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ABSTRACT. We investigate the relation between monotonicity and the no-show
paradox in voting rules. Although the literature has established their logical in-
dependence, we show, by presenting logical dependency results, that the two con-
ditions are closer than a general logical independency result would suggest. Our
analysis is made both under variable and fixed-size electorates.
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1. INTRODUCTION

Among the countless contributions of Hervé Moulin to our enlightenment on the
collective decision making problem, his research on the axiomatic analysis of social
choice rules presents a distinguished chapter which inspired generations of schol-
ars. We view this issue of Mathematical Social Sciences dedicated to him as a nice
opportunity to revisit the connection between participation and monotonicity, two
conditions of social choice theory which have been much elaborated by the fine work
of Hervé Moulin.

Moulin [1988, 1991] defines participation as the vanishing of the no-show para-
dox introduced by Fishburn and Brams [1983]: a social choice rule exhibits the
no-show paradox when the vote casted by an additional voter changes the outcome
in a way which makes this new-comer worse off compared to the case he had not
shown up. Thus, the paradox can be viewed as a way to manipulate social choice
rules by abstaining to vote, such as Moulin [1991] who sees it as a particular case
of manipulation by truncation of preferences as defined by Fishburn and Brams
[1984].
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Such views, however, necessitate some caution on how the new-comer/abstainer
is interpreted. Here, two approaches come to the fore: One is the fixed-electorate
approach where the number of voters are fixed and the abstainers are those voters
who express full indifference over the set of alternatives. So a "new-comer" is an
individual who is an incumbent member of the society who moves away from his
full indifference position. The other approach necessitates a variable-electorate,
as the new-comer is a voter who earlier was not a member of the society, hence
"abstaining" means his altogether departing from the society to which he used to be
part of.

Rejecting to express a preference does not mean to leave the electorate. As a
result, the two interpretations have different meanings. However, for social choice
rules which are "regular", i.e., ignore voters who show up without expressing a
preference, one could expect that the choice of the interpretation would not mat-
ter. Theorem 14 somehow justifies this expectation by establishing an equivalence
between variable and fixed electorate social choice rules regarding the satisfaction
of PART.1 On the other hand, the choice of the interpretation has implications on
the relationship between the no-show paradox and monotonicity - a fact that we
discuss in the sequel. However, we wish to note right away that the literature on
the paradox has almost always adopted the variable-electorate approach, including
and perhaps following the seminal paper of Moulin [1988].2

We start, in Section 2, by considering the paradox under this standard variable-
electorate interpretation and revisit its relation to a well-known monotonicity con-
dition of social choice theory. Monotonicity, broadly speaking, requires that an "im-
provement" of the status of an alternative in the preferences of the electorate should
result in a "raising" of the status of this alternative as the social outcome. It is clear
that, different meanings can be attributed to "improvement" and "raising", each of
which leading to a different definition of monotonicity. In fact, the literature ex-
hibits a plethora of monotonicity conditions. As all of these can be connected to the
(non)-manipulability of social choice rules, the logical relationship of participation
to those monotonicity conditions stands out as an interesting question.

Among the various monotonicity conditions, perhaps the simplest and oldest
known is the one we consider3:

1While most of the well-known social choice rules are regular, there are notable exceptions such as
those who use a quorum or those who allow voters to vote for "none of the above (NOTA)". A specific
analysis of these rules, though out of the scope of this paper, can contribute to our understanding of
the notion of abstention. We thank the associate editor who draw our attention to this.
2The paradox has also been considered in the framework of judgement aggregation (see Balinski and
Laraki [2010]).
3For discussion on monotonicity conditions in social choice theory, one can see Fishburn [1982],
Moulin [1983], Brams and Fishburn [2002] and Sanver and Zwicker [2009].
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MON: Raising an alternative x in voters’ preferences while leaving the rankings
otherwise unchanged can never result in x becoming the loser while x was initially
the winner.

Although normatively appealing and simple, MON is violated by various well-
known social choice rules, in particular by all point run-off systems (Smith [1973]).4

As participation (PART) is also violated by an interesting class of social choice rules,
namely those which are Condorcet consistent (Moulin [1988]), the logical relation-
ship between MON and PART turns out to be of further interest.

In fact, the general logical independence between MON and PART is already
established. The question is addressed by Nurmi [1999] in p.62 who remarks that
MON does not imply PART, as there exist Condorcet extensions, such as the Copeland
rule, which satisfy MON but, by Moulin [1988], fail PART. Nurmi [1999] further-
more suggests the conjecture that PART implies MON which is falsified by Camp-
bell and Kelly [2002] who give examples of social choice rules that satisfy PART but
fail MON.

We present instances of logical dependencies between PART and MON. We show
that in the particular case of two alternatives, PART implies MON. On the other
hand, even with two alternatives, MON does not imply PART. Nevertheless, the
failure of this implication merits some attention to the contextual difference re-
garding the definitions of the two conditions: while MON is a property that can
be defined for fixed or variable electorate social choice rules, PART necessitates a
variable electorate. As a result, PART requires a connection between how a social
rule behaves in electorates of different sizes but MON does not. This renders the
construction of a social choice rule which satisfies MON but fails PART very easy. In
fact, the example we use in Proposition 1 to show that MON does not imply PART
even with two alternatives exploits this ease.

A fairer question is whether MON implies PART under mild consistency require-
ments over the behavior of social choice rules in different electorates. One such
condition is reinforcement, also known as consistency, which requires that alterna-
tives which are separately chosen by both of two disjoint electorates must form the
choice made by the union of these electorates (Smith [1973], Young [1974, 1975])).
A much milder version of reinforcement is homogeneity which requires that an al-
ternative which is chosen by some given electorate must also be chosen when this
electorate is replicated.5 We show that in the two-alternative case, under the homo-
geneity assumption, MON implies PART.

4Other interesting violations of MON are established by Fishburn [1977], Richelson [1980],Fishburn
and Brams [1983].
5Without omitting to note some borderline counter examples in Fishburn [1977], we can neverthe-
less say that almost all social choice rules considered in the literature are homogeneous.
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With three or more alternatives, Moulin [1988], while establishing the logical
independence between PART and reinforcement, uses a threshold scoring rule to
exemplify the satisfaction of reinforcement and the failure of PART. As all threshold
scoring rules satisfy MON, the example also shows that even when homogeneity is
replaced by reinforcement, MON fails to imply PART.

Inspired by this example we devote further attention to threshold scoring rules6

and ask whether they always fail PART. The answer is almost affirmative: we show
that, except one member, the class of threshold scoring rules fails PART.

We also consider a weaker version of participation (WPART) as the absence of a
stronger version of the no-show paradox (Pérez [2001]) where a voter, by abstain-
ing, can enforce his most preferred alternative as the social outcome. We show
that MON, even when homogeneity is assumed, does not imply WPART. On the
other hand, reinforcement, when combined with a weak unanimity condition, im-
plies WPART.

Regarding the implication of monotonicity by PART, we show that PART implies
a weaker version of monotonicity (WMON) which is nevertheless sufficiently strong
to discriminate among social choice rules that fail MON: we observe that Campbell
and Kelly [2002]’s examples that fail MON satisfy WMON while plurality with a
runoff even fails WMON. In fact, we are able to extend this latter observation to the
almost whole class of point runoff procedures which, except Borda, all fail WMON.
Our Theorem 6 which states this failure not only strengthens the result of Smith
(1973) on the failure of MON by point runoff procedures, but also paves the way to
our Theorem 7 which announces that all point runoff procedures fail PART.

We close the section by giving a partial characterization of PART through a lower
contour set intersection property which we call Condition λ. We also establish the
relationship between Condition λ and MON, which brings another perspective to
our previous findings.

Section 3 carries our analysis to the fixed-electorate interpretation of PART. We
start by establishing an equivalence between fixed and variable electorate interpre-
tations regarding the satisfaction of PART. Based on this equivalence, we are able
to note that the general logical independence between PART and MON prevails
in the fixed electorate setting. On the other hand, regarding the logical relation-
ship between PART and MON, our findings differ from those obtained under the
variable-electorate interpretation. We show that with two alternatives, PART and
MON are logically equivalent. Moreover, when three or more alternatives are avail-
able MON implies WPART and PART implies WMON.

Section 4 makes some closing remarks.

6One can see Saari [1990] for an analysis of these rules.
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2. THE VARIABLE POPULATION CASE

We consider a finite set of alternatives A with #A ≥ 2. N denotes the set of natural
numbers. For each n ∈ N, we define N = {1, . . . ,n} ⊂ N as the n-voter electorate,
where each v ∈ N is a voter. Π stands for the set of linear orders over A. Pv ∈ Π
is the preference of v ∈ N over A, where for any distinct x, y ∈ A, xPv y indicates
that voter v prefers x to y.7 We write PN = {Pv}v∈N for a preference profile over A.
A social choice rule (SCR) is a mapping F that returns, for each n ∈ N and each
PN ∈ ΠN , a single alternative F(PN) ∈ A. So the SCRs we consider are variable-
electorate in the sense of being defined for every number of voters and they satisfy
the full domain condition in the sense that given any electorate, they are defined
for every possible preference profile.

For any two electorates N = {1, . . . ,n} and M = {1, . . . ,m}, we define the joint elec-
torate M⊕N = {1, . . . ,m+n}. Note that ⊕ is commutative. Now letting m ≤ n, for any
two profiles RN , QM , we let PN⊕M = (RN ,QM) stand for the profile of M ⊕N where
Pv = Rv ∀v ∈ {1, . . . ,n} and Pn+v =Qv ∀v ∈ {1, . . . ,m}. Note that when m < n, PM⊕N is
uniquely defined by setting the first n voters as the voters of N and the remaining
m voters as the voters of M. Abusing notation, when M = {v}, we write (RN ,Qv) to
denote the profile obtained from RN by adding the preference Qv of voter v. Given
any n ∈N and v ∈ N, we let N−v = N \{v}.

Definition 1. A SCR F satisfies participation (PART) iff ∀N with n ≥ 2, ∀v ∈ N,
∀PN−v , ∀Pv,

F(PN−v ,Pv), F(PN−v)=⇒ F(PN−v ,Pv)PvF(PN−v).

Definition 2. Given any N, any x and any PN , P ′
N such that Pv , P ′

v for some v ∈ N
and Pw = P ′

w∀w ∈ N \{v}, we say that PN is an improvement for x w.r.t. P ′
N if

(1) xP ′
v y=⇒ xPv y for every y ∈ A \{x},

(2) yP ′
vz ⇐⇒ yPvz for every y, z ∈ A \{x}.

Definition 3. A SCR F is monotonic (MON) iff given x ∈ A , PN ,P ′
N ∈ΠN such that

PN is an improvement for x w.r.t. P ′
N

x = F(P ′
N)=⇒ x = F(PN). 8

7Since Pv is a linear order it is complete, asymmetric and transitive. So, by completeness, for any
distinct x, y ∈ A, we have xPv y or yPvx. Moreover, since Pv is asymmetric, ∀x, y ∈ A xPv y=⇒ y¬Pvx.
Furthermore, if xPv y and yPvz then xPvz by transitivity.
8The definition of MON applies just to profiles that differ by a single voter’s preference, since our fo-
cus is on its relation to PART which is defined with respect to the addition of a single voter. However,
it should be noted that our definition is equivalent to the more common definition in the literature
where MON applies also to profiles which possibly differ in a group of voters’ preferences.
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2.1. The case of two alternatives. The logical independence between MON and
PART vanishes when there are only two alternatives. In fact, in this case PART
implies MON, as stated by the following theorem.

Theorem 1. Let #A := 2. If a SCR F satisfies PART, then it satisfies MON.

Proof. Let A := {x, y}. Take some F which satisfies PART but fails MON. So ∃N, v,
PN−v , Pv, P ′

v with xPv y, yP ′
vx while F(PN−v ,Pv) = y and F(PN−v ,P ′

v) = x. However,
by PART, F(PN−v ,Pv)= y implies F(PN−v)= y and F(PN−v ,P ′

v)= x implies F(PN−v)=
x, giving a contradiction. Q.E.D.

The reverse implication holds, when a mild homogeneity condition is assumed.
For any positive integer m, and any profile PN , we write mPN for any of the profiles
obtained from PN by replacing each single voter v of PN with m voters having the
same preference as v.9

Definition 4. A SCR F satisfies homogeneity (HOM) if ∀N, ∀PN ,∀m ∈ N, ∀mPN ,
F(mPN)= F(PN).

As the following theorem shows, any homogeneous SCR which satisfies MON
satisfies PART as well.

Theorem 2. Let #A := 2. If a SCR F satisfies HOM and MON, then it satisfies
PART.

Proof. Let A := {x, y}. Assume that F satisfies HOM and MON but fails PART.
Since F fails PART, there is some N with #N := n ≥ 2, some profile PN and some
voter v ∈ N with xPv y while F(PN−v)= x and F(PN)= y. Let #{v ∈ N | xPv y} := k and
#{v ∈ N | yPvx} := n−k. Consider now the profiles nPN−v and (n−1)PN . Due to HOM,
it follows that F(nPN−v) = x and F((n−1)PN) = y. Moreover, both profiles have the
same number n(n−1) of voters. Yet, they differ on the number of voters who prefer
x to y: there are nk−n voters who prefer x to y in nPN−v and nk− k in (n−1)PN .
Hence, there is some profile (n−1)PN which is an improvement for x w.r.t. some
profile nPN−v . Since F(nPN−v) = x, applying MON it follows that F((n−1)PN) = x,
giving a contradiction. Q.E.D.

However, it should be noted that MON does not imply PART without HOM, as
the following proposition shows.

Proposition 1. Let #A := 2. There exists some SCR F that satisfies MON and fails
PART.
9Note that mPN is equivalent to PN⊕N⊕...⊕N . As here, ⊕ is applied to sets of equal size, mPN is not
uniquely defined.



REVISITING THE CONNECTION BETWEEN THE NO-SHOW PARADOX AND MONOTONICITY 7

Proof. Let A := {x, y}. We construct some F that satisfies MON but fails PART
(and HOM, by Theorem 2). When #N is even, let F(PN) = x iff #{v ∈ N | xPv y} ≥
#{v ∈ N | yPvx}. When #N is odd, let F(PN) = x iff #{v ∈ N | xPv y} = #N. In other
words, when #N is even, F is the majority rule biased towards x in the event of
tie and when #N is odd F is the unanimity rule biased towards y in the absence
of a unanimously agreed alternative. It is clear that F satisfies MON. Let PN be a
profile with two out of three voters who prefer x to y and one voter who prefers y to
x. Thus, there is some Pv ∈Π with xPv y. It follows that F(PN−v)= x and F(PN)= y.
Since F(PN−v)PvF(PN), F violates PART as desired. To see that F fails HOM, note
that F(2(PN))= x whereas F(PN)= y. Q.E.D.

2.2. The case of three or more alternatives.

2.2.1. On the implication of PART by MON. We start by showing that PART is not
implied by MON even under the following reinforcement condition.

Definition 5. A SCR F satisfies reinforcement (REIN) if for any pair of electorates
M and N, for any PM , PN and for any x ∈ A,

F(PM)= F(PN)= x =⇒ F(PM⊕N)= x.

Assuming anonymity and neutrality, the conjunction of REIN with a few mild
conditions characterizes scoring rules (Smith [1973], Young [1974, 1975], Myerson
[1995]). In fact, one can see REIN as a core condition for being a scoring rule.
On the other hand, Saari [1990] presents a weaker version of REIN and shows
that threshold scoring rules represent a class of SCRs that fail REIN but satisfy
its weak version. For single-valued SCRs, the strong and the weak versions of
the condition coincide. Since scoring rules satisfy PART, we now show our claim
through a threshold scoring rule.

For any preference Pv and any alternative x, the rank of x in Pv equals r(x;Pv)=
1+#{y ∈ A | yPvx}. A score vector s = (s1, . . . , s#A) is an #A-dimensional vector with
s1 ≥ s2 ≥ . . . ≥ s#A and s1 > s#A. Under a score vector s, the score of alternative x
at the preference profile PN equals S(x;PN ; s) =∑

v∈N sr(x;Pv). For any electorate N,
any set A of alternatives and any score vector s, we define a threshold t(N, A, s) :=
#N
#A

∑#A
i=1 si.

Definition 6. Every score vector s induces a threshold scoring rule F which is de-
fined for every N and every PN as F(PN) = {x ∈ A | S(x;PN ; s) ≥ t(N, A, s)}. When
F(PN) is multi-valued, ties are broken according to an exogenous (alphabetical) lin-
ear order.
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Threshold scoring rules are well-defined since, by the choice of t(N, A, s), F(PN)
is not empty for every PN . The next lemma proves this point formally.

Lemma 1. If F is a threshold scoring rule, F(PN) is not empty for every PN .

Proof. Assume by contradiction that there is some profile PN for which F(PN) is
empty. Thus, S(x;PN , s) < t(N, A, s) for any x ∈ A. It follows that

∑
x∈A S(x;PN , s) <∑

x∈A t(N, A, s). However, the left part of the inequality equals #N
∑#A

i=1 si whereas
the right part equals #At(N, A, s) which contradicts the definition of t(N, A, s). Q.E.D.

Proposition 2. Let #A ≥ 3. There exists some SCR F that satisfies MON and REIN
and fails PART.

Proof. Let A := {x, y, z} and consider F to be the threshold scoring rule with s =
(1,1,0). Hence, t(N, A, s) = 2

3 n. F satisfies MON and REIN. To see that F fails
PART, let N = {1, . . . ,6} and take the preference profile PN with aPvbPvc for v = 1,2,
cPvbPva for v = 3,4 and aPvcPvb for v = 5, and bPvaPvc for v = 6. It follows that for
v = 6, F(PN−v)= b and F(PN)= a while F(PN−v)PvF(PN), proving that PART fails.10

Q.E.D.

We now ask whether all threshold scoring rules fail PART. The answer is almost
affirmative as the theorem below shows.

Theorem 3. Let #A ≥ 3. Let F be a threshold scoring rule induced by a score vector
s. F satisfies PART if and only if

s = (s1,
s1 + s#A

2
,
s1 + s#A

2
, . . . ,

s1 + s#A

2
, s#A).

Proof. Take some threshold scoring rule F with score vector s. Suppose PART fails
so F(PN−v)= x and F(PN−v ,Pv)= y with xPv y for some N, v, PN−v and Pv. This can
occur under one of the following two exhaustive cases.

Case 1: S(x,PN−v , s)≥ t(N−v, A, s) and S(x,PN , s)< t(N, A, s).
Case 2: ∃y, x with S(y,PN−v , s)< t(N−v, A, s) and S(y,PN , s)≥ t(N, A, s) .

Note that t(N, A, s)− t(N−v, A, s)=
∑#A

i=1 si
#A .

A necessary and sufficient condition to avoid case 1 is that the lowest additional

score that x receives with the arrival of v is at least
∑#A

i=1 si
#A . As xPv y, hence r(x;Pv)≥

#A−1, this is ensured by setting s#A−1 ≥
∑#A

i=1 si
#A .

A necessary and sufficient condition to avoid case 2, it is that the highest addi-

tional score that y gets with the arrival of v does not exceed
∑#A

i=1 si
#A . As xPv y, hence

r(y;Pv)≤ 2, this is ensured by setting s2 ≤
∑#A

i=1 si
#A .

10This example is equivalent to the one discussed by Moulin [1988] in p.62 showing that REIN and
PART are logically independent.
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The two inequalities combined with s2 ≤ s3 ≤ . . . s#A−1 imply s j = s1+s#A
2 for all

j = 2, . . . ,#A−1. Q.E.D.

Having shown that MON does not imply PART even under REIN, we now adopt
a weaker version of participation, introduced by Pérez [2001], as the absence of a
stronger version of the no-show paradox where a voter, by abstaining, can enforce
his most preferred alternative as the social outcome.

Definition 7. A SCR F satisfies weak participation (WPART) iff ∀N, ∀v ∈ N, ∀PN−v ,
∀Pv,

F(PN−v ,Pv), F(PN−v)=⇒∃ x ∈ A s.t. xPvF(PN−v).

Note that WPART is equivalent to PART with just two alternatives whereas it
is weaker with more than two alternatives: PART requires that when adding the
vote of v, voter v prefers F(PN−v ,Pv) to F(PN−v), whereas WPART just requires the
existence of some alternative that v prefers to F(PN−v).

We now show that MON does not imply WPART either, even when combined with
REIN.

Proposition 3. Let #A ≥ 3. There exists some SCR F that satisfies REIN and MON
but fails WPART.

Proof. Let A := {x, y, z} and consider the threshold scoring rule with s = (1,1,0).
This rule satisfies REIN and MON. In order to see why it fails WPART, consider
the example used in the proof of Proposition 2. Since b = F(PN−v)PvF(PN−v ,Pv) =
a with bPvaPvc, this shows that WPART fails. Q.E.D.

Proposition 3 shows that MON and REIN do not imply WPART. However, when
combined with the following weak unanimity condition imposed over singleton elec-
torates, REIN implies WPART by its own.

Definition 8. A SCR F is weakly unanimous iff ∀v ∈ N, ∀Pv,

xPv y∀y, x =⇒ F(Pv)= x.

Theorem 4. Let #A ≥ 3. If a weakly unanimous SCR F satisfies REIN, then it
satisfies WPART.

Proof. Take some weakly unanimous F that satisfies REIN. If it fails WPART, there
exist PN−v , Pv such that F(PN−v ,Pv) = x , F(PN−v) = z with zPv y ∀y ∈ A \ {z}. As
z is first ranked in Pv, by weak unanimity, F(Pv) = z. By REIN, it follows that
F(PN−v ,Pv)= z, which leads to a contradiction. Q.E.D.

It is worth noting that WPART is also studied by Richelson [1980] under the
name “voter adaptability" and Theorem 4 is a precise expression of his statement in
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p.464 that “voter adaptability is a much weakened version of Young’s consistency",
as the validity of this claim requires weak unanimity. In fact, the threshold scoring
rule in our Proposition 3 is not weakly unanimous; satisfies REIN (i.e., Young’s
consistency) and fails WPART.

2.2.2. On the implication of MON by PART. We ask whether MON has reasonable
weakenings implied by PART. We first strengthen the definition of an improvement,
by asking that the lifted alternative must be raised from the bottom of the ranking.

Definition 9. Given any N, any x and any PN , P ′
N such that Pv , P ′

v for some v ∈ N
and Pw = P ′

w∀w ∈ N \{v}, we say that PN is a strong improvement for x w.r.t. P ′
N if

(1) yP ′
vx for every y ∈ A \{x},

(2) yP ′
vz ⇐⇒ yPvz for every y, z ∈ A \{x}.

The following is a weakening of MON because the definition of improvement is
strengthened but also because it allows alternatives above the lifted alternative to
be chosen. As in the case of WPART and PART, it turns out that WMON and MON
are equivalent with just two alternatives.

Definition 10. A SCR F is weakly monotonic (WMON) iff given x ∈ A , PN ,P ′
N ∈ΠN

such that PN is a strong improvement for x w.r.t. P ′
N :

x = F(P ′
N)and F(PN), F(P ′

N) =⇒ F(PN)Pvx.

Theorem 5. Let #A ≥ 3. If a SCR F satisfies PART, then it satisfies WMON.

Proof. Take some F that satisfies PART but violates WMON. Since WMON fails,
there exist some N, v ∈ N, PN , P ′

N with P ′
v , Pv where (PN−v ,Pv) is a strong im-

provement for x with respect to (PN−v ,P ′
v), while F(PN−v ,P ′

v) = x and F(PN−v ,Pv) =
y with xPv y. Due to PART, F(PN−v ,P ′

v) = x implies F(PN−v) = x, as otherwise
F(PN−v)P ′

vx would hold, violating PART. Since F(PN−v) = x, then by PART again,
we have F(PN−v ,Pv), y, giving a contradiction. Q.E.D.

It should be noted that WMON is not too weak: it is able to discriminate among
the SCRs that fail MON. For instance, one can check that the examples described
in Campbell and Kelly [2002] which fail MON do satisfy WMON, which is the case
by Theorem 5, as they all satisfy PART. On the other hand, plurality with a runoff,
well known to fail MON, fails WMON as well, as we illustrate through the example
below.
Example 1: Let A := {x, y, z} and consider two profiles P ′

N , PN with eight voters
such that PN is a strong improvement for z w.r.t. to P ′

N :
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PN : #{v ∈ N | xPv yPvz}= 2, #{v ∈ N | yPvzPvx}= 2, #{v ∈ N | zPvxPv y}= 4,

P ′
N : #{v ∈ N | xP ′

v yP ′
vz}= 3, #{v ∈ N | yP ′

vzP ′
vx}= 2, #{v ∈ N | zP ′

vxP ′
v y}= 3.

Under plurality with a runoff where ties are broken in favor of y, at P ′
N , x and z

which are both first ranked by three voters go for a runoff and, since there is a
majority of voters who prefer z to x, we have F(P ′

N)= z. At PN , z is first ranked by
four voters whereas both x and y are ranked first by two voters each. As ties are
broken in favor of y, y and z go for a runoff where F(PN)= y. However, this violates
WMON since PN is a strong improvement for z w.r.t. to P ′

N and F(P ′
N)= z.

In fact, the observation made by the example above reflects a more general fact:
all point runoff procedures but one fail WMON. To see this, we first remark that
when there are precisely three alternatives, every point runoff procedure eliminates
the alternative with the lowest score according to some score vector (1,λ,0) with
0≤λ≤ 1 (we assume that ties are broken alphabetically).

Theorem 6. Let #A ≥ 3. Every point runoff procedure fails WMON, unless λ= 1
2 .

Proof. Let A := {x, y, z} and consider some profile PN as follows, for some positive
integers n1,n2:
- three groups of n1 voters, each group having respective preferences xPv yPvz,
yPvzPvx and zPvxPv y,
- three groups of n2 voters, each group having respective preferences xPvzPv y,
zPv yPvx and yPvxPvz and
- four voters, each with respective preference: xPv yPvz, xPv yPvz, yPvzPvx and
zPvxPv y.
There are, hence, 3n1 +3n2 +4 voters in the profile PN . It follows that there are
n1−n2+2 more voters who prefer x to y than y to x and that there are n1−n2 more
voters who prefer z to x than x to z. We let n1 > n2.

For any runoff procedure with vector (1,λ,0), the score that each alternative re-
ceives from the first six groups is equal to η= (n1+n2)(1+λ). It follows that the score
for the alternatives at PN equals s(x)= η+2+λ, s(y)= η+1+2λ and s(z)= η+1+λ

so that s(x) > s(y) ≥ s(z) as long as λ < 1
2 and s(x) ≥ s(y) > s(z) when λ > 1

2 . Break-
ing ties alphabetically, x, y go for a runoff and x is the winner under any runoff
procedure since x is majority preferred to y by the choice of n1,n2.

We now show that WMON fails as long as λ , 1
2 . We first analyze the case in

which λ< 1
2 .
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Consider the profile P ′
N such that the only difference with PN is that k of the n1

voters with preference yPvzPvx, raise x to the top and switch to xP ′
v yP ′

vz. P ′
N is a

strong improvement for x w.r.t. PN . Letting s′(·) be the scores of the alternatives
under P ′

N we have ∆(x) = s′(x)− s(x) = k, ∆(y) = s′(y)− s(y) = k(1−λ) and ∆(z) =
s′(z)− s(z) = kλ. Note that when ∆(y)−∆(z) > λ, hence k(1−2λ) > λ⇐⇒ k > λ

1−2λ , x
and z go for a runoff. It is possible to pick such a k and n1 −n2 arbitrarily large, so
that z is majority winner against x at P ′

N as well, showing that any runoff procedure
with λ< 1

2 fails WMON.
The case for λ> 1

2 is similar to the previous one: it suffices to construct a profile
P ′

N such that the only difference with PN is that k of the n2 voters with preference
zPv yPvx in PN switch to xP ′

vzP ′
v y in P ′

N . The above logic applies showing that any
runoff procedure with λ> 1

2 fails WMON as well. �

The proof of Theorem 6 suggests that runoff procedures under Borda scores sat-
isfy WMON, which we present as a conjecture. Nevertheless, we use Theorem 6 to
show that no point runoff procedure satisfies PART.

Theorem 7. Let #A ≥ 3. Every point runoff procedure fails PART.

Proof. Note that, when #A = 3, any runoff procedure with λ , 1
2 fails WMON (The-

orem 6) and hence, due to Theorem 5, fails PART. Hence, the only runoff rule that
might satisfy PART is the one with λ = 1

2 . To see that this rule also fails PART,
take the profile PN as defined in the proof of Theorem 6, where, letting λ = 1

2 , we
have s(x) = η+2.5, s(y) = η+2 and s(z) = η+1.5 so that x wins. Consider the pro-
file (PN ,Pv) where xPvzPv y. Now, the scores are s′(x) = η+ 3.5, s′(y) = η+ 2 and
s′(z)= η+2. If the tie between y and z is broken in favor of z, x and z go for a runoff,
which leads to the victory of z, showing the failure of PART. �

2.3. A partial characterization of PART. While we mainly focus on the connec-
tion between PART and MON, this section gives a partial characterization of PART
through a lower contour set intersection property, which we call Condition λ.11

For any Pv and any alternative x, let L(x;Pv) = {y ∈ A | xPv y} denote the set of
alternatives such that x is at least as good as any of them under Pv (the lower
contour set of x under Pv).

Definition 11. A SCR F satisfies Condition λ if for any PN−v the following holds:

∩Pv L(F(PN−v ;Pv),Pv),;.

Building on this condition, we now provide two sets of results: the first one deals
with the relation of Condition λ with PART whereas the second one focuses on its
relation with MON.
11We thank the associate editor for suggesting this nice extension.
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To start with, we prove that PART and Condition λ are almost equivalent.

Theorem 8. If a SCR F satisfies PART, then F satisfies Condition λ.

Proof. Take some F that satisfies PART. Therefore, ∀v ∈ N, ∀PN−v , ∀Pv, F(PN−v ,Pv),
F(PN−v) =⇒ F(PN−v ,Pv)PvF(PN−v). It follows that F(PN−v) ∈ L(F(PN−v ,Pv);Pv) for
every profile PN−v , thus Condition λ holds. �

It is hence clear that every scoring rule satisfies Condition λ since any such rule
satisfies PART. Yet, the same property does not apply to Condorcet extensions: as
we now show, no such rule satisfies Condition λ.

Now, in order to state our claim, we introduce half-way monotonicity as defined
by Sanver and Zwicker [2009]. For any linear order Pv over A, we let rev(Pv) be the
linear order obtained by reversing Pv so that xPv y iff y rev(Pv)x for any pair x, y of
alternatives.

Definition 12. A SCR F is half-way monotonic (HMON), if for any N, any v ∈ N,
any Pv,PN−v and any x, y ∈ A:

x = F(PN−v ,Pv) and y= F(PN−v , rev(Pv))=⇒ xPv y.

HMON can be interpreted as follows: a rule that violates HMON can be manip-
ulated by some voter who completely misrepresents his preference, in the sense of
announcing a preference that reverses every possible pairwise comparison among
alternatives.

Lemma 2. If a SCR F satisfies Condition λ, then F satisfies HMON.

Proof. Take some F that fails HMON. Therefore, there exists some PN−v and some
pair x, y ∈ A with x = F(PN−v ,Pv) and y = F(PN−v , rev(Pv)) with yPvx. However,
L(x;Pv)∩ L(y; rev(Pv)) = ; since rev(Pv) is the reversal of Pv and yPvx. Hence,
F fails Condition λ, concluding the proof. �

Theorem 9. No Condorcet extension satisfies Condition λ.

Proof. Since no Condorcet extension satisfies HMON with four or more alternatives
and sufficiently many voters (see Corollary 5.3 in Sanver and Zwicker [2009]) and
Condition λ implies HMON, it follows that no Condorcet extension satisfies Condi-
tion λ. �

As a corollary to Theorem 8 and Theorem 9, we obtain Moulin [1988]’s result that
no Condorcet extension satisfies PART.

The converse of Theorem 8 does not hold as proved by the next result.

Proposition 4. Let #A ≥ 3. There exists some SCR F that satisfies Condition λ and
fails WPART, hence PART.
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Proof. Fix a pair of alternatives x, y and some voter d. Consider the following SCR
F: (1) if d takes part in the election, then F chooses d’s most preferred alternative
among {x, y} whereas (2) when d does not take part in the election, F chooses the
winner according to Plurality voting. One can check that F fails PART. In order
to see why F satisfies Condition λ, take first any profile PN where d takes part in
the election. Since the outcome F(PN) is the most preferred one of d over {x, y},
Condition λ holds. Take now a profile PN without d so that the outcome F(PN) is
determined through Plurality rule. Since this rule satisfies PART, it also satisfies
Condition λ as proved by Theorem 8. Therefore, F satisfies Condition λ. �

Now, in order to prove that the converse of Theorem 8 holds provided that some
mild conditions are added, we introduce the reversal cancellation property. Rever-
sal cancellation, as defined by Sanver and Zwicker [2009], is arguably quite mild:
according to it, adding a linear order and its reversal should leave the outcome of
the SCR unchanged.

Definition 13. A SCR F satisfies Reversal Cancellation (RC) if for any N, any v ∈ N,
any Pv and any PN ∈ΠN :

F(PN)= F(PN ,Pv, rev(Pv)).

The next proposition shows that, combined with HOM and RC, Condition λ im-
plies PART.

Theorem 10. Let #A ≥ 3. If a SCR F satisfies Condition λ, HOM and RC, then F
satisfies PART.

Proof. Take some SCR F that fails PART. Therefore, there exists some PN−v and
Pv with x = F(PN−v)PvF(PN−v ,Pv) = y for some x, y. If F satisfies HOM and RC,
then it follows that F(PN−v) = F(2PN−v) = F(2PN−v ,Pv, rev(Pv)) and F(PN−v ,Pv) =
F(2PN−v ,Pv,Pv). It follows that F(2PN−v ,Pv, rev(Pv)) = x and F(2PN−v ,Pv,Pv) = y.
However, L(x; rev(Pv))∩ L(y;Pv) = ; since xPv y by definition and rev(Pv) is the
reversal linear order of Pv. Hence F fails Condition λ, which concludes the proof.

�

To see why RC cannot be dropped with more than three alternatives, it suffices
to consider the voting rule described by the proof of Proposition 4: this rule satisfies
HOM and Condition λ but fails both RC and PART. With two alternatives, RC is
not anymore needed. Indeed, Condition λ is equivalent to MON as will be shown
by Theorem 12 below. Therefore, using Theorem 2, one can see that Condition λ

jointly with HOM implies PART in this case.
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Once we have shown the almost equivalence of PART and Condition λ, this final
set of results studies the relationship between Condition λ and MON. We first show
that both conditions are logically independent with at least three alternatives.

Theorem 11. Let #A ≥ 3. MON and Condition λ are logically independent.

Proof. In order to check that MON does not imply Condition λ, it suffices to see any
Condorcet extension that satisfies MON, e.g. Copeland rule, must fail Condition λ,
as proved by Theorem 9.

Now, in order to see that Condition λ does not imply MON, note that Theorem 8
shows that PART implies Condition λ. Hence, combining this observation with the
examples provided by Campbell and Kelly [2002] that satisfy PART but fail MON,
concludes the proof. �

Even though the conditions are logically independent, we can prove that they
are equivalent with just two alternatives and that Condition λ generally implies
WMON, the weaker notion of monotonicity.

Theorem 12. Let #A := 2. A SCR F satisfies Condition λ if and only if F satisfies
MON.

Proof. Let A := {x, y}. Take some F that satisfies Condition λ but fails MON. So,
∃N,v,PN−v ,Pv,Pv′ with xPv y, yPv′x while F(PN−v ,Pv)= y and F(PN−v ,Pv′)= x. How-
ever, this implies that L(y;Pv)= {y} whereas L(x;Pv′)= {x} so that Condition λ fails,
a contradiction.

Take now some F that satisfies MON. So, ∃N,v,PN−v ,Pv,Pv′ with L(F(PN−v ,Pv);Pv)∩
L(F(PN−v ,Pv′);Pv′) =;. Assume w.l.o.g. that xPv y and yPvx. Then if F(PN−v ,Pv) =
x, L(F(PN−v ,Pv);Pv) = {x, y} so that Condition λ holds. If F(PN−v ,Pv) = y, then
L(F(PN−v ,Pv);Pv) = {y}. If, now F(PN−v ,Pv′) = y then L(F(PN−v ,Pv′);Pv′) = {x, y} so
that Condition λ holds again. Therefore, it must be the case that F(PN−v ,Pv′) = x
to ensure that Condition λ holds. But this contradicts MON since xPv y and yPvx,
concluding the proof. �

Combining Theorem 12 with Theorem 1, Theorem 2 and Proposition 1, one can
see that with just two alternatives, PART implies Condition λ; Condition λ does not
imply PART and condition λ together with HOM imply PART.

Theorem 13. If a SCR F satisfies Condition λ, then it satisfies WMON.

Proof. Take some SCR F that fails WMON but satisfies Condition λ. Since F
fails WMON, there must exist PN−v ,Pv,P ′

v and x, y such that F(PN−v ,Pv) = x and
F(PN−v ,P ′

v) = y with x ranked last at Pv and y ranked below x at P ′
v. Hence

L(x,Pv) = {x} whereas x ∉ L(y,P ′
v) since y ranked below x. But this implies that
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F fails Condition λ since the previous equalities imply that L(F(PN−v ;Pv),Pv)∩
L(F(PN−v ,P ′

v);P ′
v)=;. �

3. THE FIXED ELECTORATE CASE

We now consider the case where the electorate N is of fixed size n ≥ 2. A voter v
is now allowed to have as preference a linear order Pv ∈Π or to abstain, i.e. have
full indifference over the whole set of alternatives. This indifference is denoted by
the null preference R0 where xR0 y holds for any x, y ∈ A. We let Π :=Π∪ {R0}. The
profile (PN−v ,R0) ∈ΠN

is the profile in which voter v abstains and the rest of voters’
preferences are as in PN−v .

Given any n ∈ N, a fixed-size social choice rule (FSCR) is a mapping Fn that
returns, for PN ∈ΠN

, a single alternative Fn(PN) ∈ A. Note that the full domain as-
sumption prevails, i.e. given the fixed electorate N, Fn is defined for every possible
preference profile PN .

We now define MON under the possibility of abstention in individual preferences.

Definition 14. Given any x and any PN ,P ′
N with Pv , P ′

v for some v ∈ N and Pw =
P ′

w∀w ∈ N \{v},
If P ′

v ,R0, then PN is an improvement for x w.r.t. P ′
N if

(1) xP ′
v y=⇒ xPv y for every y ∈ A \{x},

(2) yP ′
vz ⇐⇒ yPvz for every y, z ∈ A \{x}.

If P ′
v = R0, then PN is an improvement for x w.r.t. P ′

N if

(1) xPv y for every y ∈ A \{x}.

Definition 15. A FSCR Fn is monotonic (MON) iff given x ∈ A , PN ,P ′
N ∈ΠN

such
that PN is an improvement for x w.r.t. P ′

N ,

x = Fn(P ′
N)=⇒ x = Fn(PN).

We now define PART in this framework.

Definition 16. A FSCR Fn satisfies participation (PART) iff ∀v ∈ N, ∀PN−v ∈ΠN−v

,
∀Pv ∈Π,

Fn(PN−v ,Pv), Fn(PN−v ,R0)=⇒ Fn(PN−v ,Pv)PvFn(PN−v ,R0).

We now establish an equivalence between the fixed and variable electorate inter-
pretations regarding the satisfaction of PART. We start by giving two definitions.

Definition 17. A family of FSCRs {Fn}n∈N is equivalent to a variable electorate SCR
F if and only if for any n ∈N and any PN ∈ΠN , Fn(PN)= F(PN).

Definition 18. A family of FSCRs {Fn}n∈N is regular if for any n ∈ N, for any PN ∈
Π

N
with Pi = R0 for some i ∈ {1, . . . ,n}, Fn(PN)= Fn(P1,P2, . . . ,Pi−1,Pi+1, . . . ,Pn).
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The meaning of Definition 17 is clear. The idea behind regularity is to ignore
voters who take part in the election without expressing a preference; this is satis-
fied by many well-known rules such as scoring rules and the Condorcet principle.
Nevertheless, the quorum rules (see Houy [2009]), where some minimal level of
participation is required, fail to satisfy regularity.

Observe that for each variable electorate SCR F, there exists some equivalent
family {Fn}n∈N of FSCRs which is not unique. Yet, uniqueness is obtained when
regularity is imposed over {Fn}n∈N.

Theorem 14. Let F be a variable electorate SCR and {Fn}n∈N the regular family of
FSCRs which is equivalent to F. F satisfies PART if and only if Fn satisfies PART
for each n ∈N.

Proof. Take some SCR F and its equivalent regular family of FSCRs {Fn}n∈N.
Assume that F satisfies PART. Due to Definition 17, it follows that for any n ≥ 2,

∀v ∈ N, ∀PN−v , ∀Pv,

F(PN−v ,Pv)= Fn(PN−v ,Pv) and F(PN−v)= Fn−1(PN−v).

Moreover, Definition 18 implies that Fn−1(PN−v) = Fn(PN−v ,R0). Since F satisfies
PART, it follows that F(PN−v ,Pv) , F(PN−v) =⇒ F(PN−v ,Pv)PvF(PN−v). Therefore,
the previous equalities imply that, as long as Fn(PN−v ,Pv), Fn(PN−v ,R0),

Fn(PN−v ,Pv)PvFn(PN−v ,R0),

which proves that Fn satisfies PART for any n ∈N.
Assume now that each Fn satisfies PART. Again Definitions 17 and 18 jointly

imply that

F(PN−v ,Pv)= Fn(PN−v ,Pv) and F(PN−v)= Fn(PN−v ,R0).

Since each Fn satisfies PART, it follows that

Fn(PN−v ,Pv), Fn(PN−v ,R0)=⇒ Fn(PN−v ,Pv)PvFn(PN−v ,R0).

However, combining the previous implication with the described equivalence be-
tween the SCR F and each FSCR Fn, proves that F satisfies PART, as desired.

Q.E.D.

By using Theorem 14 we can transfer results on the satisfaction of PART in the
variable electorate setting to the fixed electorate one. More precisely, Moulin [1988]
proves that with four or more alternatives and with at least 25 voters, no Con-
dorcet rule satisfies PART. Recently, Brandt et al. [2016] proves that the minimal
number of voters to obtain this incompatibility is exactly 12 using computational
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techniques12. As a consequence of these results, we can conclude that scoring rules
satisfy PART in the fixed electorate setting as well or that the result of Moulin
on the non-existence of Condorcet extensions that satisfy PART prevails when the
electorate is fixed. To be more precise regarding the latter observation, there exists
some n ∈ N where no FSCR Fn is Condorcet Consistent and satisfies PART. This
also shows that MON does not imply PART in this setting as well, as a monotonic
Condorcet extension such as the Copeland rule illustrates. As a matter of fact, the
general logical independence between PART and MON prevails in this setting as
shown by the following adaptation of the Campbell and Kelly [2002] example to the
fixed electorate setting.

Example: PART does not imply MON. Fix some x ∈ A. We define a FSCR Fn

such that, for any profile PN , (1) if Pv = R0 for every v ∈ N, then Fn(PN) = x, (2) if
x is ranked last by every Pv , R0, then Fn(PN) = x and (3) if there is some Pv , R0

where some alternative y different from x is ranked last, then Fn selects the most
preferred alternative of the voter with the lowest index among those with a strict
preference where x is not ranked last. One can check that Fn satisfies PART but
fails MON.

As the following theorem states, for FSCRs, MON and PART are equivalent when
there are two alternatives only.

Theorem 15. Let #A := 2. A FSCR Fn satisfies MON if and only if it satisfies PART.

Proof. Let A := {x, y}. Take some Fn that satisfies PART but fails MON. Since Fn

fails MON, w.l.o.g., one of the following two exhaustive cases holds.
Case 1: there exist some profile PN−v ∈ΠN−v

and some pair P ′
v, Pv with yP ′

vx and
xPv y with Fn(PN−v ,P ′

v)= x and Fn(PN−v ,Pv)= y. However, due to PART, Fn(PN−v ,P ′
v)=

x implies Fn(PN−v ,R0) = x which in turn implies Fn(PN−v ,Pv) = x, giving a contra-
diction.

Case 2: there exist some profile PN−v ∈ ΠN−v

and some pair P ′
v = R0 , Pv with

xPv y with Fn(PN−v ,P ′
v) = x and Fn(PN−v ,Pv) = y. However, as Fn(PN−v ,R0) = x,

PART implies Fn(PN−v ,Pv)= x, giving a contradiction. We leave the reader to check
that MON implies PART. Q.E.D.

We now define WPART in the fixed electorate framework.

Definition 19. A FSCR Fn satisfies weak participation (WPART) iff ∀v ∈ N, ∀PN−v ∈
Π

n−1
, ∀Pv ∈Π,

Fn(PN−v ,Pv), Fn(PN−v ,R0)=⇒∃ x ∈ A s.t. xPvFn(PN−v ,R0).
12For a recent contribution on the No-Show paradox with social choice correspondences, see Brandl
et al. [2015].
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Theorem 16. Let #A ≥ 3. If a FSCR Fn satisfies MON, then it satisfies WPART.

Proof. Take some Fn that fails WPART. Since Fn fails WPART, there must some
profile PN−v ∈ΠN−v

and some pair P ′
v, Pv = R0 with xP ′

vz ∀z ∈ A\{x} while Fn(PN−v ,Pv)=
x and Fn(PN−v ,P ′

v) , x. As (PN−v ,P ′
v) is an improvement for x w.r.t. (PN−v ,Pv), this

violates MON and concludes the proof. Q.E.D.

The following is the weakening of MON in the same spirit as the weakening
introduced in Section 2.

Definition 20. Given any x and any PN ,P ′
N such that Pv , P ′

v for some v ∈ N and
Pw = P ′

w∀w ∈ N \{v},
If P ′

v ,R0, then PN is a strong improvement for x w.r.t. P ′
N if

(1) yP ′
vx for every y ∈ A \{x},

(2) yP ′
vz ⇐⇒ yPvz for every y, z ∈ A \{x}.

If P ′
v = R0, then PN is a strong improvement for x w.r.t. P ′

N if

(1) xPv y for every y ∈ A \{x}.

Definition 21. A FSCR Fn is weakly monotonic (WMON) iff given x ∈ A , PN ,P ′
N ∈

Π
N

such that PN is a strong improvement for x w.r.t. P ′
N

x = Fn(P ′
N) and Fn(PN), Fn(P ′

N) =⇒ Fn(PN)Pvx.

Theorem 17. Let #A ≥ 3. If a FSCR Fn satisfies PART, then it satisfies WMON.

Proof. Take some Fn that satisfies PART but fails WMON. Since Fn fails WMON,
one of the following two exhaustive cases holds.

Case 1: there exist some profile PN−v ∈ΠN−v

and some pair P ′
v, Pv with zP ′

vx∀z ∈
A \{x} and xPv y with Fn(PN−v ,P ′

v)= x and Fn(PN−v ,Pv)= y. However, due to PART,
Fn(PN−v ,P ′

v) = x implies Fn(PN−v ,R0) = x which in turn implies Fn(PN−v ,Pv) , y,
giving a contradiction.

Case 2: there exist some profile PN−v ∈ ΠN−v

and some pair P ′
v = R0 , Pv with

xPvz∀z , x while Fn(PN−v ,P ′
v) = x and Fn(PN−v ,Pv) = y. However, due to PART,

Fn(PN−v ,R0)= x implies Fn(PN−v ,Pv)= x, giving a contradiction.
Thus, there is no Fn satisfying PART but failing WMON, which concludes the

proof. Q.E.D.

4. CONCLUDING REMARKS

Although the logical independence between the no-show paradox and the failure
of monotonicity has already been observed, our findings suggest that this observa-
tion does not mean a major conceptual gap between the two conditions. In fact,
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under two different interpretations of "a new-comer to the society", we are able to
present instances where participation and monotonicity get very close to each other
- in some particular cases to the extent that the established general logical inde-
pendence between them vanishes.

This closeness is rather expected to us because, as we discuss in the introduction,
both conditions are related to the manipulability of SCRs. In fact, until their logical
independence was established by Nurmi [1999] and Campbell and Kelly [2002],
there was a prevailing intuition that the two conditions were somehow related,
in particular that PART could imply MON (see, for example, Nurmi [1999], p.62).
Our findings point to a wisdom in this intuition: Although Campbell and Kelly
[2002] show that PART does not imply MON, as the unorthodoxy of their examples
suggests, PART almost implies MON, more precisely implies its weaker version
WMON. On the other hand, as our Proposition 3 suggests, the fact that MON does
not imply PART is not a mere consequence of the fact that PART is a condition for
SCRs defined over variable size societies while MON is not.

Our discussions on the relationship between PART and MON paved the way to
general results on certain interesting classes of SCRs. In particular, we show that
all threshold scoring rules but one fail PART; all point runoff procedures but one
(namely Borda) fail WMON; and all point runoff procedures fail PART.

It is worth noting that although the fixed-electorate interpretation has no consid-
erable effect on the class of social choice rules that satisfy PART, it results in MON
and PART getting closer. This is also rather expected because, again as discussed
in the introduction, under this interpretation the link between the no-show para-
dox and manipulability of SCRs is more direct. A point we wish to emphasize is
the equivalence between PART and MON under the fixed-electorate interpretation,
when there are two alternatives. In this framework, majority rules with quorums
are known to fail MON and they are supposed to give room to manipulation by
abstention (see Houy [2009]). Our Theorem 15 is a formal expression of this suppo-
sition.

Finally, we wish to remark that PART has been mostly considered in the liter-
ature for single-valued SCRs which led our analysis to be held in this framework.
However, there are a relatively few considerations of PART for multi-valued SCRs,
such as Jimeno et al. [2009], and how our analysis would carry to that framework
remains as an open question.
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