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The monodromy conjecture for plane

meromorphic germs

Manuel González Villa and Ann Lemahieu

Abstract.— A notion of Milnor fibration for meromorphic functions and the corresponding con-

cepts of monodromy and monodromy zeta function have been introduced in [GZLM1]. In this article

we define the topological zeta function for meromorphic germs and we study its poles in the plane case.

We show that the poles do not behave as in the holomorphic case but still do satisfy a generalization of

the monodromy conjecture.

0. Introduction

In the last decades there has been an increasing interest in zeta functions associated to
a germ of holomorphic function, such as the Igusa zeta function, the topological zeta
function and the motivic zeta function. These zeta functions are rational and can be
described in terms of an embedded resolution of the germ. Each irreducible component
of the total transform of an embedded resolution of the germ yields a ‘candidate pole’ of
these zeta functions. However, many of these candidate poles are canceled. In general
no geometric criterion is known to sort out the poles from a set of candidate poles. The
poles are completely characterised in dimension two. In [Ve1, Theorem 4.3] Veys gives
a criterion to deduce easily the poles from the embedded resolution graph.

The poles of these zeta functions also show up in the monodromy conjecture.
The monodromy conjecture predicts that if s0 is a pole of the topological zeta func-
tion (or the Igusa or the motivic zeta function) associated to a holomorphic germ
f : (Cn+1, 0) → (C, 0), then e2πis0 is an eigenvalue of monodromy at some point of
f−1{0} in a neighbourhood of the origin. This conjecture has been proven for plane
curves by Loeser in [L1]. An alternative proof is given by Rodrigues in [Ro]. The
conjecture is still open in arbitrary dimension. Particular cases are proven in [L2],
[ACLM1], [ACLM2], [LV] and [LVa].

These poles are rational numbers of the form −νi/Ni, i ∈ S, where the numbers
νi−1 and Ni are given by the multiplicities of the divisors π∗dx1∧ · · ·∧dxn+1 and π∗f
along Ei for an embedded resolution π : X → Cn+1 of f (see Section 1). Némethi and
Veys propose an original approach to the conjecture (at least for dimension 2) in [Ve4],
[NV1] and [NV2]. By considering another differential form than the standard form a
different set of numbers (νi)i∈S is generated. They investigate under which conditions
the corresponding new set of poles still gives rise to eigenvalues of monodromy and
which eigenvalues can be found in this way.

In this article we take a complementary approach. In our case the values (νi)i∈S
are the standard ones but we vary the set (Ni)i∈S . In concrete, we consider the case
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of plane meromorphic germs f = P
Q . The series of numbers (Ni = NP

i − N
Q
i )i∈S are

now more general than in the case of plane curves. The notions of Milnor fibration and
monodromy for germs of meromorphic functions have been defined in [GZLM1]. These
definitions were motivated by the classification of germs of fractions due to Arnold
in [A]. We define a topological zeta function for meromorphic germs and then, the
context for the monodromy conjecture being prepared, we show that the monodromy
conjecture also holds for plane meromorphic germs. Very recently, Raibaut defined a
motivic Milnor fibre and motivic zeta function for rational functions (see [R1, R2]).

The outline of this paper is as follows. In the first section we recall the notions
of Milnor fibre for meromorphic germs and zeta function of monodromy, as they were
introduced by Gusein-Zade, Luengo and Melle-Hernández in [GZLM1]. In the second
section we define the topological zeta function in the meromorphic context and we study
its poles in the plane case. We show that now just only one implication in the criterion
of Veys holds. In Section 3 we propose the monodromy conjecture for meromorphic
germs and we prove the conjecture in the plane case.

1. Monodromy for meromorphic germs

Definition 1 A germ of a meromorphic function on (Cn+1, 0) is a fraction f = P
Q ,

where P and Q are germs of holomorphic functions P,Q : (Cn+1, 0) → (C, 0). Two
meromorphic functions f = P/Q and f ′ = P ′/Q′ are said to be equal if there exists a
germ of a holomorphic function u : (Cn+1, 0)→ (C, 0) with u(0) 6= 0 such that P ′ = Pu
and Q′ = Qu.

Definition 2 Let X be an (n + 1)-dimensional smooth analytic manifold, U a neigh-
bourhood of 0 ∈ Cn+1 and π : X → U a proper analytic map which is an isomorphism
outside a proper analytic subspace in U . We say that π is an embedded resolution of
the germ of the meromorphic function f = P

Q if

1. the total transform π−1(H) of the hypersurface H = {P|U = 0} ∪ {Q|U = 0} is a
normal crossing divisor at each point of X;

2. the lifting f̃ = f ◦ π = P◦π
Q◦π defines a holomorphic map f̃ : X → P1.

Remark 1 One can obtain an embedded resolution π for P
Q from an embedded res-

olution π′ for PQ by blowing up along the intersections of irreducible components of
π−1{PQ = 0} until the irreducible components of the strict transform in π−1{P = 0}
and π−1{Q = 0} are separated by a dicritical component, i.e. an exceptional divisor E
of π for which f̃|E : E → P1 is a surjective map.

Example 1 We compute an embedded resolution π for the germ f = P/Q = ((y2 −
x3)2−xy5)/(x− y) and represent it by its dual resolution graph, i.e. to each irreducible
component of π−1(H) we associate a vertex and we join two vertices if the corresponding
components have a non-empty intersection. The vertices corresponding to the compo-
nents of the strict transform of H are represented by arrowheads. An arrowhead →
(resp. �) corresponds to an irreducible component of the strict transform of P (resp.
Q). The following figure shows the dual resolution graph of f .
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The exceptional components E1, · · · , E7 are created to resolve {PQ = 0}. We then
perform some additional blow ups until we get the dicritical component E10 that sep-
arates the components according to the value they take when applying f ◦ π. In this
example E11 is send to ∞ ∈ P1 and the other components different from the dicritical
component E10 are mapped to 0 ∈ P1. �

In [GZLM2], Gusein-Zade, Luengo and Melle-Hernández introduced the notion of a-
Milnor fibre for meromorphic germs. Let f = P/Q be a meromorphic germ on (Cn+1, 0).
Let Bε be the closed ball of radius ε centered at 0 ∈ Cn+1 with ε sufficiently small such
that P and Q are defined on Bε and the sphere ∂Bε intersects transversally {P = 0}
and {Q = 0}. Then f : Bε \ {P = Q = 0} → P1 is a locally trivial C∞ fibration over a
small enough punctured disc with center a ∈ P1.

Definition 3 The a-Milnor fibre of the meromorphic germ f at 0 ∈ Cn+1 is

Ma
f = {z ∈ Bε | f(z) =

P (z)
Q(z)

= c},

with c ∈ C and ||c− a|| small enough and different from 0.

They also introduced the corresponding a-monodromy zeta function. Consider a coun-
terclockwise going loop around the value a and let haf be the induced diffeomorphism
of the a-Milnor fibre Ma

f . The a-monodromy transformation haf∗ at the origin is then
the induced automorphism of the homology groups of the a-Milnor fibre and its zeta
function is defined as

ζaf (t) =
∏
q≥0

(
det(Id− thaf∗ |Hq(Ma

f ,C)
)
)(−1)q

.

Notice that ∞-Milnor fibre of f is the 0-Milnor fibre of 1/f (and ζ∞f = ζ0
1/f ) and that

the a-Milnor fibre of f , for a ∈ P1 \ {0,∞}, is the 0-Milnor fibre of f − a (and then
ζaf = ζ0

f−a). Therefore in the rest of the paper we permit us to think at a = 0 and we
will not explicitly denote the value a = 0.

In [GZLM1], the monodromy zeta function is expressed in terms of an embedded
resolution of f . We first introduce some useful notation. Let π : X → U be an embedded
resolution of the germ of meromorphic function f = P

Q and let (Ei)i∈S be the irreducible
components of the total transform π−1(H). We will denote E◦i := Ei \ (∪j∈S\{i}Ej),
for i ∈ S. For i ∈ S, let NP

i (resp. NQ
i ) be the multiplicity of P ◦ π (resp. Q ◦ π) along

Ei and νi− 1 the multiplicity of π∗(dx1∧ · · · ∧dxn+1) along Ei. The data (NP
i , N

Q
i , νi)

are called the numerical data corresponding to the component Ei. Sometimes we just
write (Ni, νi), with Ni := NP

i −N
Q
i . Finally, denote by S0 the set {i ∈ S | NP

i > NQ
i }.

3



Remark that the irreducible components of the total transform that are send to
0 (resp. to ∞) under f ◦ π are then exactly those Ei for which NP

i > NQ
i (resp.

NP
i < NQ

i ). The dicritical components verify that NP
i = NQ

i . However NP
i = NQ

i

does not imply that E is dicritical.
We denote the topological Euler characteristic by χ(·).

Theorem 1 [GZLM1, Theorem 1] Let π : X → U be an isomorphism outside the
hypersurface {P|U = 0} ∪ {Q|U = 0}. Then

ζf (t) =
∏
i∈S0

(
1− tNP

i −N
Q
i

)χ(E◦i ∩π−1{0})
,

Example 1 Continued The numerical data corresponding to the embedded resolution
π for the germ f = P/Q = ((y2 − x3)2 − xy5)/(x− y) of Example 1 are written in the
following table.

i = 1 2 3 4 5 6 7 8 9 10 11 12
NP
i 4 6 12 14 16 17 34 4 4 4 0 1

NQ
i 1 1 2 2 2 2 4 2 3 4 1 0
νi 2 3 5 6 7 8 15 3 4 5 1 1

We thus find

ζf (t) =
(1− t5)(1− t15)
(1− t10)(1− t30)

.

�

2. Topological zeta function for meromorphic functions

In this section we extend the definition of the local topological zeta function for holo-
morphic functions to meromorphic functions. Let f = P

Q be a meromorphic function
on (Cn+1, 0) and let π : X → U be an embedded resolution of f as in Section 1. We
denote EI := ∩i∈IEi and E◦I := EI \ (∪j /∈IEj).

Definition 4 The 0-local topological zeta function associated to f at 0 ∈ Cn+1 is the
rational function

Ztop,f (s) =
∑
I⊂S

I∩S0 6=∅

χ(E◦I ∩ π−1{0})
∏
i∈I

1

(NP
i −N

Q
i )s+ νi

.

As in the holomorphic case, the global version is defined by taking χ(E◦I ) instead of
χ(E◦I ∩π−1{0}). Checking that this definition does not depend on the chosen embedded
resolution for f goes analogously as in the holomorphic case.
The definition of the topological zeta function yields a set of candidate poles{

− νi

NP
i −N

Q
i

| i ∈ S0

}
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that are negative rational numbers, depending on the chosen embedded resolution. No-
tice that in particular the dicritical components do not give rise to candidate poles and
neither components of the strict transform of Q do.

Example 1 Continued Continued. The local topological zeta function of f =
(y2−x3)2−xy5

x−y at 0 is

Ztop,f (s) = − 1
10s+ 5

− 1
30s+ 15

+
1

5(s+ 4)
+

1
(s+ 4)(2s+ 3)

+
1

(2s+ 3)(3s+ 2)

+
1

(10s+ 5)(3s+ 2)
+

1
(10s+ 5)(5s+ 3)

+
1

(10s+ 5)(12s+ 6)

+
1

(12s+ 6)(14s+ 7)
+

1
(14s+ 7)(30s+ 15)

+
1

(30s+ 15)(15s+ 8)

+
1

(30s+ 15)(s+ 1)
+

1
15s+ 8

+
1

5s+ 3

=
20s2 + 33s+ 12.

15(s+ 1)(2s+ 1)2

�

In the above example we see that most candidate poles are canceled. This is a general
phenomenon and it appears already in the holomorphic case. For dimension 2 there
is a complete geometric criterion to determine the poles of the local topological zeta
function (or the other local zeta functions) associated to a holomorphic function. The
general case is however poorly understood. We recall this criterion.

Theorem 2 [Ve1] Let f ∈ C[x, y] and let π be the minimal embedded resolution of f .
We have that s0 is a pole of Ztop,f (s) if and only if s0 = −νi/Ni for some exceptional
curve Ei intersecting at least three times other components, or s0 = −1/Nj for some
irreducible component Ej of the strict transform of f−1{0}.

We will now study the poles in the case of plane meromorphic germs. The next example
shows that Theorem 2 does not hold anymore for plane meromorphic functions.

Example 2 Let f = P/Q with

P (x, y) =
3∏
i=1

5∏
j=1

((y + aix)− bjx2)P ′(x, y) and

P ′(x, y) =
4∏

k=1

(
2∏

l=1

((y + ckx)− x2 − ckdlx
2 − dlxy)

3∏
m=1

((y + ckx)− 2x2 − ckfmx
2 − fmxy)

)
,

Q(x, y) =
35∏
n=1

(y − gnx),

with ai, ck, gn ∈ C all different, all the bj ∈ C different, the dl ∈ C different and the
fm ∈ C different. The dual resolution graph is as follows

5



6
6 · · · 6

6

︷ ︸︸ ︷35 times

-
-
-
-

-
-
-
-
-

-
-
-
-
-

-
666 666 666 666

66 66 66 66

E1 E2 E3 E4 E5 E6 E7 E8

E9 E10 E11 E12

E13 E14 E15 E16

We compute the numerical data.

i= 1 2, 3, 4 5, 6, 7, 8 9, 10, 11, 12 13, 14, 15, 16
NP
i 35 40 40 42 43

NQ
i 35 35 35 35 35
Ni 0 5 5 7 8
νi 2 3 3 4 4

We find that Ztop,f (s) = −560s3+1274s2+767s+132
2(7s+4)(s+1)(2s+1) and so the candidate pole −3/5 is not

a pole. �

To prove the criterion for poles of plane curves, Veys points out in [Ve1] that there is
an ‘ordered tree structure’, i.e. the candidate poles are ordered increasingly along well-
described paths in the tree. This structure fails in the meromorphic case. The other
implication in Theorem 2 still holds, i.e. if s0 is a pole of Ztop,f (s), then s0 = −νi/Ni

for some exceptional curve Ei intersecting at least three times other components, or
s0 = −1/Nj for some irreducible component Ej of the strict transform of f−1{0}. We
prove this result now in the plane meromorphic case.

Let π : X → U be an embedded resolution for f = P/Q as in Section 1 and let
(Ei)i∈S be the irreducible components of the total transform π−1(H). Let E(N, ν) be an
exceptional component of π for which N = NP −NQ 6= 0 and suppose that E intersects
exactly k other irreducible components of π−1(H), say E1(N1, ν1), . . . ,Ek(Nk, νk). For
i ∈ {1, · · · , k}, we set αi = νi − ν

NNi.

Lemma 3 The following relations hold:

k∑
i=1

Ni = (−E · E)N ; (1)

k∑
i=1

αi = k − 2. (2)

Proof. We can follow the conceptual proof of Veys in [Ve3] for holomorphic functions.
In Pic(X) we have

∑
i∈S N

P
i Ei = 0 and

∑
i∈S N

Q
i Ei = 0. Hence NE = −

∑
l(NP

l −
NQ
l )El, where l runs over all components El, l ∈ S, except E. Intersecting with E

yields N(E · E) = −
∑k

i=1Ni. This gives us Relation (1).
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For Relation (2) we have that KX =
∑

i∈S(νi − 1)Ei. Hence in Pic(X)⊗Q we have

KX =
∑
i∈S

(νi − 1)Ei −
ν

N
(
∑
i∈S

NiEi)

= (ν − 1)E +
∑
l

(νl − 1)El −
ν

N
(
∑
l

NlEl)− νE

= −E +
∑
l

(αl − 1)El

where l runs over all components El, l ∈ S, except E.
Intersecting with E gives KX · E = −E · E +

∑k
i=1(αi − 1) and by the adjunction

formula we get −2 = degKE =
∑k

i=1(αi − 1). �

If ν/N 6= νi/Ni for i ∈ {1, · · · , k}, then the contributionR of the exceptional divisor
E to the residue of Ztop,f (s) at s = −ν/N is given by

R =
1
N

(2− k +
k∑
i=1

1
αi

).

Completely analogous to the holomorphic case, one can now prove the following result.

Proposition 4 Let f = P
Q be a germ of a plane meromorphic function. If s0 is a pole

of Ztop,f (s), then s0 = −νi/Ni for some exceptional component intersecting at least
three other components or s0 = −1/Ni for some irreducible component of the strict
transform of P .

Proof. If s0 is not a candidate pole of order two, then one can deduce from Relation (2)
that the exceptional components giving rise to the candidate pole s0 and that have at
most two intersections do not contribute to the residue. If s0 is a candidate pole of order
two, then suppose Ei intersects Ej and νi/Ni = νj/Nj . If Ei or Ej is a component of the
strict transform of P , then we are done. Suppose now that Ei and Ej are exceptional
components. If Ei or Ej has no other intersections, then we get a contradiction with
Relation (2). If they intersect exactly one other component, then Relation (2) implies
that this component also yields the same candidate pole. By iterating the previous
arguments, we can conclude that there is a component of the strict transform or an
exceptional component intersecting at least three other components that also gives rise
to the candidate pole −νi/Ni. �

3. Some facts about resolution for plane curves

In this section we formulate some properties of resolution of singularities of plane curves.
These properties should be well known but we recall them here because they are im-
portant to understand well the resolution of plane meromorphic germs. This section
will serve as a preparation for Section 4 where we will treat the monodromy conjecture
for plane meromorphic germs.
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(1) Notation. Let us fix some terminology about the dual resolution graph G (of
plane curves or of plane meromorphic germs). For a vertex of G, let its valence be the
number of irreducible components that meet the irreducible component corresponding
to that vertex. A bamboo leaving out of a vertex of G is a connected path in G starting
in that vertex, having an end point with valence 1 and in which the vertices in between
have all valence 2. A bamboo is said to be a primitive bamboo if its valence one vertex
does not correspond to an irreducible component of the strict transform (i.e. it is not an
arrowhead). The branches leaving out of a vertex of G are the connected components of
G minus that vertex. Such a branch is called primitive if none of its valence one vertices
corresponds to an irreducible component of the strict transform (i.e. the branch does
not contain arrowheads).

(2) Dual resolution graphs. The following properties of dual resolution graphs
of plane curve singularities will be useful. See [BK, III. Section 8.4, Prop. 16] or [dJP,
Section 5.4, Theorem 5.4.5] for a proof.

Proposition 5 For the dual resolution graph G of the minimal embedded resolution of
a plane curve the following statements hold:

1. The graph G is finite and does not contain cycles;

2. For every vertex of G there is at most one primitive bamboo leaving out of that
vertex, except for possibly one vertex from which at most two primitive bamboos
leave;

3. For every vertex of G there is at most one primitive branch leaving out of that
vertex which is not a bamboo.

Remark 2 To create the minimal embedded resolution of a meromorphic germ P/Q,
notice that one can take the minimal embedded resolution of PQ to which one adds
the necessary blow ups to create the dicritical components. Notice that the blow ups
(the intersections of irreducible components of π−1{PQ = 0}) necessary to create
the dicritical components only create vertices with valence 2. This implies that the
statements in Proposition 5 still hold for the dual minimal embedded resolution graph
of a plane meromorphic germ.

(3) Properties of the resolution data. Let f : (C2, 0) → (C, 0) be a holo-
morphic germ. Let E(N, ν) be an exceptional component with N 6= 0 and sup-
pose that E intersects exactly k other irreducible components of (f ◦ π)−1{0}, say
E1(N1, ν1), . . . ,Ek(Nk, νk). For i ∈ {1, · · · , k}, we set αi = νi − ν

NNi. The bounds on
the numbers αi play an essential role in the proof by Rodrigues of the monodromy con-
jecture for plane curves (see [Ro]). In the holomorphic case Loeser stated the following
bounds:

Proposition 6 [L1, Proposition II.3.1] Suppose that E is an exceptional component
in the minimal embedded resolution of a plane curve which intersects at least two irre-
ducible components in the total transform, one of them being Ej. Then −1 < αj < 1.
If the embedded resolution of the plane curve is not minimal, then −1 ≤ αj ≤ 1.
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Remark 3 If the exceptional component E intersects exactly one component, say Ej ,
then it follows from Relation (2) for holomorphic germs (see [Ve2, Lemma 2.3]) that
αj = −1.

In our proof of the monodromy conjecture for plane meromorphic germs we will follow
the same strategy as Rodrigues but we will have to study carefully the numbers αi.
Indeed, in the case of meromorphic germs in general the numbers αi are not bounded
even in the minimal embedded resolution (see Example 1 with E = E8 and Ej = E1,
then α1 = −5/2). In what follows we will look at subgraphs of the dual resolution
graph of a plane meromorphic function in which the numbers αi are contained in the
interval (−1, 1).

Let π : X → U be an embedded resolution of the germ of the plane meromorphic
function f = P

Q at 0 and let (Ei)i∈S be the irreducible components of the total transform
of f . Denote by E the exceptional divisor of π; i.e. E = ∪i∈SEi ∩ π−1(0), and by D the
union of the dicritical components of π.

In order to prove the monodromy conjecture for plane meromorphic germs we need
to take into account some features of the connected components of the closure (E −D)c

of E − D. These components where studied by Delgado and Maugendre in relation to
the geometry of pencils of plane curve singularities (see [DM]). Here we recall some
properties needed in our proof.

Let E(N, ν) be an exceptional component of π with N = NP − NQ 6= 0 and
suppose that E intersects exactly k other irreducible components of (f ◦ π)−1{0}, say
E1(N1, ν1), . . . ,Ek(Nk, νk). Recall that π is also a resolution of the curves P and Q and
that the corresponding resolution data are related by Ni = NP

i −N
Q
i . From the identity

[Ve3, 2.2 (ii)], which is the version of (2) for resolutions of plane curve singularities, we
have that

∑k
i=1 α

P
i = k − 2 =

∑k
i=1 α

Q
k . Equivalently, we have the identity

k∑
i=1

NP
i /N

P =
k∑
i=1

NQ
i /N

Q, (3)

which implies the following result.

Proposition 7 [DM, Proposition 1] Assume that none of the components E1, . . . , Ek
belongs to the strict transform of {P|U} ∪ {Q|U}. Then, there exists an index r ∈
{1, . . . , k} such that NP

r N
Q > NQ

r NP if and only if there exists an index s ∈ {1, . . . , k}
such that NP

s N
Q < NQ

s NP .

Corollary 8 [DM, Corollary 1]Proposition 7 implies that the quotient NP /NQ is con-
stant on a primitive bamboo.

Example 3 Let us consider two irreducible plane curves P (x, y) = x103−y24 = 0 and
Q(x, y) = x30 − y7 = 0. The dual resolution graph of P/Q is as follows

• • • • • •

-

E1 E2 E3 E4 E8 E9 --

• • • • • •

• •

E5 E6 E7 E10 E11 E12

E13 E522
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where E13, . . . , E522 are exceptional components created to get a dicritical component.
The numerical data for the components E1, . . . , E12 are given in the following table

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12

NP
i 24 48 72 96 103 206 309 408 720 1030 1751 2472

NQ
i 7 14 21 28 30 60 90 119 210 300 510 720
νi 2 3 4 5 6 11 16 21 37 53 90 127

Corollary 8 tells us that

24
7

=
NP

1

NQ
1

=
NP

2

NQ
2

=
NP

3

NQ
3

=
NP

4

NQ
4

=
NP

8

NQ
8

=
NP

9

NQ
9

and

103
30

=
NP

5

NQ
5

=
NP

6

NQ
6

=
NP

7

NQ
7

=
NP

10

NQ
10

=
NP

11

NQ
11

=
NP

12

NQ
12

.

�

(4) Some special subgraphs. If K is a connected component of (E −D)c, then f ◦ π
is constant along K. Let us assume that (f ◦ π)|K is constantly 0.

Proposition 9 [DM, Theorem 1] K intersects the strict transform of the hypersurface
{P|U = 0}.

Proof. If there are no dicritical components, we are in the case of plane curves and
obviously some exceptional component intersects a component of the strict transform of
{P|U = 0}. So suppose that the connected component K meets a dicritical component.
Since K is finite we can take an element E ∈ K such that NP

NQ is maximal in K. If E does
not intersect the strict transform of the hypersurface {P|U = 0} and if E1, . . . , Ek are the

components that intersect E, then Proposition 7 implies that NP

NQ = NP
1

NQ
1

= · · · = NP
r

NQ
r

.

In this way, one gets that the quotient NP

NQ is constant in all K, provided that K does not
intersect the strict transform of the hypersurface {P|U = 0}. However, again Proposition
7 prevents that any of the components in K intersects a dicritical component because
NP

NQ > 1 for all components in K as (f ◦π)|K is constantly 0 and NP

NQ = 1 for all dicritical
components. Thus we reach a contradiction. �

From now on we take π : X → U the minimal embedded resolution of the plane
meromorphic function f = P

Q .

Proposition 10 Let P,Q : (C2, 0) → (C, 0) and let G be the dual resolution graph
corresponding to the minimal embedded resolution π of P/Q. Let P be a connected sub-
graph of G that contains exactly one vertex which is connected to vertices not belonging
to P, that does not contain vertices corresponding to components of the strict transform
and on which (f ◦ π)|P is constantly 0. Let Ei and Ej be two exceptional components
which are represented by adjacent vertices in P. If Ei is intersected by at least one
more component, then −1 < αi,j := νj − νi

Ni
Nj < 1.

10



Proof. Let us first argue on how the subgraph P then looks like. Proposition 5 and
Remark 2 imply that P has the following shape, where we only draw the vertices with
valence different from two.

• • • •

•

•

• •

. . .E1

Em or
• • •

•

•

• •

. . .E1

Em

with particular cases

• •
E1 Em and

• •
El Em and

•
E1 = Em

Here E1 denotes the exceptional component corresponding to the first blow up of π,
the component Em is the component that intersects some components outside of P and
El 6= E1. In the last case where P only consists of one exceptional divisor, Em = E1.

Next notice that P was already a subgraph of the minimal resolution of PQ. Indeed,
suppose that any vertex E in P is created to pass from the minimal embedded resolution
of PQ to the embedded resolution of f = P

Q . According to Remark 2, E has valence 2
and erasing E divides the resolution graph into two disjoint parts, one of then containing
at least irreducible components of the strict transform of π−1{P = 0} and the other
containing at least irreducible components of the strict transform π−1{Q = 0}. This is
a contradiction as we supposed that P contains no irreducible components of the strict
transform of π−1{P = 0} neither of π−1{Q = 0}.

Therefore we can assume that Ei and Ej appeared in the minimal resolution graph
of PQ and Proposition 6 tells us then that

−1 < νj −
νi

NP
i +NQ

i

(NP
j +NQ

j ) < 1. (4)

Taking into account the form of the subgraph P, we can now prove that NP /NQ

is constant on the whole graph P. Corollary 8 deals with the case that P is a prim-
itive bamboo. Otherwise let E be an exceptional component in P corresponding to
a vertex of valence equal to 3 from which two bamboos are leaving. Then it follows
from Corollary 8 that the quotient NP

i /N
Q
i is constant on these bamboos and equal to

NP /NQ. Denote by E1, E2 and E3 the exceptional components intersecting E. Since
NP /NQ = NP

1 /N
Q
1 = NP

2 /N
Q
2 , we can deduce that NP /NQ = NP

3 /N
Q
3 . Indeed,

Relation (2) in the holomorphic case gives

ν1−
ν

NP
NP

1 +ν2−
ν

NP
NP

2 +ν3−
ν

NP
NP

3 = 1 = ν1−
ν

NQ
NQ

1 +ν2−
ν

NQ
NQ

2 +ν3−
ν

NQ
NQ

3 ,

from which we can deduce NP /NQ = NP
3 /N

Q
3 . Next we can propagate this equality

along a chain of vertices of valence 2. Let Ej be a vertex of has valence 2 intersecting
Ei and Ek = E. Then we have that

νi −
νj

NP
j

NP
i + νk −

νj

NP
j

NP
k = 0 = νi −

νj

NQ
j

NQ
i + νk −

νj

NQ
j

NQ
k .

11



Now we can deduce that NP
i /N

Q
i = NP

j /N
Q
j . We can iterate this until we arrive at

another vertex of valence equal to 3, from which a primitive bamboo is leaving. Using
again the previous argument and taking into account the shape of P, we deduce that
the quotients NP

i /N
Q
i are equal for all Ei in P.

Finally, since NP
i

NP
j

= NQ
i

NQ
j

and hence NP
i +NQ

i

NP
j +NQ

j

= NP
i

NP
j

= Ni
Nj

. We substitute in (4) and

get −1 < νj − νi
Ni
Nj < 1. �

(5) Topology of trees of nonsingular rational curves The following lemma was
shown by Rodrigues to give his own proof of the monodromy conjecture for plane
curves.

Lemma 11 [Ro, Lemma(2.2)] Let ∪ri=1Ei be a tree of nonsingular rational curves on
a nonsingular surface, then

r∑
i=1

χ(E◦i ) = 2.

4. The monodromy conjecture for plane meromorphic germs

By analogy with the holomorphic case, we propose the monodromy conjecture for
meromorphic germs as follows.

Conjecture 1 (Monodromy Conjecture for meromorphic germs) Let f = P
Q be a germ

of a meromorphic function on (Cn+1, 0) and let s0 be a pole of Ztop,f , then e2πis0

is an eigenvalue of the monodromy transformation hf at some point of P−1{0} in a
neighbourhood of 0.

Theorem 12 Let f = P
Q be a germ of a meromorphic function on (C2, 0) and let s0

be a pole of Ztop,f (s), then e2πis0 is an eigenvalue of the monodromy transformation hf
at some point of P−1{0} in a neighbourhood of 0.

Proof. Let π : X → U be the minimal embedded resolution of f . By Proposition 4
it follows that either s0 = −1/N for some irreducible component E(N, 1) of the strict
transform of P or s0 = −νi/Ni for some exceptional divisor Ei of π with χ(E◦i ) < 0.
In the first case we find the eigenvalue e2πis0 at any point of {P = 0} in a punctured
neighbourhood of 0. So suppose now that s0 = −νi/Ni for some exceptional divisor
Ei of π with χ(E◦i ) < 0. We write νi/Ni = a/d with gcd(a, d) = 1. We can suppose
that there is no component ES(NS , νS) of the strict transform of P for which d | NS .
Otherwise e2πis0 is an eigenvalue of monodromy at any point of {P = 0} in a punctured
neighbourhood of 0.

Let us define

Cd := {Ek exceptional divisor of π such that Nk > 0 and d | Nk}.

Now we study
∑

Ek∈K χ(E◦k) for each connected component K of Cd. Firstly, Propo-
sition 9 shows that there is no such component K intersecting only dicritical divisors.

12



Notice that an exceptional component E with N = 0 intersecting such a connected
component K is also dicritical because (f ◦ π)|E then reaches at least two different
values. Hence, each connected component K in Cd does contain a component El that
intersects some irreducible component E of the total transform π−1(H) outside K with
N 6= 0. Relation (1) in Lemma 3 implies that there is at least another irreducible
component of π−1(H) outside K satisfying these properties. Lemma 11 then implies
that

∑
Ek∈K χ(E◦k) ≤ 0 for each connected component K of Cd. Now the result fol-

lows if for at least one such component
∑

Ek∈K χ(E◦k) < 0 holds. We show that this
is the case for the component K of Cd that contains the exceptional component Ei.
We denote this component by Ñ . Let us argue by contradiction. We suppose that∑

Ek∈Ñ χ(E◦k) is equal to 0. This assumption implies that Ñ contains only one excep-
tional component intersecting irreducible components of π−1(H) not belonging to Ñ
and with N 6= 0. Furthermore the number of the intersections must be exactly two.
Thus Ñ satisfies the conditions of the component P in Proposition 10. In particular,
we can disregard the case of Ñ being a singleton (i.e. Ñ only consists of Ei) because
χ(E◦i ) < 0. Remark that in this case e−2πia/d is an eigenvalue of monodromy at the
origin. If Ñ is not a singleton, then let Ej be an exceptional component in Ñ inter-
secting Ei. As αi,j = νj − νi

Ni
Nj = νj − a

dNj ∈ Z, it follows by Proposition 10 that
αi,j = 0. Hence νj/Nj = a/d. On the other hand, as αi,j = 0, it follows from Relation
(2) that Ej intersects exactly one other component Ek. If Ek ∈ Ñ , then analogously
we find νk/Nk = a/d and using Relation (2) we see that Ek intersects exactly one other
component. As the graph G is finite, we must end with an exceptional component
not in Ñ . However, as Ñ only contains one exceptional component which intersects
exceptional components not in Ñ and as Ei is intersecting at least three components,
we can do the same reasoning for the other exceptional components intersecting Ei and
hence get a contradiction. �
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