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A GENERALIZATION OF SANKARAN AND LVMB

MANIFOLDS

LAURENT BATTISTI AND KARL OELJEKLAUS

Abstract. In this paper we describe the construction of a new class
of non-Kähler compact complex manifolds. They can be seen as a gen-
eralization of Sankaran, OT and LVMB manifolds. Moreover, we give
properties of these new spaces. Their Kodaira dimension is −∞ and
under a mild condition they have algebraic dimension equal to zero.

0. Introduction

In this article we construct a new family of non-Kähler complex compact
manifolds by the combination of a method due to Bosio ([5]) and another
due to Sankaran ([12]). The class of manifolds constructed in this paper
appears as a generalization of already known examples of non-Kähler man-
ifolds, namely LVMB and Sankaran manifolds (ibid) along with OT mani-
folds ([9]).

Although the field of non-Kähler geometry remains relatively unexplored,
there is nevertheless constant progress. New classes of non-Kähler compact
complex manifolds have been constructed and studied recently.
The first example is given by the class of LVMB manifolds. Their con-

struction is due to Bosio (see [5]) and can be summarized as follows. Given
a family of subsets of {0, ..., n} all having 2m+ 1 elements (where n and m
are integers such that 2m 6 n) and a family of n + 1 linear forms on Cm

satisfying technical conditions, one can find an open subset U of Pn(C) and
an action of a complex Lie group G ∼= Cm on Pn(C), such that the quotient
U/Cm is a compact complex manifold. These manifolds generalize Hopf and
Calabi-Eckmann manifolds and they also generalize a class of manifolds due
to Meersseman ([8]), called LVM manifolds.

OT manifolds were constructed in [9] by the second author and M. Toma.
One starts by choosing an algebraic number field K having s > 0 (resp.
2t > 0) real (resp. complex) embeddings. Then, for a nice choice of a
subgroup A of the groups of units O∗

K of K, the quotient X(K,A) of Hs×Ct

under the action of A⋉OK is a complex compact manifold. The required
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condition on A is that the projection on the s first coordinates of its image
through the logarithmic representation of units

ℓ : O∗
K −→ Rs+t

a 7−→ (ln |σ1(a)|, ..., ln |σs(a)|, 2 ln |σs+1(a)|, ..., 2 ln |σs+t(a)|)
(1)

is a full lattice in Rs. Such an A is called admissible. When there exists
no proper intermediate field extension Q ⊂ K ′ ⊂ K with A ⊂ O∗

K′ , one
says that the manifold X(K,A) is of simple type.

In [12], G. Sankaran studies the action of a discrete group W isomorphic
to Zb over the open subset U of a toric manifold, chosen to obtain a com-
pact quotient U/W . The group W is a subgroup of the group of units of
a number field K and the construction of the infinite fan defining the toric
manifold narrowly depends on W . This construction generalizes previous
ones due to Inoue, Kato, Sankaran himself and Tsuchihashi. In the follow-
ing, we will refer to the manifolds constructed in [12] as Sankaran manifolds.

Our construction combines the methods of Bosio and Sankaran. First,
we take the quotient of a well-chosen n-dimensional toric manifold X∆ un-
der the action of a complex Lie subgroup G ∼= Ct of (C∗)n such that the
quotient X of X∆ by G is a (non-necessarily compact) manifold, then we
choose a suitable open subset of X on which a discrete group W acts and
gives a compact quotient. The group W is a subgroup of the group of units
of a number field K having s > 0 real and 2t > 0 complex embeddings,
with s+2t = n. Of course, the choices of W and ∆ are strongly related, as
in Sankaran’s case. We obtain an (s + t)-dimensional non-Kähler complex
compact manifold.

The paper is organized as follows: In section 1 we introduce all notations
and results that will be needed in the sequel.

The next section is devoted to the description of the construction itself,
which is subdivided into two steps. At the end of section 2, some remarks
are made on the structure of the manifolds and we show how they generalize
other known classes of manifolds.

In section 3 we provide results on invariants and geometric properties of
the new manifolds. We will prove that their Kodaira dimension is −∞,
that they are not Kähler and finally show that their algebraic dimension is
zero under a mild technical assumption. Moreover, we compute the second
Betti number of OT manifolds under the same assumption, a fact which
was already known for OT manifolds of simple type.

We conclude the paper by giving a concrete example of a 3-dimensional
manifold.
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1. Preliminaries

Before starting the construction, we need to introduce or recall notations
and results. Most of them can be found in Sankaran’s paper ([12]), others
come from [9] and [2]. Detailed proofs are only provided when modifications
are needed to fit in with the current context.

The section is divided into four parts, as follows: First we settle the
number-theoretic ground of our construction. Then, we study complex Lie
groups which will arise later, in particular a certain Cousin group, i.e. a
complex Lie group without non-constant holomorphic functions. Furthe-
more, we state some facts about manifolds with corners associated to a fan
and finally construct a special fan.

1.1. Number-theoretic notations and results. LetK be a number field
having n = s + 2t distinct embeddings in C and let σ1, ..., σs be the s
real and σs+1, ..., σn the 2t complex (non real) ones. Up to re-ordering
these embeddings, we can assume that the relation σs+i = σ̄s+t+i holds for
1 6 i 6 t. We also require that both s and t strictly positive.

Define the map

σK : K −→ Rs × C2t

k 7−→ (σ1(k), ..., σs(k), σs+1(k), ..., σn(k)).

Note OK the set of algebraic integers ofK. The image σK(OK) is a lattice of
rank n in Rs×C2t ⊂ Cn. Let O∗

K be the group of units of OK . Since s > 1,
Dirichlet’s Unit Theorem tells us that O∗

K is isomorphic to {±1} × Zs+t−1.
The group O∗

K acts on Cn by componentwise multiplication:

η · (z1, ..., zn) := (σ1(η)z1, ..., σn(η)zn).

For all η ∈ O∗
K , set ηi := σi(η) if i = 1, ..., s and ηi := |σi(η)| if i =

s + 1, ..., s + t. Call O∗,+
K the set of units η ∈ O∗

K such that ηi > 0 for all
i = 1, ..., s. The following theorem is due to Sankaran. For the convenience
of the reader, we give the proof.

Theorem 1.1 ([12], Theorem 2.1). For all b ∈ {1, ..., s}, there exists a sub-
group W < O∗,+

K of rank b satisfying the following condition, called “As-

sumption C”1: for all η 6= 1 ∈ W , either there is an i 6 b such that ηi > ηj
for every j > b, or there is an i 6 b such that ηi < ηj for every j > b.

1In [12], Sankaran formulates two others assumptions (A and B) which we do not use
here.
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Proof. Set g := s+ t− b and to every η ∈ O∗,+
K associate an element of Rbg

via the map:

ϕb : O∗,+
K −→ Rbg

η 7−→




ln(η1/ηb+1) · · · ln(η1/ηs+t)

... ln(ηi/ηb+j)
...

ln(ηb/ηb+1) · · · ln(ηb/ηs+t)



.

For i = 1, ..., b, let πi,b be the projection

πi,b : Rbg −→ Rg

(ti,j) 7−→ (ti,j)j=1,...,g

i.e. πi,b maps an element of Rbg written in matrix form to its i-th row.

The fact that W satisfies Assumption C means that for all η 6= 1 ∈ W ,
there exists i ∈ {1, ..., b} such that

πi,b(η) ∈ Qb := {(x1, ..., xg) ∈ Rg | the xj’s are non-zero and of same sign}.

Call Ub the vector space ϕb(O
∗,+
K )⊗R ∼= Rs+t−1 ⊂ Rbg. In order to prove

the existence of a group W of rank b verifying Assumption C, it is enough to
find a b-dimensional linear subspace A ⊂ Ub that is generated by elements
of ϕb(O

∗,+
K ) and such that for every x 6= 0 ∈ A there exists an i ∈ {1, ..., b}

with πi,b(x) ∈ Qb. We proceed by induction.

For b = 1 the result is clear, as it is enough to take A to be any line
passing through the origin and any point of Q1.

Assume the result is proved at rank b−1: there exists a (b−1)-dimensional
linear subspace A′ of Ub−1 having the following property:

for all x ∈ A′, there exists i ∈ {1, ..., b− 1} such that πi,b−1(x) ∈ Qb−1.

In this case, for all x ∈ A′, the integer i above satisfies: πi,b(x) ∈ Qb.
Now, fix a projection along A′, say πA′ : Ub → Rg. There is a map L ∈
GLg(R) such that the following diagram commutes:

Ub

πb,b

��

πA′

��

Rg ∼= πb,b(Ub)
L

// Ub/A
′ ∼= Rg.

Now we consider QA′ := L(Qb). Take a line ℓ ⊂ QA′∪{0}, then the subspace
A := π−1

A′ (ℓ) fits our purpose. To see this, pick an x ∈ A. Either we have
x ∈ A′ and in this case there is an i ∈ {1, ..., b} such that πi,b(x) ∈ Qb,
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or πA′(x) ∈ ℓ \ {0} ⊂ QA′ and πA′(x) = L(πb,b(x)), which means that
πb,b(x) ∈ Qb. �

1.2. A Cousin group. Consider now the linear subspace

H := {(0, ..., 0, zs+t+1, ..., zs+t+t) | zs+t+1, ..., zs+t+t ∈ C} ∼= Ct

of Cn and call πH the projection from Cn to Cs+t with respect to H, given
by the s+ t first coordinates.

Lemma 1.2. The restriction of πH to σK(OK) is injective.

Proof. It is sufficient to check that H ∩ σK(OK) = {0}, which is straight-
forward because the σi’s are embeddings. �

Now let W be as in the previous theorem for some b ∈ {1, ..., s}. Notice
that the action of W on Cn (resp. Cn/H ∼= Cs+t) induces an action on
σK(OK) (resp. πH(σK(OK))).

Take an integral basis of K and call BK its image by σK . This is a basis
of Cn over the complex numbers. Denote by E the vector space generated
over R by the vectors of σK(OK), note B := (e1, ..., en) the canonical basis
of Cn and B′ the basis

(e1, ..., es, es+1 + es+t+1,−i(es+1 − es+t+1), ..., es+t + es+2t,−i(es+t − es+2t)).

In the latter basis, the matrix of an element η ∈ W is written as:



σ1(η) 0
. . .

σs(η)
ℜ(σs+t+1(η)) −ℑ(σs+t+1(η))
ℑ(σs+t+1(η)) ℜ(σs+t+1(η))

. . .
ℜ(σn(η)) −ℑ(σn(η))

0 ℑ(σn(η)) ℜ(σn(η))




.

Moreover, B′ is an R-basis for the vector space E. To see this, it is enough
to prove the following:

Lemma 1.3. Let PBK ,B′ be the change-of-basis matrix from BK to B′. Then,
all entries of PBK ,B′ are real, in other words one has PBK ,B′ ∈ GLn(R).

Proof. Notice that PBK ,B′ = PBK ,BPB,B′ and that the last 2t columns of PBK ,B

are pairwise conjugated, meanwhile the s first columns are real. Hence, all
the coefficients of the vectors PBK ,Bej for j ∈ {1, ..., s} are real. Now,
denote by h1, ..., ht, h1, ..., ht the last 2t columns of PBK ,B and observe that
PBK ,B(es+j + es+t+j) = 2ℜ(hj) and PBK ,B(−i(es+j − es+t+j)) = −2ℑ(hj) for
j = 1, ..., t. The lemma is thus proven. �
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Denote by H̃ the vector space generated over R by the last 2t vectors of B′.
This is a 2t-dimensional linear subspace of E and we note π

H̃
: E → E/H̃

the quotient map.

Remark 1.4. The shape of the matrix of an element η ∈ W in the basis
B′ shows that such an element induces a linear map from the real vector
space E ∼= Rn to itself and that this linear map descends to the quotient
E/H̃ ∼= Rs, where it is given by η : (x1, ..., xs) 7→ (σ1(η)x1, ..., σs(η)xs).

Furthermore, one has H̃ ∩ σK(OK) = {0}.

Now we describe the linear subspace H in the basis BK ; it is generated
by the t vectors (h1, ..., ht), where hi is the vector es+t+i of the canonical
basis written in the basis BK (according to notations of lemma 1.3).

The group H is a closed Lie subgroup of Cn/σK(OK) ∼= (C∗)n, via the
following map ι:

H −→ (C∗)n




0
...
0

zs+t+1
...

zs+t+t




7−→




exp(2iπ
t∑

i=1
hi,1zs+t+i)

...

exp(2iπ
t∑

i=1
hi,nzs+t+i)




,
(2)

where hi,j is the j-th coordinate of the vector hi. We still denote by H the
image of H under this map. We shall see that the group (Cn/σK(OK))/H
only has trivial holomorphic functions.

A connected complex Lie group admitting no non-constant holomorphic
functions is called a Cousin group, or a toroidal group. One has:

Corollary 1.5. The quotient of the complex Lie group Cn/σK(OK) ∼= (C∗)n

by H is a Cousin group, which we call C0. We denote by p the quotient map
p : Cn/σK(OK) → C0.

Proof. By lemma 1.2 above, the quotient of Cn/σK(OK) by H is isomorphic
to the quotient of Cs+t = Cn/H by πH(σK(OK)), which is a Cousin group
by lemma 2.4 of [9]. �

Lemma 1.6. The subgroups H and (S1)n of Cn/σK(OK) intersect trivially.
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Proof. An element of this intersection corresponds to an element of the
linear subspace H satisfying the following equation:

PB,BK




x1

...

xn




=




0
...
0

zs+t+1
...

zs+t+t




,

where PB,BK
is the change-of-basis matrix from the canonical basis to BK and

the xi’s are real. The i-th and (i+t)-th components of every vector of the ba-
sis BK are conjugated (for i = s+1, ..., s+t). Since the xi’s are real numbers,
the i-th and (i + t)-th components of the vector (0, ..., 0, zs+t+1, ..., zs+t+t)
are also conjugated, hence zs+t+1 = ... = zs+t+t = 0. �

Remark 1.7. The quotient of (C∗)n by (S1)n is given by the map

ord : (C∗)n −→ Rn

(z1, ..., zn) 7−→ (− ln |z1|, ...,− ln |zn|).

With equation (2), we see that the space ord(H) ∼= R2t is generated by the

2t vectors ℜ(hj) and ℑ(hj) (for j ∈ {1, ..., t}), in other words, ord(H) = H̃.

1.3. Manifolds with corners. In [2], one can find the definition of the
manifold with corners of a (non-necessarily rational) fan ∆ of Rn, denoted by
Mc(∆). Heuristically, this is a partial compactification of Rn obtained the
following way: for every cone σ in ∆ one sends a complementary subspace
of span(σ) “at infinity” in the direction of σ. One also defines a topology
on this space and when ∆ is rational, this space is (homeomorphic to)
the manifold with corners of ∆ in the usual toric-geometrical sense, i.e.
X∆/(S

1)n. This construction was inspired by the first chapter of [1].
We need the following two lemmas:

Lemma 1.8 ([2], lemma 1.17). Let σ be a cone of a fan ∆. Then the closure
S of σ ⊂ Mc(∆) in Mc(∆) is compact.

Lemma 1.9 ([2], lemma 2.3). Let ∆ be a fan in Rn and E ∼= Rk be a linear
subspace of Rn. The action of E on Mc(∆) is proper if and only if the
restriction of the quotient map π : Rn → Rn/E to the support |∆| of ∆ is
injective.

We state the following definition and proposition, the proof of which is
straightforward:

Definition 1.10. Let ∆ be a (non-necessarily rational) fan of Rn and G
a discrete group of GLn(R). We say that G acts on ∆ if for every cone
σ ∈ ∆ and every g ∈ G, one has g(σ) ∈ ∆. This action is called free

if g(σ) 6= σ when g is not the identity of G and σ 6= {0} is a cone of ∆.
This action is called properly discontinuous if for every σ ∈ ∆, the set
{g ∈ G | (g(σ) ∩ σ) \ {0} 6= ∅} is finite.
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For a fan ∆, we set |∆|∗ := |∆| \ {0} and |∆|∗c is the complement of this
set in Rn. One has:

Proposition 1.11. Let ∆ be a (non-necessarily rational) fan and G a dis-
crete group acting freely and properly discontinuously on ∆. Then this ac-
tion induces an action of G on Mc(∆)\|∆|∗c which is also free and properly
discontinuous.

Remark 1.12. Notice that Mc(∆) \ |∆|∗c = (Mc(∆) \Rn)∪ |∆|∗, i.e. this
set is the support of ∆ (except 0) to which we add the components “at
infinity” of Mc(∆).

1.4. A suitable fan. In the vector space E, we construct a rational fan ∆
with respect to the lattice OK ⊂ E. First this fan has to be W -invariant.
Furthermore, the image of its support under the projecting map π

H̃
must

be included in an open degenerate proper cone Ω ⊂ π
H̃
(E) ∼= Rs invariant

under the action of W . Degenerate means that the closure of the cone
Ω contains a non-trivial linear subspace of π

H̃
(E). If these conditions are

satisfied, then there is an action of W on the toric manifold associated to
this fan.

The projection π
H̃

is injective on σK(OK) and W -equivariant. Assume
there is a fan ∆′ in π

H̃
(E) that is generated by elements of π

H̃
(σK(OK))

and whose support is such a cone Ω. Take its pullback via the map π
H̃
.

This is the desired fan ∆.
To construct the fan ∆′ in π

H̃
(E), we follow the steps of Sankaran in

[12] (theorem 2.5). Again, we only give proofs of results when they need
modifications, all the others adapt readily.

Let Ω be an open degenerate cone in π
H̃
(E) invariant under W . We start

by describing the maximal vector subspace contained in its closure:

Lemma 1.13 ([12], lemma 1.2). The vector space N of maximal dimension
contained in the closure of Ω is of the form

N = {(x1, ..., xs) ∈ π
H̃
(E) | xi1 = · · · = xis−h

= 0},

with h > 0.

Remark 1.14. Up to renumbering the coordinates of π
H̃
(E) and the σi’s

simultaneously, we may assume that N is the set

{(x1, ..., xs) ∈ π
H̃
(E) | x1 = · · · = xs−h = 0}.

This allows us to describe Ω explicitly:

Lemma 1.15 ([12], lemma 1.3). One has Ω = N × L+ where

L = {x ∈ π
H̃
(E) | xs−h+1 = ... = xs = 0}

and

L+ = {x ∈ L | ± xi > 0, i ∈ {1, ..., s− h}}.
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Up to composition with a suitable element of O∗
K , we may assume that L+

is the set {x ∈ L | xi > 0, i ∈ {1, ..., s− h}}.

Now, we take an integer h ∈ {1, ..., s − 1} and consider the expression of
Ω given by lemma 1.15. To ensure that L+/W is a compact manifold, we
choose the rank b ofW to be equal to the dimension s−h of L. In particular,
we have 1 6 b < s. Remember that given an integer b ∈ {1, ..., s − 1},
theorem 1.1 guarantees the existence of a subgroup W of rank b of O∗,+

K

satisfying Assumption C.

Proposition 1.16 ([12], proposition 1.4). The action of W on Ω is free
and properly discontinuous.

Proposition 1.17 ([12], proposition 2.2). If C ⊂ Ω∪{0} is a nondegenerate
closed cone, for all η ∈ W one has:

⋂
a∈Z

ηaC ⊂ L+.

Remark 1.18. Let’s recall the idea of Sankaran’s proof: there is a real
number δ > 0 such that

C ⊂ Cδ := {v ∈ Ω |
b∑

i=1

v2i > δ
∑

j>b

v2j}. (3)

It is hence enough to establish the result for Cδ. This can be done by
observing that there exist N > 1 and a ∈ N such that ηkCδ ⊂ CNkδ for
k > a. A crucial remark for the next part of the construction is that the
constants a and N can be chosen independently of η ∈ W . For further
details, see the proof of theorem 2.4 in [12]. Assumption C and the fact
that b < s are used in this proof.

Theorem 1.19 ([12], theorem 2.5). There exists an infinite fan ∆′ of Rs

stable under the action of W , whose support |∆′| is (Ω \ L+) ∪ {0}, such
that all its cones are generated by elements of π

H̃
(OK) and ∆′/W is a finite

set of cones.

Remark 1.20. In particular, ∆′ is constructed in such a way that the action
of W on it is free and properly discontinuous in the sense of definition 1.10.

2. Construction of the new manifolds

Now we are able to start the construction. It is divided into two steps.
First, we choose a groupW as in theorem 1.1 and get an infinite fan on which
W acts thanks to theorem 1.19. We take the quotient X of its associated
toric manifold by the complex Lie groupH and check that we have an action
of W on the complex manifold X.
The second step is to find a suitable open subset U of X so that its

quotient under the action of W becomes a compact manifold.
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2.1. Step 1. Let K be a number field, with s > 0 real and 2t > 0 complex
embeddings. Choose an integer b ∈ {1, ..., s− 1}. Theorem 1.1 shows the
existence of a subgroup W of O∗,+

K of rank b satisfying Assumption C.
Take a fan ∆′ in Rs as in theorem 1.19. Note ∆ its preimage π−1

H̃
(∆′), which

is a rational fan of E with respect to OK and consider its associated toric
manifold denoted by X∆. The group H acts as a closed subgroup of (C∗)n

(see equation (2)) on X∆ and we have the following:

Lemma 2.1. The action of H on X∆ is free and proper.

Proof. To check that this action is proper, we first observe that the group
H̃ = ord(H) ∼= H acts properly on Mc(∆). This is a consequence of

lemma 1.9 and the fact that the map π
H̃
: E → E/H̃ is injective on |∆| by

construction. Finally, it is clear that the action of H on X∆ is proper if and
only if the action of H̃ on Mc(∆) is proper because (S1)n is compact.
The isotropy group of a point x ∈ X∆ is a compact subgroup of H ∼= Ct

and hence trivial. �

The preceding lemma tells us that the quotient X := X∆/H is a complex
manifold and since (C∗)n is abelian, the following diagram is commutative:

X∆

(S1)n
//

H ∼= Ct

��

Mc(∆)

ord(H) = H̃ ∼= R2t

��

X
q

p((S1)n) ∼= (S1)n
// Mc(π

H̃
(∆))

(4)

The action of (S1)n on X∆ descends to X via the group p((S1)n) ∼= S1)n.
We note q : X → Mc(π

H̃
(∆)) the quotient map for this action. A detailed

proof of the fact that Mc(∆)/H̃ and Mc(π
H̃
(∆)) are homeomorphic can

be found in section 2.2.2, pp. 558 & 559 of [2].

Lemma 2.2. The action of W on X∆ descends to an action on X wich we
note (η, x) 7→ η · x action.

Proof. We shall prove that the action of W normalizes the subgroup H of
(C∗)n.

Let η ∈ W , x ∈ X∆ and z = (z1, ..., zt) ∈ H. First, η is equivariant with
respect to

η̃ : (C∗)n −→ (C∗)n

(t1, ..., tn) 7−→ (t
a1,1
1 · · · t

a1,n
n , ..., t

ai,1
1 · · · t

ai,n
n , ..., t

an,1

1 · · · tan,n
n )

where (ai,j) is the matrix of the linear map η in the basis BK , see for instance
[6], theorem 6.4 p. 244.
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This means that one has η(ι(z)x) = η̃(ι(z))η(x). The map ι is defined in
equation (2). Moreover, η̃(ι(z)) = ι(σs+t+1(η)z1, ..., σs+t+t(η)zt), hence we
have:

η(ι(z)x) = ι(σs+t+1(η)z1, ..., σs+t+t(η)zt)η(x).

�

Lemma 2.3. The group W acts on Mc(∆) and this action descends to
Mc(π

H̃
(∆)). Moreover, the map q is equivariant with respect to the action

of W .

Proof. For an element x ∈ X∆ (resp. y ∈ Mc(∆)), we note H.x, respec-

tively H̃.y, the H-orbit of x, respectively the H̃-orbit of y. The proof of the
previous lemma shows that the action of W descends to Mc(∆). The pro-

jection map of E ⊂ Mc(∆) with respect to H̃ commutes with the action of
W , see remark 1.4, hence there is an action of W on Mc(π

H̃
(∆)). Note this

action again by (η, H̃.y) 7→ η · H̃.y. Now we prove that q is W -equivariant.
Let H.x ∈ X and η ∈ W . By lemma 2.2 and the commutativity of

diagram (4), we have: q(η · H.x) = q(H.η(x)) = H̃. ord(η(x)). We first
prove that ord(η(x)) = η(ord(x)) on the dense open set (C∗)n of X∆.

One has:

ord(x) = −
1

2π
(ln |x1|, ..., ln |xn|) ,

and

ord(η(x)) = −
1

2π
(ln(|x

a1,1
1 · · · xa1,n

n |), ..., ln(|x
an,1

1 · · · xan,n

n |))

= −
1

2π

(
n∑

i=1

a1,i ln |xi|, ...,
n∑

i=1

an,i ln |xi|

)

= η(ord(x)).

By the density of (C∗)n in X∆, this equality holds on X∆. Hence

q(η ·H.x) = H̃. ord(η(x)) = H̃.η(ord(x)) = η · (H̃. ord(x)).

�

2.2. Step 2. The last step consists of finding an open subset U of X on
which the action of W is free and properly discontinuous. This shows that
the quotient U/W is a complex manifold. It turns out that the action of W
on the manifold with corners Mc(π

H̃
(∆)) carries enough informations for

our purpose. In this space, we find an open subset on which the action of
W is free and properly discontinuous, with a compact fundamental domain.
This proves the compactness of the quotient. Then, we pull everything back
to X via the map q.

Let η1, ..., ηb be generators of W . Taking their inverses if necessary, we
may assume they all satisfy the following
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Assumption C+: for every i ∈ {1, ..., b} and every nondegenerate closed
cone C ⊂ Ω ∪ {0}, one has

⋂
a∈N

ηai C ⊂ L+. (Remark 1.18.)

Define the affine subspace

H0 := {(1, ..., 1︸ ︷︷ ︸
b times

, x1, ..., xs−b) | x1, ..., xs−b ∈ R} ⊂ E/H̃

and set Hi := ηi(H0) for i = 1, ..., b. Note B the (unbounded) convex
envelope of H0, H1, ..., Hb.

Lemma 2.4. Let Bb be the image of B by the projection on the b first
coordinates of E/H̃. Then one has

⋃

η∈W

η(Bb) = (R+
∗ )

b and the union

⋃

η∈W\W>1

η(Bb) is bounded, where W>1 is the set of elements of W having at

least one of their b first coordinates greater or equal to 1.

Proof. For the first statement, notice that W is a lattice of Rb via the map
w 7→ (ln η1, ..., ln ηb). The second one comes from the fact that every element
η of W \W>1 satisfies ηi < 1 for all i ∈ {1, ..., b}. �

Lemma 2.5. The action of W on U :=Mc(π
H̃
(∆)) \ |Ω|∗c is free, properly

discontinuous and admits a compact fundamental domain. The same holds
for the action of W on the preimage U := q−1(U) in X.

Proof. The fact that the action is free and properly discontinuous is a con-
sequence of proposition 1.11. By theorem 1.19, there is a finite set of cones
Σ := {σ1, ..., σd} such that W · Σ = ∆′. We still assume that η1, ..., ηb is a
family of generators of W satisfying assumption C+ and B is the set defined
directly before lemma 2.4. Let us consider the closure D in Mc(π

H̃
(∆)) of

the set

D :=

Ñ

⋃

η∈W+

η(|Σ|) ∩ B

é

︸ ︷︷ ︸
D1

∪

Ñ

|Σ| ∩
⋃

η∈W>1

η(B)

é

︸ ︷︷ ︸
D2

.

Here, |Σ| is the union of the cones of Σ and W+ is the set of elements of
W satisfying assumption C+, along with the identity. Notice in particular
that W+ ⊂ W>1. Figure 1 gives a picture of D for s = 2 and b = 1.

To prove the lemma, it is enough to show that D is a compact fundamen-
tal domain for the action of W .

For compactness, first notice that D1 is bounded. This is a consequence
of remark 1.18. Indeed, there is an upper-bound for the b first coordinates
of points in D1 because of the definition of B, while for the s − b last
coordinates, we observe that the inclusion ηaCδ ⊂ CNaδ holds for a ∈ N
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H0 H1

B

D

D1

D2

D2

Figure 1. The fundamental domain D.

large enough, δ > 0 and N > 1. Hence the elements of D1 lie in a cone
Cδ for δ > 0 well-chosen. Equation (3) shows that a subset of Cδ which is
bounded in the b first coordinates is also bounded in the s− b last ones.

Since Σ is a finite set, the closure of D2 is the union of the closures of
σ ∩

⋃
η∈W>1

η(B) for σ ∈ Σ. Such a set is contained in σ \B(0, C) for some
constant C > 0. Indeed, let x = (x1, ..., xs) ∈ B and η ∈ W>1. For all
η ∈ W>1, there exists an integer i 6 b such that ηi > 1, so without loss of
generality we may assume η1 > 1. The following inequalities hold:

‖η(x)‖2 =
s∑

i=1

η2i x
2
i > η21x

2
1 > x2

1 > min
y∈B

y21 > 0.

The last inequality is a consequence of the fact that the projection of B on
the b first coordinates is a compact set in Rb having no point with a zero
coordinate. All the constants Ci := miny∈B y2i for i = 1, ..., b are strictly
positive. Let C be the square root of the smallest of these constants. One
has ‖η(x)‖ > C. Finally, the closure of D2 is compact by lemma 1.8.
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In order to finish the proof, we check that D is a fundamental domain for
the action of W .

First observe that for all x ∈ Ω \ L+, there are two elements η and
η′ ∈ W such that x ∈ η(|Σ|)∩ η′(B). One has either η−1η′ ∈ W+ ⊂ W>1 or
ηη′−1 ∈ W+. This respectively implies that either η−1(x) ∈ |Σ| ∩ η−1η′(B)
or η′−1(x) ∈ ηη′−1(|Σ|)∩B. If x ∈ L+, lemma 2.4 gives the conclusion since
B ∩ L+ ⊂ D.

For the remaining case, take a point x = y +∞ · τ in D on a component
at infinity of Mc(π

H̃
(∆)). The second conclusion of lemma 2.4 implies then

that there is a constant C ′ > C such that for every cone σ of π
H̃
(∆), one

has

σ \B(0, C ′) =

Ñ

σ ∩
⋃

η∈W>1

η(B)

é

\B(0, C ′).

Now let π be the projection from Rs to (Rs)τ with respect to L(τ), where
(Rs)τ ⊕L(τ) = Rs. Let also σ be the s-dimensional cone having τ as a face
satisfying π(y) ∈ π(σ) and let g be an element of the group W such that
g(σ) ∈ Σ. Such a g always exists because of the definition of Σ. One has:

g(x) = g(y) +∞ · g(τ).

Up to replacing y by y + w with w ∈ L(τ), one may assume that y ∈ σ,
hence g(y) ∈ g(σ) and the conclusion follows. We only need to prove the
existence of σ. For this, take a generating set {v1, ..., vk} of τ , so that τ is
written as:

τ = R>0v1 + · · ·+ R>0vk.

Consider the open ball of radius ε > 0 centered at v0 := v1 + · · · + vk ∈ τ .
Since the support of π

H̃
(∆) is (Ω \ L+) ∪ {0}, there exists an ε > 0 small

enough such that B(v0, ε) ⊂ Ω \ L+. Then, by shrinking ε if necessary, we
may assume that B(v0, ε) only intersects the cones containing τ as a face,
in view of the freeness of the W -action. Write

B(v0, ε) = B(v0, ε) ∩
⋃

σ>τ
dimσ=s

σ.

The image of B(v0, ε) under the projection π is an open neighborhood of
0 ∈ π(Rs) and the set π(

⋃

σ>τ
dimσ=s

σ) is a union of cones, so it is invariant under

homothetic transforms of positive ratio. Hence one has π(
⋃

σ>τ
dimσ=s

σ) = π(Rs),

there is a cone σ ∈ π
H̃
(∆) admitting τ as a face and π(y) ∈ π(σ). �

Remark 2.6. In a similar fashion one can describe a compact fundamental
domain showing that Sankaran manifolds are compact. Actually, in [12],
p. 47 the author mentions this possibility to obtain compactness, although
it did not seem feasible in general.



A GENERALIZATION OF SANKARAN AND LVMB MANIFOLDS 15

Finally, the previous lemma implies:

Proposition 2.7. The quotient Y := U/W is a complex compact manifold
of dimension s+ t.
2.3. Remarks.

a) The open subset U ⊂ X intersects the Cousin group C0 defined in corol-
lary 1.5. Note that U0 := U ∩C0 is a dense open subset of U . The quotient
of U0 by W is not compact and this is the reason for adding divisors at
infinity to U0. In fact the irreducible components of these divisors are gen-
eralized LVMB manifolds in the sense of theorem 5.2 of [2].
To see this, first observe that the preimage of U \ U0 in X∆ is the set⋃

σ∈∆\{0}

orb(σ). Let σ = R>0v be a 1-dimensional cone of ∆, with v ∈

σK(OK). The fan of the toric manifold orb(σ), denoted by ∆/σ, is ob-
tained by taking the image of every cone of ∆ having σ as a face under
the projection map with respect to span(σ), see section VI.4 in [6]. Note
πσ : E ∼= Rn → E/ span(σ) ∼= Rn−1 this projection. One gets a finite fan
in E/ span(σ) and since H trivially intersects σK(OK), the images of H
and σK(OK) under πσ have a trivial intersection in E/ span(σ). Note π̄

H̃
the projection from E/ span(σ) with respect to πσ(H); this is an injective
map on |∆/σ|. The fan π̄

H̃
(∆/σ) is complete because the closure of σ in

Mc(∆) is compact by lemma 1.8. All the hypotheses of theorem 5.2 of [2]
are satisfied.

b) Our construction generalizes other known classes of manifolds.
i) As for the case b = 0, which corresponds to the case that W is trivial,

one recovers the LVMB manifolds.
ii) It is also possible to extend the construction to the case b = s. In this

case the fan ∆ then has to be the trivial fan and this leads to the description
of OT manifolds, see [9] and Y is the compact quotient of C0 by W .
iii) When replacing the linear subspace H by the trivial space {0}, the

rank b of W varies between 1 and s + t − 1 and one gets the construction
of Sankaran manifolds as in [12].

3. Invariants and geometric properties

Lemma 3.1. The open set U admits no non-constant holomorphic func-
tions.

Proof. The manifold X contains the complex Lie group C0 as an open dense
subset, see corollary 1.5. As U0 = U ∩ C0 is an open set of C0 stable under
the action of the maximal compact subgroup (S1)n of C0, it has no non-
constant holomorphic functions. �

The following lemma will helps us to compute the Kodaira dimension of
our manifolds:
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Lemma 3.2. Let G ∼= Ct be a closed subgroup of (C∗)n and Ω be an open
subset of an n-dimensional toric manifold Z. Assume that the action of G
on Ω is proper and that the quotient Ω/G admits no non-constant holomor-
phic functions. Then the Kodaira dimension of Ω/G is −∞.

Proof. Let π : Ω → Ω/G be the quotient map. Choose a basis v1, ..., vn of
the Lie algebra of (C∗)n such that v1, ..., vt is a basis of the Lie algebra of G.
Define the vector fields v∗1, ..., v

∗
n on Ω/G by v∗i := dπy(vi(y)) for y ∈ π−1(x)

and consider the wedge product τ := v∗t+1∧...∧v
∗
n ∈ ΓO(Ω/G,K−1

Ω/G). Notice

that τ is non-zero on π((C∗)n ∩Ω) while it vanishes on π((Z \ (C∗)n) ∩Ω).
If the Kodaira dimension of Ω/G is not −∞, there is a positive integer k
such that there exists a non-trivial section s ∈ ΓO(Ω/G,K⊗k

Ω/G). Then s(τ k)

is a holomorphic function of Ω/G, hence constant equal to zero, because τ k

only vanishes in the complement of π((C∗)n ∩ Ω). �

Proposition 3.3. The Kodaira dimension of Y is −∞.

Proof. Use the previous lemma with G = H, Z = X∆ and Ω = π−1(U)
where π : X∆ → X is the quotient map under the action of H. �

A consequence of the previous lemma is also:

Corollary 3.4. The Kodaira dimension of an LVMB manifold is −∞.

Proposition 3.5. One has the minoration dimH1(Y,O) > b.

Proof. Let ρ : W → C be a group homomorphism. We will associate to this
homomorphism a principal C-bundle above Y and show that if this bundle
is trivial then ρ is also trivial, which will lead to the desired inequality.
Consider the action of W on the product U × C given by

η.(u, z) := (η(u), z + ρ(η))

for all η ∈ W , u ∈ U and z ∈ C. The quotient F := (U × C)/W is a
principal C-bundle above Y . Indeed, the action of ξ ∈ C on an element
[u, z] := W.(u, z) ∈ F is given by ξ.[u, z] := [u, z + ξ]. If F is trivial, it
must have a global section, i.e. there is a holomorphic function f : U → C

satisfying the equality f(η(u)) = f(u)− ρ(η) for all η ∈ W and u ∈ U . By
lemma 3.1, the function f is constant and this implies ρ ≡ 0. �

Corollary 3.6. The fundamental group of the complex manifold Y is iso-
morphic to W , hence one has b1(Y ) = b. Moreover, Y is non-Kähler.

Proof. As for the fundamental group, the result follows from the fact that
the universal covering of Y is simply-connected. By the previous proposi-
tion, if Y is Kähler one has b1(Y ) > 2b, a contradiction. �

Recall that an element α of O∗
K is called a reciprocal unit if α−1 is a

conjugate of α over Q. In the following we shall prove that the algebraic
dimension of Y is zero if there is such a unit in W .
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Proposition 3.7. If the group W contains at least one non-reciprocal unit,
then dimH2(U0/W,Z) =

Ä

b
2

ä

.

Proof. The open set U0/W of Y is the quotient of its contractible universal
covering Hb ×Cs+t−b by the group W ⋉OK , hence one has H2(U/W,Q) ∼=
H2(W ⋉ OK ,Q). As in [9], we use the Lyndon-Hochschild-Serre spectral
sequence associated to the short exact sequence

0 → OK → W ⋉OK → W → 0.

One has Ep,q
2 = Hp(W,Hq(OK ,Q)) ⇒ Hp+q(W ⋉OK ,Q) and the following

exact sequence:

0 → H1(W,QOK ) → H1(W ⋉OK ,Q) →

E0,1
2︷ ︸︸ ︷

H1(OK ,Q)W

→ H2(W,QOK ) → H2(W ⋉OK ,Q)1 → H1(W,H1(OK ,Q))︸ ︷︷ ︸
E1,1

2

where H2(W ⋉OK ,Q)1 is defined by the exact sequence

0 → H2(W ⋉OK ,Q)1 → H2(W ⋉OK ,Q) → H2(OK ,Q)W︸ ︷︷ ︸
E0,2

2

.

See for instance [11].
If one proves that E0,1

2 = E0,2
2 = E1,1

2 = 0, the result follows. For the fact
that E0,1

2 = E1,1
2 = 0, the proof adapts readily from [9], proposition 2.3, so

we will not repeat it here.

As for the group E0,2
2 = H2(OK ,Q)W ∼= Alt2(OK ,Q)W , recall that an

element of Alt2(OK ,Q)W is of the form γ =
∑

i<j ai,jσi ∧ σj with ai,j ∈ C.
Moreover, the W -invariance of γ means that for every pair (i, j) such that
ai,j 6= 0, one has σi(η)σj(η) = 1 for all η ∈ W . Now W contains a non-
reciprocal unit η0 and therefore the relation σi(η0)σj(η0) = 1 can never hold

for any choice of i < j. Hence γ is trivial and so is the group E0,2
2 . �

Proposition 3.8. If the group W contains at least one non-reciprocal unit,
then U0/W contains no complex hypersurface; in particular the algebraic
dimension of Y is zero.

Proof. One has the following commutative diagram:

U0
W ∼= Zb

//

Rs−b × (S1)n q

��

U0/W

Rs−b × (S1)nq′

��

(R>0)
b

W
// (S1)b

(5)
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The open set U0 is diffeomorphic to (R>0)
b×Rs−b× (S1)n, W acts properly

discontinuously on (R>0)
b and U0/W is an Rs−b × (S1)n-bundle over (S1)b.

Because W contains at least one non-reciprocal unit, the previous propo-
sition gives that the map (q′)∗ : H2((S1)b,Z) → H2(U0/W,Z) is injective
and the proof of proposition 3.4 of [3] adapts readily. Finally, Y only has
a finite number of divisors, namely those added at infinity to compactify
U0/W , hence its algebraic dimension is equal to zero. �

Remark 3.9. The second Betti number of an OT manifold of simple type
was already computed in proposition 2.3 of [9]. In fact the proof of proposi-
tion 3.7 above shows that we can replace the simplicity condition with the
assumption that s is odd.

Corollary 3.10. Let X = X(K,A) be an OT manifold. Let s > 0 and
2t > 0 be the number of real and complex embeddings of K respectively.
Then, if s is odd, one has dimR H

2(X,R) =
Ä

s
2

ä

.

Proof. Notice that this result holds with the same proof as above, under the
assumption that the group A ∼= Zs contains at least one non-reciprocal unit.
If s is odd, K can not contain any reciprocal unit. Indeed if K contained
such a unit, say α, the degree of Q(α) over Q would be even and divide the
degree of K.

�

4. An example

To conclude this paper, we describe a concrete example of a manifold ob-
tained by the above construction. In what follows we continue to use the
same notations.

Definition 4.1. A Salem number is a real algebraic integer γ > 1 such
that all its conjugates are of modulus smaller or equal to 1, with equality for
a least one of them.

Remark 4.2. By using the fact that it admits a root of modulus 1, one
easily proves that the minimal polynomial P of a Salem number γ is palin-
dromic, i.e. it satisfies XdegPP (1/X) = P (X). This implies that the roots
of P are γ, 1/γ and complex numbers of absolute value 1. In particular, the
minimal polynomial of a Salem number has degree at least 4 and a Salem
number is necessarily a unit of even degree.

Example 4.3. (See [4], p. 85) It is possible to describe all polynomials of
degree 4 which are minimal polynomials of a Salem number. These are the
polynomials with integer coefficients of the form X4+q1X

3+q2X
2+q1X+1

with 2(q1 − 1) < q2 < −2(q1 + 1). The minimal polynomial of the smallest
Salem number of degree 4 is X4 −X3 −X2 −X + 1.

Now we consider the polynomial P (X) := X4 − X3 − X2 − X + 1. Its
roots are α ≈ 1,722 (truncated value), α−1, β and β̄ where β is a complex
number of modulus 1 and ℑ(β) > 0. Note σ1, σ2, τ1 and τ1 the associated
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embeddings of the field K := Q[X]/〈P 〉 in R (for the first two ones) and C

(for the last two ones).

One can check by computation that the family (1, α, α2, α3) forms an
integral basis of K, see section 2.6 of [13] for a method. The image under
the map σK of this family is the following basis of C4:

BK =

áá

1
1
1
1

ë

,

á

α
α−1

β
β

ë

,

á

α2

α−2

β2

β
2

ë

,

á

α3

α−3

β3

β
3

ëë

.

Moreover, α and 1 − α are two fundamental units of O∗
K . Since s = 2

one has Ω = N × L+ with h = dimN = 1 = dimL = b (see lemma 1.13 for
notations).

It is clear that the two subgroups W := 〈α〉Z and W := 〈1− α〉Z of O∗,+
K

satisfy Assumption C and they both are of rank b = 1.
The action of W on C4 is given by the following diagonal matrix:

M :=

á

α 0 0 0
0 α−1 0 0
0 0 β 0
0 0 0 β

ë

.

In the basis BK , the matrix of the linear map associated to M is the
companion matrix of P :

C :=

á

0 0 0 −1
1 0 0 1
0 1 0 1
0 0 1 1

ë

.

Here, H is the subgroup {(0, 0, 0, z) ∈ C4 | z ∈ C} of C4. In the basis
BK , H is the set {(−βz, β(1− β)z, (β− 1)z, z) | z ∈ C} and the embedding
ι : H → (C∗)4 is given by

ι(z) = (e−2iπβz, e2iπβ(1−β)z, e2iπ(β−1)z, e2iπz) .

The cone Ω ⊂ R2 is the open half-plane R>0 × R. We define a fan of R2

whose cones are generated by elements of π
H̃
(OK) and which is invariant

under the action of W the following way:

Let σ1 be the cone positevely generated by the vectors (1, 1), (α, α−1) and
σ2 the cone generated by (1,−1), (α,−α−1) and call ∆′ the fan generated
by W.{σ1, σ2}. It is clear that (Ω \ (R>0 × {0}))∪ {0} is the support of ∆′.
For a picture of the situation in R2, we refer to figure 1.

In this example the divisors that we add to U0 so that its quotient by W
is compact are chains of Hopf surfaces.
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Indeed, let σ ∈ ∆ ⊂ E ∼= R4 be a 1-dimensional cone, say σ is gener-
ated by (α, α−1, β, β) for simplicity. By the first remark of section 2.3, the
quotient of orb(σ) by H is a generalized LVMB manifold. The fan ∆/σ of
R3 is generated by the images of the two 2-dimensional cones containing σ
under πσ : R4 → R4/ span(σ). Up to a linear isomorphism we can assume
that this is a subfan of the fan of P3(C). In other words, orb(σ)/H is an
LVMB manifold. If we adopt the notations of [7], this situation corresponds
to the case n = 4, k = 3, n1 = n2 = 1 and n3 = 2 hence orb(σ)/H is a Hopf
surface (section 4.(b), p. 260, ibid.).

Or, one also can notice that orb(σ)/H is necessarily a Hopf surface by
Potters’ theorem on the classification of almost homogeneous complex com-
pact surfaces ([10]).

Hence we have built a complex manifold of dimension 3 which consists
of a dense open set that is the quotient of a Cousin group by a discrete
group, compactified by two cycles of Hopf surfaces. A computation shows
that each of these Hopf surfaces contains the two elliptic curves C/〈1, β〉
and C/〈1, 1 − β〉. Now since 1 − β = (β − 1)/β, these two elliptic curves
are isomorphic.

However, because W only contains reciprocal units, one can not apply
proposition 3.8 and hence we don’t know yet the algebraic dimension of
this manifold. On the other hand, if one carries the construction with the
group W instead of W , then we know that the resulting manifold has its
algebraic dimension equal to zero.
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