set where the shuffle method out-
performed the intergenic approach (MCCs = 0.768 versus
0.646) as compared to true set of lncRNAs (MCC = 0.846)
(Supplementary Figure S7).

As described above, FEELnc can be used in a stringent
mode in order to distinguish high-confidence sets of lncR-
NAs and mRNAs. To this end, we also applied the ‘two cut-
offs’ option for both strategies with increasing specificity
thresholds (0.93, 0.96, 0.99 for both mRNAs and lncRNAs)
as compared to the automatic optimal CPS cut-off defined
previously (Supplementary Figure S7). With these cut-offs,
we also observed higher performances for the shuffle ap-
proach (MCCs = 0.823, 0.881 and 0.943) versus intergenic
(MCCs = 0.646, 0.654 and 0.785) (Supplementary Figure
S7). Moreover, the greater interest of the shuffle approach
could be appreciated by the lower variability between sensi-
tivity and specificity metrics as defined within the FEELnc
methodology compared to the intergenic approach (Supple-
mentary Figure S7).

In order to directly evaluate FEELnc performance for
‘non-model’ organisms, we used the FEELnc shuffle strat-
egy where the protein-coding predictors were learnt on
species-specific mRNAs and the non-coding predictors on
species-specific mRNAs shuffled by Ushuffle (with pre-
served 7-mer frequencies). All tests were further assessed on
the catalogues of lncRNAs annotated in the NONCODE
database. We also compared the performance with CNCI
knowing that NONCODE uses both CNCI and match-
ing protein-coding coordinates from RefSeq database to re-
move all ncRNAs annotated as protein-coding. In Supple-
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Figure 3. FEELnc performance against coding potential tools and with shuffle, intergenic and cross-species approaches. (A) ROC curve analysis of FEELnc
versus coding potential tools based on GENCODE human data set (HT). (B) Empirical cumulative distribution of FEELnccodpot feature scores with the
true set of human lncRNAs (‘lncRNA’) in comparison with the ‘shuffle’ and ‘intergenic’ methods. (C) FEELnccodpot MCC values tested on human HT
set and trained using human mRNAs and species-specific NONCODE lncRNAs (cross-species). The x-axis represents the time of speciation between
human and NONCODE species as given in (69). Species abbreviations are the following: Atha: Arabidopsis; Btau: Cow; Cele: Nematode; Dmel: Fly;
Drer: Zebrafish; Ggal: Chicken; Ggor: Gorilla; Hsap: Human; Mdom: Opossum; Mmul: Rhesus; Mmus: Mouse; Oana: Platypus; Pabe: Orangutan; Ptro:
Chimpanzee; Rnor: Rat.

Table 1. Tools performance on the GENCODE human data sets. Bold-underlined values correspond to the highest values of each metrics. CPAT train
and PLEK train correspond to program versions trained with the HL data set. Programs are sorted by MCC values

HUMAN data
set Program Sensitivity Specificity Precision Accuracy F-score MCC

FEELnc 0.923 0.915 0.916 0.919 0.919 0.838
CPAT 0.899 0.924 0.922 0.912 0.910 0.823
CPAT train 0.920 0.901 0.903 0.910 0.911 0.821
CNCI 0.829 0.979 0.975 0.904 0.896 0.817
PLEK 0.732 0.985 0.981 0.858 0.838 0.741
PhyloCSF 0.906 0.802 0.820 0.854 0.861 0.712
PLEK train 0.582 0.960 0.936 0.770 0.718 0.584
CPC 0.699 0.739 0.728 0.719 0.713 0.438

Table 2. Program performances on the GENCODE mouse data sets. Bold-underlined values correspond to the highest values of each metrics. Programs
are sorted by MCC values

MOUSE data
set Program Sensitivity Specificity Precision Accuracy F-score MCC

FEELnc 0.938 0.941 0.976 0.939 0.956 0.856
CPAT train 0.950 0.880 0.952 0.930 0.951 0.828
CPAT 0.892 0.960 0.982 0.911 0.935 0.806
CNCI 0.857 0.972 0.987 0.890 0.918 0.772
CPC 0.744 0.992 0.996 0.815 0.852 0.667
PLEK 0.710 0.913 0.954 0.768 0.814 0.564
PLEK train 0.630 0.891 0.936 0.704 0.753 0.470
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mentary Table S3, we showed that FEELnc without anno-
tated lncRNAs achieved good classification metrics in many
species (MCCs ranging from 0.70 for rat to 0.903 for cow)
and even better than CNCI in five diverse species (nema-
tode, fly, gorilla, orangutan and rhesus macaque).

As a third approach to model non-coding sequences, we
sought to use cross-species lncRNAs for learning FEELnc
model parameters. To this end, NONCODE lncRNAs from
13 diverse organisms were used to serve as a proxy for mod-
eling human lncRNAs, and evaluation metrics were then
performed on the HT data set. As expected, FEELnc per-
formance is negatively correlated with respect to the evolu-
tionary distance between human and NONCODE species
(Spearman rho = −0.85; P-value = 5.6e-05) with MCC val-
ues of 0.374 when using Caenorhabditis elegans lncRNAs
to 0.823 with chimpanzee lncRNAs (Figure 3C and Sup-
plementary Table S4). This probably reflects the variabil-
ity in term of lncRNA sequence conservation (and thus in
non-coding k-mer frequencies) between human and NON-
CODE species (35,52). Interestingly, the shuffle strategy
showed a MCC of 0.748, which corresponds to the perfor-
mance obtained with species that diverged about 100 mil-
lion years ago. This indicates that it constitutes an interest-
ing approach when no lncRNAs from closely related species
are available.

Application to identify an extended catalog of canine
lncRNAs

Within the framework of the LUPA consortium (29,57),
we performed 20 whole transcriptome sequencing experi-
ments of 16 canine tissues (Supplementary Table S1). After
QC, ∼1, 3 billions reads were mapped onto the CanFam3
genome assembly using the STAR mapper (50). Cufflinks
(11) was further used to reconstruct the transcript models
in each tissue separately guided by a consensus reference
annotation given by the Broad (49) and EnsEMBL v83 (22)
annotations (called CanFam3.1). Then, the cuffmerge tool
(Cufflinks package) merged the tissue samples files into a
single GTF file containing 211 794 transcript models of
more than 50 000 gene models. In order to annotate new
transcribed loci, we used the FEELncfilter module to flag
all transcripts which overlap exons (in sense) from the ref-
erence annotation, single exonic intergenic transcripts and
transcripts with a size below 200 nt. A total of 5523 re-
maining candidate transcripts were then analyzed by the
FEELnccodpot module. The ‘two cut-offs’ option was run
with a minimal specificity threshold fixed at 0.93 in both
biotypes. These cut-offs allow leveraging the number of am-
biguous transcripts (TUCps) while optimizing classification
specificity (see Materials and Methods). This analysis iden-
tified 3822 novel lncRNA transcripts, 477 new mRNA tran-
scripts and 884 TUCps.

Because we also aimed at developing a comprehen-
sive annotation of novel transcript isoforms, we used
FEELnccodpot, with the exact same parameters as before,
on the subset of assembled models overlapping (but not in-
cluded in) the current CanFam3.1 annotation (n = 69 602)
(See Supplementary Methods for details). In addition, since
a novel transcript isoform could merge two or more genes
from the reference annotation, we defined rules to avoid

the merging of transcripts having different biotypes by re-
moving these incompatible transcripts (see Supplementary
Methods for details). This resulted in the annotation of 67
312 transcripts with more mRNA isoforms (58 163) com-
pared to lncRNAs (6552) and TUCps (2597).

Combining the results of these analyses with the refer-
ence annotation, the new canine annotation that we called
CanFam3.1-plus, includes a total of 36 237 loci (with 3145
new loci) and 189 114 transcripts (with 10 374 lncRNA and
58 640 mRNA newly annotated transcripts) (Supplemen-
tary Table S5).

This study improves the dog genome annotation in sev-
eral aspects. First, we extended the number of mRNA
transcripts by 50% and doubled the number of annotated
lncRNA transcripts. Second, we found that novel lncRNA
and mRNA transcripts were longer in terms of number
of exons, CDS/UTRs and RNA sizes compared to Can-
Fam3.1 transcripts suggesting a more complete reconstruc-
tion of their gene structures (Supplementary Table S6).
Also, the number of isoforms per gene locus has been ex-
panded to ∼2.2 and ∼7.2 for lncRNAs and mRNAs, re-
spectively. Third, using STAR and RSEM (58) programs to
quantify transcripts expression levels, we found that 86%
of novel lncRNAs have a TPM (transcript per million)
value higher than 0.5 in at least one of the 20 tissues high-
lighting a robust set of new lncRNAs. Finally, among the
novel canine lncRNA genes, ∼15% are also found as non
protein-coding genes in the human GENCODE annota-
tion by using the EnsEMBL compara EPO alignments (59).
The CanFam3.1-plus now annotates, for instance, three
CAncer Susceptibility Candidates lincRNAs (CASC lin-
cRNAs) such as the CASC9 lincRNA located on canine
chr29:23,554,585-23,605,371 and involved in esophageal
squamous cell carcinoma (60). Other examples include the
well-described MALAT1 cancer-associated lincRNA (61)
which was considered as an unclassified non-coding tran-
script in CanFam3.1 and the IFNG-AS antisense lncRNA
involved in T-cell differentiation (62).

Finally, by employing the FEELncclassifier on all
CanFam3.1-plus lncRNA transcripts (see Supplemen-
tary Table S4), we annotated 8209 lincRNAs. Among
them, 1279 are located at a distance smaller than 5 kb and
transcribed in a divergent orientation from their neighbor
mRNA which could suggest potential canine bi-directional
promoters (54). For genic lncRNAs, FEELncclassifier identi-
fied 5085 antisense exonic lncRNAs as possible candidates
for sense-antisense regulation by sequence complementar-
ity (55). The CanFam3.1-plus annotation constitutes a new
resource that will help identifying lncRNA candidates for
understanding genotype to phenotype relationships.

DISCUSSION

In this study, we designed a new program to identify and
annotate lncRNAs called FEELnc for FlExible Extrac-
tion of Long non-coding RNAs. Using the gold-standard
GENCODE annotation in human and mouse (27), we
showed that FEELnc performs well to discriminate long
non-coding versus protein-coding RNAs. Most proba-
bly, FEELnc includes predictors (multi k-mer frequen-
cies and ORF coverage) that are general enough to cap-
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ture all lncRNAs classes whereas alignment-based methods
will be biased toward misclassifying species-specific tran-
scripts or coding transcripts that are not referenced in pep-
tide databases. The integration of a Random Forest-based
model in FEELnc contributes to the good achievements of
the tool because of the intrinsic properties of randomly sub-
sampled features thereby encompassing diverse lncRNA
characteristics. In recent years, major advances have been
made in the machine learning field (63) allowing the pro-
grams to cope with thousands of parameters simultane-
ously. Thus, it would thus be of great value to investigate
deep learning approaches to coding and non-coding RNA
annotations.

The contribution of FEELnc is not only limited to pro-
vide high classification performance metrics on models or-
ganisms since the tool is also accompanied by several mod-
ules and options that enable fine-tuning and precisely ad-
justing lncRNA annotations for any species of interest. To
our knowledge, it is the first tool that allows users to an-
notate conservative sets of lncRNAs and mRNAs by auto-
matically fixing their own specificity thresholds (40). Sec-
ond, FEELnc can be used for any given species even in
the absence of a lncRNA training set due to the possibility
to model species-specific lncRNAs. For instance, the shuf-
fle strategy only requires species-specific protein-coding se-
quences and it is thus suitable for analyses without a ref-
erence genome assembly, which is still the case for many
non-model organisms. Third, we expect the FEELnc clas-
sifier module to be of great interest to researchers in order
to automatically annotate novel lncRNAs thus directly pro-
viding candidate pairs of lncRNA and mRNA partners to
be investigated for experimental validations.

For non-model organisms, we have shown that FEELnc
performs similarly to CNCI although the benchmark was
done on NONCODE lncRNAs that were a priori filtered
by the CNCI tool. As for human and mouse where the
manually curated GENCODE annotation is considered as
a standard, this stressed the importance of also defining
gold-standard sets of lncRNAs/mRNAs to correctly eval-
uate programs for ‘non-model’ organisms. This is envis-
aged within the framework of collaborative projects such as
FAANG, the Functional Annotation of Animal Genomes
project (30).

Although the purpose of FEELnc is not to assemble tran-
scripts from RNA-seq data, the program relies on the cor-
rect modeling of transcripts. For weakly expressed mRNAs,
the corresponding reconstructed models might not be full-
length and thus may also introduce a bias for the FEELnc
sequence length predictors. However, the benchmarking on
shortened sequences (Supplementary Figure S5) showed
that FEELnc performs well even if 25% of either transcript-
end sequences are removed. With the availability of very
long reads from third generation sequencing technologies
(64), the issue will not so much consist in annotating full-
length transcripts but rather in taking into account the high
error rate inherent to these technologies, which could lead
to the misannotation of the correct ORF. Using a specific
FEELnc option, preliminary tests on degraded transcript
sequences showed that it raised good evaluation metrics (Sn
= 0.87, Prec = 0.78) when the computation of multi k-mer
frequencies is done on the entire transcript sequence (i.e in-

dependently of the ORF annotation) and the ORF coverage
is removed from the predictors (see Supplementary Table
S7).

Finally, we illustrated the usefulness of FEELnc on the
dog transcriptome for which 20 RNA-seq samples were se-
quenced in the frame of the LUPA consortium. The bio-
logical relevance of this expanded canine resource can be
illustrated by the increased transcript and CDS sizes as well
as higher exon numbers. Although this improved annota-
tion will facilitate the identification of genotype to phe-
notype associations, it will still need further investigations
given the plethora of expressed biotypes beside lncRNAs
and mRNAs. For instance, one could consider annotating
transcribed (processed or unprocessed) pseudogenes or en-
hancer RNAs by using FEELnc as a multiclass classifier in-
stead of a binary classifier (e.g. coding versus non-coding).
Indeed, pseudogenes that recently derived from a protein-
coding gene should harbor multi k-mer frequencies simi-
lar to their parent mRNAs but without long ORFs. Their
CPS would then be gathered in an intermediate class be-
tween lncRNAs and mRNAs. For instance, FEELnc iden-
tifies that the FIRRE lncRNA has an intermediary CPS
score of 0.58 that is supported by a relatively long ORF
of 152 AA and significant percentage of sequence similar-
ity with the FAM195 protein-coding genes. Interestingly, it
also appeared that the fourth exon of FIRRE is almost com-
pletely embedded in the MCRIP2P1 pseudogene, the latter
deriving from FAM195 mRNA. This highlights the poten-
tial use of FEELnc to annotate pseudogene-derived lncR-
NAs (65,66) for which the CPS score should be in between
lncRNAs and mRNAs. Similarly, enhancer RNAs defined
as non-coding transcripts derived from enhancer elements
(67,68) should harbor small ORFs and specific patterns of
k-mers corresponding to their transcription factor binding
sites, which would then be caught by FEELnc predictors.

Altogether, FEELnc provides a standardized and exhaus-
tive protocol to identify and annotate lncRNAs.

AVAILABILITY

FEELnc is implemented in Perl and R (and KmerInShort
in C++) and is available throw a github: https://github.com/
tderrien/FEELnc. A UCSC track hub for the extended ca-
nine annotation CanFam3.1-plus is available using the fol-
lowing URL:

http://tools.genouest.org/data/tderrien/canFam3.1p/
annotation/trackhub/canfam3.1p trackhub/hub.txt with
transcripts from the original CanFam3.1 annotation in
blue, new isoforms from CanFam3.1 genes in green and
transcripts from CanFam3.1-plus genes in red. A guideline
is available in the Supplementary Data for running FEELnc
analyses with or without a reference genome.

ACCESSION NUMBERS

The RNA-seq data from this study have been submitted to
the NCBI Sequence Read Archive (SRA; http://www.ncbi.
nlm.nih.gov/sra/) under NCBI bioproject PRJNA327075
and SRA accession SRP077559.
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SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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21. Blanco,E., Parra,G. and Guigó,R. (2007) Using geneid to identify
genes. Curr. Protoc. Bioinformatics, 4, 3.

22. Yates,A., Akanni,W., Amode,M.R., Barrell,D., Billis,K.,
Carvalho-Silva,D., Cummins,C., Clapham,P., Fitzgerald,S., Gil,L.
et al. (2016) Ensembl 2016. Nucleic Acids Res., 44, D710–D716.

23. Johnson,R. and Guigo,R. (2014) The RIDL hypothesis: transposable
elements as functional domains of long noncoding RNAs. RNA, 20,
959–976.

24. Zucchelli,S., Fasolo,F., Russo,R., Cimatti,L., Patrucco,L.,
Takahashi,H., Jones,M.H., Santoro,C., Sblattero,D., Cotella,D. et al.
(2015) SINEUPs are modular antisense long non-coding RNAs that
increase synthesis of target proteins in cells. Front. Cell. Neurosci., 9,
1720.

25. Tagu,D., Colbourne,J.K. and Nègre,N.N. (2014) Genomic data
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