Tsunamis generated by subaqueous volcanic explosions in Taal Caldera Lake, Philippines
Résumé
Volcanic subaqueous explosions can generate hazardous tsunamis, especially in lakes. In this paper, we simulate different scenarios of subaqueous explosions and related tsunamis in Taal Caldera Lake (Luzon, Philippines). Taal volcano is one of the most active volcanoes in Southeast Asia, and eruptive processes are mostly explosive. We test different energies of explosions at eight different explosion sites in the lake. The initial water surface displacement ( ƞ 0) generated by the explosion is estimated as a function of explosion energy at a given depth. We estimate the tsunami travel times, maximum wave heights, and wave periods at the shoreline. This type of hazard is typically neglected and our work has important implications for hazard assessment around Taal Lake. Due to fast propagation of tsunamis in the lake (waves typically crossing the lake in less than 10 min), there is only a short time available for issuing a warning. For ƞ 0 ≤ 50 m, wave heights at the shoreline are less than 2 m with a non-dispersive numerical model, and less than 0.5 m with a dispersive model, whatever the explosion depth and location. Powerful explosions with ƞ 0 > > 100 m generate wave heights greater than 2 m all around the lake and local peaks higher than 10 m.
Origine | Fichiers produits par l'(les) auteur(s) |
---|